1
|
Miller TI, Banning S, Lieberman JA. Risk factors and provider awareness of sexually transmitted enteric pathogens among men who have sex with men. Microbiol Spectr 2024; 12:e0357723. [PMID: 38391230 PMCID: PMC10986602 DOI: 10.1128/spectrum.03577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Sexual transmission of enteric pathogens among men who have sex with men (MSM) is well documented, although whether providers are cognizant of this risk when MSM patients present with gastrointestinal symptoms has not been studied. Over 34 months at a major tertiary metropolitan medical system, this study retrospectively analyzed 436 BioFire FilmArray Gastrointestinal results from 361 patients documented as MSM. An extensive chart review was performed, including specific sexual behaviors, socioeconomic risk factors, and whether providers charted a sexual history when a patient presented for care. Overall BioFire positivity rate was 62% with no significant difference in positivity between persons living with HIV and those without. Patients charted as sexually active had a significantly increased odds ratio (OR) of a positive result compared to those who were not. Anilingus had the highest OR. Providers charted any type of sexual history in 40.6% of cases, and HIV/infectious disease providers were significantly more likely to do this compared to other subspecialties. Sexual transmission of enteric pathogens within MSM is ongoing, and patients are at risk regardless of living with HIV. Not all sexual behaviors have the same associated risk, highlighting opportunities to decrease transmission. Increased provider vigilance and better patient education on sexual transmission of enteric pathogens are needed to reduce the disease burden. IMPORTANCE Our work adds several key findings to the growing body of literature describing the epidemiology of enteric pathogens as sexually transmitted infections among men who have sex with men (MSM). We analyzed clinical test results, housing status, provider awareness, sexual behaviors, and symptoms for 361 patients. We found that any sexual activity was associated with an increased risk of diarrheal pathogen detection, whereas being unhoused was not a risk factor. These findings suggest separate transmission networks between unhoused persons, who are also at risk of infectious diarrhea, and MSM. Moreover, our study suggested low awareness among patient-facing clinicians that diarrheal pathogens can be sexually transmitted. Together, our findings indicate an important opportunity to disrupt transmission cycles by educating clinicians on how to assess and counsel MSM patients.
Collapse
Affiliation(s)
- Timothy Isaac Miller
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Stephanie Banning
- Department of Internal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joshua A. Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Jønsson R, Björling A, Midtgaard SR, Jensen GV, Skar-Gislinge N, Arleth L, Matthews S, Krogfelt KA, Jenssen H. Aggregative adherence fimbriae form compact structures as seen by SAXS. Sci Rep 2023; 13:16516. [PMID: 37783694 PMCID: PMC10545799 DOI: 10.1038/s41598-023-42079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Bacterial colonization is mediated by fimbriae, which are thin hair-like appendages dispersed from the bacterial surface. The aggregative adherence fimbriae from enteroaggregative E. coli are secreted through the outer membrane and consist of polymerized minor and major pilin subunits. Currently, the understanding of the structural morphology and the role of the minor pilin subunit in the polymerized fimbriae are limited. In this study we use small-angle X-ray scattering to reveal the structural morphology of purified fimbriae in solution. We show that the aggregative fimbriae are compact arrangements of subunit proteins Agg5A + Agg3B which are assembled pairwise on a flexible string rather than extended in relatively straight filaments. Absence of the minor subunit leads to less compact fimbriae, but did not affect the length. The study provides novel insights into the structural morphology and assembly of the aggregative adherence fimbriae. Our study suggests that the minor subunit is not located at the tip of the fimbriae as previously speculated but has a higher importance for the assembled fimbriae by affecting the global structure.
Collapse
Affiliation(s)
- Rie Jønsson
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark.
| | | | | | | | | | - Lise Arleth
- Niels Bohr Institute, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Steve Matthews
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London, UK
| | | | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark.
| |
Collapse
|
3
|
Molecular Epidemiology of Enteroaggregative Escherichia coli (EAEC) Isolates of Hospitalized Children from Bolivia Reveal High Heterogeneity and Multidrug-Resistance. Int J Mol Sci 2020; 21:ijms21249543. [PMID: 33334000 PMCID: PMC7765457 DOI: 10.3390/ijms21249543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen frequently associated with acute diarrhea in children and travelers to endemic regions. EAEC was found the most prevalent bacterial diarrheal pathogen from hospitalized Bolivian children less than five years of age with acute diarrhea from 2007 to 2010. Here, we further characterized the epidemiology of EAEC infection, virulence genes, and antimicrobial susceptibility of EAEC isolated from 414 diarrheal and 74 non-diarrheal cases. EAEC isolates were collected and subjected to a PCR-based virulence gene screening of seven virulence genes and a phenotypic resistance test to nine different antimicrobials. Our results showed that atypical EAEC (a-EAEC, AggR-negative) was significantly associated with diarrhea (OR, 1.62, 95% CI, 1.25 to 2.09, p < 0.001) in contrast to typical EAEC (t-EAEC, AggR-positive). EAEC infection was most prevalent among children between 7–12 months of age. The number of cases exhibited a biannual cycle with a major peak during the transition from warm to cold (April–June). Both typical and a-EAEC infections were graded as equally severe; however, t-EAEC harbored more virulence genes. aap, irp2 and pic were the most prevalent genes. Surprisingly, we detected 60% and 52.6% of multidrug resistance (MDR) EAEC among diarrheal and non-diarrheal cases. Resistance to ampicillin, sulfonamides, and tetracyclines was most common, being the corresponding antibiotics, the ones that are frequently used in Bolivia. Our work is the first study that provides comprehensive information on the high heterogenicity of virulence genes in t-EAEC and a- EAEC and the large prevalence of MDR EAEC in Bolivia.
Collapse
|
4
|
Modgil V, Mahindroo J, Narayan C, Kalia M, Yousuf M, Shahi V, Koundal M, Chaudhary P, Jain R, Sandha KS, Tanwar S, Gupta P, Thakur K, Singh D, Gautam N, Kakkar M, Bharti B, Mohan B, Taneja N. Comparative analysis of virulence determinants, phylogroups, and antibiotic susceptibility patterns of typical versus atypical Enteroaggregative E. coli in India. PLoS Negl Trop Dis 2020; 14:e0008769. [PMID: 33206643 PMCID: PMC7673547 DOI: 10.1371/journal.pntd.0008769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an evolving enteric pathogen that causes acute and chronic diarrhea in developed and industrialized nations in children. EAEC epidemiology and the importance of atypical EAEC (aEAEC) isolation in childhood diarrhea are not well documented in the Indian setting. A comparative analysis was undertaken to evaluate virulence, phylogeny, and antibiotic sensitivity among typical tEAEC versus aEAEC. A total of 171 EAEC isolates were extracted from a broad surveillance sample of diarrheal (N = 1210) and healthy children (N = 550) across North India. Polymerase chain reaction (PCR) for the aggR gene (master regulator gene) was conducted to differentiate tEAEC and aEAEC. For 21 virulence genes, we used multiplex PCR to classify possible virulence factors among these strains. Phylogenetic classes were identified by a multiplex PCR for chuA, yjaA, and a cryptic DNA fragment, TspE4C2. Antibiotic susceptibility was conducted by the disc diffusion method as per CLSI guidelines. EAEC was associated with moderate to severe diarrhea in children. The prevalence of EAEC infection (11.4%) was higher than any other DEC group (p = 0.002). tEAEC occurrence in the diarrheal group was higher than in the control group (p = 0.0001). tEAEC strain harbored more virulence genes than aEAEC. astA, aap, and aggR genes were most frequently found in the EAEC from the diarrheal population. Within tEAEC, this gene combination was present in more than 50% of strains. Also, 75.8% of EAEC strains were multidrug-resistant (MDR). Phylogroup D (43.9%) and B1 (39.4%) were most prevalent in the diarrheal and control group, respectively. Genetic analysis revealed EAEC variability; the comparison of tEAEC and aEAEC allowed us to better understand the EAEC virulence repertoire. Further microbiological and epidemiological research is required to examine the pathogenicity of not only typical but also atypical EAEC. Enteroaggregative E. coli (EAEC) are an increasingly important cause of diarrhea. E. coli belonging to this category cause watery diarrhea, which is often persistent and can be inflammatory. It is also associated with traveler’s diarrhea in children and adults in middle and high-income countries. EAEC are defined by their ability to adhere to epithelial cells in a characteristic stacked brick-like pattern. However, the identification of these pathogenic strains remains elusive because of its heterogeneous nature. Genes that could contribute to the pathogenicity of EAEC encode adhesions, toxins, and other factors. Due to the heterogeneity of EAEC strains and differing host immune responses, not all EAEC infections are symptomatic. A critical factor in both recognizing EAEC pathogenesis and defining typical EAEC (tEAEC) strains is AggR, a transcriptional control for many EAEC virulence genes. The central role of aggR in virulence confers a strong priority to understand its pathogenicity. To identify EAEC, the CVD432 probe has been used. The CVD432 is a DNA probe from pAA plasmid of EAEC, has been reported to be specific for the detection of EAEC. The lack of sensitivity comes from the genetic heterogeneity of the EAEC strains and the wide geographic dispersal of strains. In our study, we performed a large surveillance of EAEC from North India among the pediatric population. Samples were collected by the microbiology staff at the Postgraduate Institute of Medical Education and Research (PGIMER) and referral system labs in Chandigarh (Manimajra), Punjab (Ludhiana), Haryana (Panchkula and Ambala Cantt), Himachal Pradesh (Hamirpur, Shimla, and Tanda), and Uttarakhand (Rishikesh, Rudrapur, and Haridwar)]. PGIMER is the largest tertiary care hospital in North India and serves patients from across Punjab, Jammu and Kashmir, Himachal Pradesh and Haryana. EAEC infections were detected using molecular methods. In our finding, astA, aap, and aggR genes were most frequently found in the EAEC from the diarrheal population. Within tEAEC, this gene combination is present in more than 50% of strains and helps to differentiate tEAEC from aEAEC. Our collection of EAEC strains helps in finding an appropriate marker for the early detection of EAEC. Our signature sequence (astA, aap, and aggR) will be ideal as focus genes for EAEC identification, as well as tEAEC and aEAEC. The multidrug resistance (MDR) was observed in 75.8% of the EAEC strains. tEAEC exhibits resistance to a greater number of antibiotics with respect to aEAEC. The phylogenetic analysis revealed that EAEC phylogeny is diverse and dispersed in all the phylogroups.
Collapse
Affiliation(s)
- Vinay Modgil
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jaspreet Mahindroo
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Chandradeo Narayan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Manmohit Kalia
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Md Yousuf
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Varun Shahi
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Meenakshi Koundal
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pankaj Chaudhary
- Department of Pediatrics Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh (PGIMER), India
| | - Ruby Jain
- Civil Hospital Manimajra, Chandigarh, India
| | | | | | - Pratima Gupta
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Kamlesh Thakur
- Department of Microbiology, Dr. Rajendra Prasad Government Medical College Kangra (RPGMC), Himachal Pradesh, India
| | - Digvijay Singh
- Department of Microbiology, Indira Gandhi Medical college (IGMC), Shimla, Himachal Pradesh, India
| | - Neha Gautam
- Department of Microbiology, Indira Gandhi Medical college (IGMC), Shimla, Himachal Pradesh, India
| | | | - Bhavneet Bharti
- Department of Pediatrics Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh (PGIMER), India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
- * E-mail:
| |
Collapse
|
5
|
Moraes CTP, Longo J, Silva LB, Pimenta DC, Carvalho E, Morone MSLC, da Rós N, Serrano SMT, Santos ACM, Piazza RMF, Barbosa AS, Elias WP. Surface Protein Dispersin of Enteroaggregative Escherichia coli Binds Plasminogen That Is Converted Into Active Plasmin. Front Microbiol 2020; 11:1222. [PMID: 32625178 PMCID: PMC7315649 DOI: 10.3389/fmicb.2020.01222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/14/2020] [Indexed: 01/24/2023] Open
Abstract
Dispersin is a 10.2 kDa-immunogenic protein secreted by enteroaggregative Escherichia coli (EAEC). In the prototypical EAEC strain 042, dispersin is non-covalently bound to the outer membrane, assisting dispersion across the intestinal mucosa by overcoming electrostatic attraction between the AAF/II fimbriae and the bacterial surface. Also, dispersin facilitates penetration of the intestinal mucus layer. Initially characterized in EAEC, dispersin has been detected in other E. coli pathotypes, including those isolated from extraintestinal sites. In this study we investigated the binding capacity of purified dispersin to extracellular matrix (ECM), since dispersin is exposed on the bacterial surface and is involved in intestinal colonization. Binding to plasminogen was also investigated due to the presence of conserved carboxy-terminal lysine residues in dispersin sequences, which are involved in plasminogen binding in several bacterial proteins. Moreover, some E. coli components can interact with this host protease, as well as with tissue plasminogen activator, leading to plasmin production. Recombinant dispersin was produced and used in binding assays with ECM molecules and coagulation cascade compounds. Purified dispersin bound specifically to laminin and plasminogen. Interaction with plasminogen occurred in a dose-dependent and saturable manner. In the presence of plasminogen activator, bound plasminogen was converted into plasmin, its active form, leading to fibrinogen and vitronectin cleavage. A collection of E. coli strains isolated from human bacteremia was screened for the presence of aap, the dispersin-encoding gene. Eight aap-positive strains were detected and dispersin production could be observed in four of them. Our data describe new attributes for dispersin and points out to possible roles in mechanisms of tissue adhesion and dissemination, considering the binding capacity to laminin, and the generation of dispersin-bound plasmin(ogen), which may facilitate E. coli spread from the colonization site to other tissues and organs. The cleavage of fibrinogen in the bloodstream, may also contribute to the pathogenesis of sepsis caused by dispersin-producing E. coli.
Collapse
Affiliation(s)
| | - Jonathan Longo
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Ludmila B Silva
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Daniel C Pimenta
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, Brazil
| | - Eneas Carvalho
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Mariana S L C Morone
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Nancy da Rós
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Ana Carolina M Santos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Angela S Barbosa
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Waldir P Elias
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
6
|
Jønsson R, Liu B, Struve C, Yang Y, Jørgensen R, Xu Y, Jenssen H, Krogfelt KA, Matthews S. Structural and functional studies of Escherichia coli aggregative adherence fimbriae (AAF/V) reveal a deficiency in extracellular matrix binding. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:304-311. [PMID: 27939608 PMCID: PMC5289312 DOI: 10.1016/j.bbapap.2016.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/14/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023]
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging cause of acute and persistent diarrhea worldwide. The pathogenesis of different EAEC stains is complicated, however, the early essential step begins with attachment of EAEC to intestinal mucosa via aggregative adherence fimbriae (AAFs). Currently, five different variants have been identified, which all share a degree of similarity in the gene organization of their operons and sequences. Here, we report the solution structure of Agg5A from the AAF/V variant. While preserving the major structural features shared by all AAF members, only Agg5A possesses an inserted helix at the beginning of the donor strand, which together with altered surface electrostatics, renders the protein unable to interact with fibronectin. Hence, here we characterize the first AAF variant with a binding mode that varies from previously described AAFs.
Collapse
Affiliation(s)
- Rie Jønsson
- Institute for Science and Environment, Roskilde University, Roskilde, Denmark; Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Bing Liu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Yi Yang
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - René Jørgensen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Yingqi Xu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Håvard Jenssen
- Institute for Science and Environment, Roskilde University, Roskilde, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark.
| | - Steve Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom.
| |
Collapse
|
7
|
Priya A, Kaur K, Bhattacharyya S, Chakraborti A, Ghosh S. Cell cycle arrest and apoptosis induced by enteroaggregative Escherichia coli in cultured human intestinal epithelial cells. J Med Microbiol 2017; 66:217-225. [DOI: 10.1099/jmm.0.000405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Anshu Priya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Kiranjeet Kaur
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Anuradha Chakraborti
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|