1
|
Bonosi L, Marrone S, Benigno UE, Buscemi F, Musso S, Porzio M, Silven MP, Torregrossa F, Grasso G. Maximal Safe Resection in Glioblastoma Surgery: A Systematic Review of Advanced Intraoperative Image-Guided Techniques. Brain Sci 2023; 13:brainsci13020216. [PMID: 36831759 PMCID: PMC9954589 DOI: 10.3390/brainsci13020216] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) represents the most common and aggressive central nervous system tumor associated with a poor prognosis. The aim of this study was to depict the role of intraoperative imaging techniques in GBM surgery and how they can ensure the maximal extent of resection (EOR) while preserving the functional outcome. The authors conducted a systematic review following PRISMA guidelines on the PubMed/Medline and Scopus databases. A total of 1747 articles were identified for screening. Studies focusing on GBM-affected patients, and evaluations of EOR and functional outcomes with the aid of advanced image-guided techniques were included. The resulting studies were assessed for methodological quality using the Risk of Bias in Systematic Review tool. Open Science Framework registration DOI 10.17605/OSF.IO/3FDP9. Eighteen studies were eligible for this systematic review. Among the selected studies, eight analyzed Sodium Fluorescein, three analyzed 5-aminolevulinic acid, two evaluated IoMRI imaging, two evaluated IoUS, and three evaluated multiple intraoperative imaging techniques. A total of 1312 patients were assessed. Gross Total Resection was achieved in the 78.6% of the cases. Follow-up time ranged from 1 to 52 months. All studies assessed the functional outcome based on the Karnofsky Performance Status scale, while one used the Neurologic Assessment in Neuro-Oncology score. In 77.7% of the cases, the functional outcome improved or was stable over the pre-operative assessment. Combining multiple intraoperative imaging techniques could provide better results in GBM surgery than a single technique. However, despite good surgical outcomes, patients often present a neurocognitive decline leading to a marked deterioration of the quality of life. Advanced intraoperative image-guided techniques can allow a better understanding of the anatomo-functional relationships between the tumor and the surrounding brain, thus maximizing the EOR while preserving functional outcomes.
Collapse
|
2
|
DePaoli D, Côté DC, Bouma BE, Villiger M. Endoscopic imaging of white matter fiber tracts using polarization-sensitive optical coherence tomography. Neuroimage 2022; 264:119755. [PMID: 36400379 PMCID: PMC9802682 DOI: 10.1016/j.neuroimage.2022.119755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Polarization sensitive optical coherence tomography (PSOCT) has been shown to image and delineate white matter fibers in a label-free manner by revealing optical birefringence within the myelin sheath using a microscope setup. In this proof-of-concept study, we adapt recent advancements in endoscopic PSOCT to perform depth-resolved imaging of white matter structures deep inside intact porcine brain tissue ex-vivo, through a small, rotational fiber probe. The probe geometry is comparable to microelectrodes currently used in neurosurgical interventions. The presented imaging system is mobile, robust, and uses biologically safe levels of optical radiation making it well suited for clinical translation. In neurosurgery, where accuracy is imperative, endoscopic PSOCT through a narrow-gauge fiber probe could provide intra-operative feedback on the location of critical white matter structures.
Collapse
Affiliation(s)
- Damon DePaoli
- Harvard Medical School, Boston, MA 02115, USA,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel C. Côté
- CERVO Brain Research Center, Université Laval, Quebec City, Quebec G1E 1T2, Canada
| | - Brett E. Bouma
- Harvard Medical School, Boston, MA 02115, USA,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Martin Villiger
- Harvard Medical School, Boston, MA 02115, USA,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA,Corresponding author. (M. Villiger)
| |
Collapse
|
3
|
Mosteiro A, Di Somma A, Ramos PR, Ferrés A, De Rosa A, González-Ortiz S, Enseñat J, González JJ. Is intraoperative ultrasound more efficient than magnetic resonance in neurosurgical oncology? An exploratory cost-effectiveness analysis. Front Oncol 2022; 12:1016264. [PMID: 36387079 PMCID: PMC9650059 DOI: 10.3389/fonc.2022.1016264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Intraoperative imaging is a chief asset in neurosurgical oncology, it improves the extent of resection and postoperative outcomes. Imaging devices have evolved considerably, in particular ultrasound (iUS) and magnetic resonance (iMR). Although iUS is regarded as a more economically convenient and yet effective asset, no formal comparison between the efficiency of iUS and iMR in neurosurgical oncology has been performed. Methods A cost-effectiveness analysis comparing two single-center prospectively collected surgical cohorts, classified according to the intraoperative imaging used. iMR (2013-2016) and iUS (2021-2022) groups comprised low- and high-grade gliomas, with a maximal safe resection intention. Units of health gain were gross total resection and equal or increased Karnofsky performance status. Surgical and health costs were considered for analysis. The incremental cost-effectiveness ratio (ICER) was calculated for the two intervention alternatives. The cost-utility graphic and the evolution of surgical duration with the gained experience were also analyzed. Results 50 patients followed an iMR-assisted operation, while 17 underwent an iUS-guided surgery. Gross total resection was achieved in 70% with iMR and in 60% with iUS. Median postoperative Karnofsky was similar in both group (KPS 90). Health costs were € 3,220 higher with iMR, and so were surgical-related costs (€ 1,976 higher). The ICER was € 322 per complete resection obtained with iMR, and € 644 per KPS gained or maintained with iMR. When only surgical-related costs were analyzed, ICER was € 198 per complete resection with iMR and € 395 per KPS gained or maintained. Conclusion This is an unprecedented but preliminary cost-effectiveness analysis of the two most common intraoperative imaging devices in neurosurgical oncology. iMR, although being costlier and time-consuming, seems cost-effective in terms of complete resection rates and postoperative performance status. However, the differences between both techniques are small. Possibly, iMR and iUS are complementary aids during the resection: iUS real-time images assist while advancing towards the tumor limits, informing about the distance to relevant landmarks and correcting neuronavigation inaccuracy due to brain shift. Yet, at the end of resection, it is the iMR that reliably corroborates whether residual tumor remains.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Alejandra Mosteiro,
| | - Alberto Di Somma
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Roldán Ramos
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Andrea De Rosa
- Division of Neurosurgery, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sofía González-Ortiz
- Division of Neurosurgery, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Joaquim Enseñat
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Jose Juan González
- Department of Neurosurgery, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Alcañiz P, Vivo de Catarina C, Gutiérrez A, Pérez J, Illana C, Pinar B, Otaduy MA. Soft-tissue simulation of the breast for intraoperative navigation and fusion of preoperative planning. Front Bioeng Biotechnol 2022; 10:976328. [PMID: 36246364 PMCID: PMC9554225 DOI: 10.3389/fbioe.2022.976328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Computational preoperative planning offers the opportunity to reduce surgery time and patient risk. However, on soft tissues such as the breast, deviations between the preoperative and intraoperative settings largely limit the applicability of preoperative planning. In this work, we propose a high-performance accurate simulation model of the breast, to fuse preoperative information with the intraoperative deformation setting. Our simulation method encompasses three major elements: high-quality finite-element modeling (FEM), efficient handling of anatomical couplings for high-performance computation, and personalized parameter estimation from surface scans. We show the applicability of our method on two problems: 1) transforming high-quality preoperative scans to the intraoperative setting for fusion of preoperative planning data, and 2) real-time tracking of breast tumors for navigation during intraoperative radiotherapy. We have validated our methodology on a test cohort of nine patients who underwent tumor resection surgery and intraoperative radiotherapy, and we have quantitatively compared simulation results to intraoperative scans. The accuracy of our simulation results suggest clinical viability of the proposed methodology.
Collapse
Affiliation(s)
- Patricia Alcañiz
- Computer science department, Universidad Rey Juan Carlos, Madrid, Spain
- GMV Innovating Solutions, Madrid, Spain
- *Correspondence: Patricia Alcañiz,
| | - César Vivo de Catarina
- Computer science department, Universidad Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Alessandro Gutiérrez
- Fundación Para La Investigación Biomédica Del Hospital Universitario La Paz, Madrid, Spain
| | - Jesús Pérez
- Computer science department, Universidad Rey Juan Carlos, Madrid, Spain
| | | | - Beatriz Pinar
- Medical Physics department, Hospital Universitario Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - Miguel A. Otaduy
- Computer science department, Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
5
|
Balogun JA. Situating Sub-Saharan Africa Within Intra-Operative Innovations in Neurooncology. Front Surg 2022; 9:889965. [PMID: 35813043 PMCID: PMC9260707 DOI: 10.3389/fsurg.2022.889965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- James A. Balogun
- Division of Neurological Surgery, Department of Surgery, College of Medicine, University of Ibadan and Department of Neurological Surgery, University College Hospital, Ibadan, Nigeria
- Correspondence: James A. Balogun
| |
Collapse
|
6
|
Giammalva GR, Ferini G, Musso S, Salvaggio G, Pino MA, Gerardi RM, Brunasso L, Costanzo R, Paolini F, Di Bonaventura R, Umana GE, Graziano F, Palmisciano P, Scalia G, Tumbiolo S, Midiri M, Iacopino DG, Maugeri R. Intraoperative Ultrasound: Emerging Technology and Novel Applications in Brain Tumor Surgery. Front Oncol 2022; 12:818446. [PMID: 35178348 PMCID: PMC8844995 DOI: 10.3389/fonc.2022.818446] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 01/22/2023] Open
Abstract
Intraoperative ultrasound (IOUS) is becoming progressively more common during brain tumor surgery. We present data from our case series of brain tumor surgery performed with the aid of IOUS in order to identify IOUS advantages and crucial aspects that may improve the management of neurosurgical procedures for brain tumors. From January 2021 to September 2021, 17 patients with different brain tumors underwent brain tumor surgery aided by the use of IOUS. During surgery, the procedure was supported by the use of multiples ultrasonographic modalities in addition to standard B-mode: Doppler, color Doppler, elastosonography, and contrast-enhanced intraoperative ultrasound (CEUS). In selected cases, the use of IOUS during surgical procedure was combined with neuronavigation and the use of intraoperative fluorescence by the use of 5-aminolevulinic acid (5-ALA). In one patient, a preoperative ultrasound evaluation was performed through a former iatrogenic skull defect. This study confirms the role of IOUS in maximizing the EOR, which is strictly associated with postoperative outcome, overall survival (OS), and patient’s quality of life (QoL). The combination of ultrasound advanced techniques such as Doppler, color Doppler, elastosonography, and contrast-enhanced intraoperative ultrasound (CEUS) is crucial to improve surgical effectiveness and patient’s safety while expanding surgeon’s view.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, Catania, Italy
| | - Sofia Musso
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Giuseppe Salvaggio
- Section of Radiology, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Maria Angela Pino
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Federica Paolini
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Francesca Graziano
- Department of Neurosurgery Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Paolo Palmisciano
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Gianluca Scalia
- Department of Neurosurgery Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | | | - Massimo Midiri
- Section of Radiology, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Dmitriev AY, Dashyan VG. [Intraoperative brain shift in neuronavigation. Causes, clinical significance and solution of the problem]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:119-124. [PMID: 35412721 DOI: 10.17116/neiro202286021119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intraoperative brain shift is the main cause of inaccurate navigation. This limits the use of both conventional and functional neuronavigation. Causes of brain shift are divided into surgical, pathophysiological and metabolic ones. Brain shift is usually unidirectional and directed towards gravitation. Brain dislocation depends on lesion size and its location. Shift is minimal in patients with tumors <20 ml and skull base neoplasms. Small craniotomy, retractor-free surgery and no ventriculostomy are valuable to reduce brain shift. Brain dislocation increases during surgery that's why marking of eloquent lesions at the beginning of surgery and primary resection near subcortical tracts minimize the risk of damage to conduction pathways. Augmented reality and manual shift of marked objects are the cornerstones of linear correction of brain shift in modern navigation systems. In case of nonlinear brain shift, sonography and intraoperative magnetic resonance imaging can clarify location of surgical target and cerebral structures.
Collapse
Affiliation(s)
- A Yu Dmitriev
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - V G Dashyan
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
8
|
Giammalva GR, Musso S, Salvaggio G, Pino MA, Gerardi RM, Umana GE, Midiri M, Iacopino DG, Maugeri R. Coplanar Indirect-Navigated Intraoperative Ultrasound: Matching Un-navigated Probes With Neuronavigation During Neurosurgical Procedures. How We Do It. Oper Neurosurg (Hagerstown) 2021; 21:485-490. [PMID: 34498674 DOI: 10.1093/ons/opab316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/08/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Intraoperative ultrasound (IOUS) is becoming more and more adopted in neurosurgery, since it has been associated to greater extent of resection (EOR) and to gross total resection (GTR) during brain tumor surgery. IOUS main limitations are spatial resolution, width and orientation of the field of view and scan quality, which are operator-dependent. Furthermore, most neurosurgeons are not confident with this technique, which needs a long learning curve in order to identify and interpret anatomic structures. OBJECTIVE To describe an effective procedure to take advantages of both IOUS and neuronavigation in case of lack of a navigated ultrasound system. METHODS We propose a reliable "indirect-navigated" technique which is based on the optical tracking of un-navigated IOUS probe by the use of a multipurpose passive tracker and a proper configuration of common neuronavigation system. RESULTS Navigated IOUS is not available in all neurosurgical operating rooms but ultrasound systems are common tools in many hospital facilities and neuronavigation systems are common in almost all the neurosurgical operating rooms. The proposed indirect-navigated technique shows some paramount advantages: since almost all the neurosurgical operating rooms are provided with a neuronavigation system, the only tool needed is the ultrasonography. Therefore, this procedure is largely accessible and costless, reliable, and may improve the neurosurgeon's ability in ultrasonographic anatomy. CONCLUSION This technique is based on the coplanar and coupled use of both un-navigated IOUS probe and standard optical neuronavigation, in order to allow the intraoperative navigation of IOUS images when a navigated ultrasound system is not available.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Sofia Musso
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Giuseppe Salvaggio
- Section of Radiology, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Maria Angela Pino
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosa Maria Gerardi
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Massimo Midiri
- Section of Radiology, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Sahoo SK, Salunke P, Ahuja CK. Revisiting Intraoperative 2D USG with Saline-Air Mixture as Contrast for Resection of Eloquent Area Glioma in Resource-Deficient Countries. J Neurosci Rural Pract 2021; 12:780-785. [PMID: 34737515 PMCID: PMC8559063 DOI: 10.1055/s-0041-1736151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Background Advanced ultrasound, intraoperative magnetic resonance imaging (MRI), neuromonitoring, and aminolevulenic acid have improved the resection and safety of eloquent area gliomas. However, availability of these modern gadgets is a major concern in resource-deficient countries. A two-dimensional ultrasonography 2D USG is cheaper, provides real-time imaging, and is already established but underutilized instrument. Objective Here, we revisited the principles of 2D USG and used it for eloquent-area glioma surgery. Materials and Methods Fifty-eight patients with eloquent area gliomas were operated in last 2 years with the aid of 2D USG with 6-13 MHz curvilinear probe. Preoperative diagnosis was high-grade glioma in 38 and low-grade glioma (LGG) in 20 patients. Tumors were categorized as predominantly hyperechoic (27), uniformly hyperechoic (7), mixed echogenicity (21), and cystic (3). Results Intraoperatively, 2D USG could define the tumor margins in 46 cases. Of these, USG suggested gross total excision in 38 patients and subtotal in 8 patients. The findings matched with follow-up MRI in 34 patients who showed hyperechogenicity (predominant/uniform). Injecting saline with air in to the resection cavity and insinuating through adjacent brain parenchyma helped in detecting residual lesion in three cystic gliomas and in two LGG where the tumor cavity collapsed. Conclusion 2D USG is a helpful tool in eloquent area glioma surgery, especially in resource-limited countries. Visualization through adjacent parenchyma and injection of saline-air mixture in to the resection cavity helped in delineating residual lesion. Extent of resection is best monitored by 2D USG when tumor appeared hyperechoic (predominant/uniform).
Collapse
Affiliation(s)
- Sushanta K Sahoo
- Department of Neurosurgery, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Pravin Salunke
- Department of Neurosurgery, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Chirag Kamal Ahuja
- Department of Radiodiagnosis and Imaging, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
10
|
Hu X, Xu R, Ding H, Lv R, Yang L, Wang Y, Xie R. The total resection rate of glioma can be improved by the application of US-MRI fusion combined with contrast-enhanced ultrasound. Clin Neurol Neurosurg 2021; 208:106892. [PMID: 34425346 DOI: 10.1016/j.clineuro.2021.106892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/10/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study was performed to evaluate the diagnostic performance of ultrasound-magnetic resonance imaging (MRI) fusion combined with contrast-enhanced ultrasound and to explore its role in improving the total tumor resection rate. METHODS Between January 2018 and December 2018, 16 patients in the observation group and 23 patients in the control group were enrolled in this study. The tumor depth and brain shift distance were analyzed, as well as the peak intensity and microvessel density of different grades of gliomas in the observation group. Finally, we compared the difference in total resection rate between the observation and control groups. RESULTS Using ultrasound during operations, we found a significant negative correlation between brain shift distance and tumor depth, with correlation coefficient r=-0.868(P<0.05). In glioma, the peak intensity and microvessel density increased synchronously with glioma grade(r=0.806, P<0.05). The total resection rate of lesions was significantly higher in the observation group than in the control group (P<0.05). CONCLUSIONS The application of ultrasound-MRI fusion combined with contrast-enhanced ultrasound can improve the total resection rate of lesions, thus playing an important role in clinical practice.
Collapse
Affiliation(s)
- Xing Hu
- Department of Ultrasonic medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Rong Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hong Ding
- Department of Ultrasonic medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Renhua Lv
- Department of Ultrasonic medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Liusong Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Yong Wang
- Department of Ultrasonic medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| |
Collapse
|
11
|
Ghimire P, Lavrador JP, Keeble H, Gullan R, Vergani F, Bhangoo R, Ashkan K. Letter: Electromagnetic Navigation Systems and Intraoperative Neuromonitoring: Reliability and Feasibility Study. Oper Neurosurg (Hagerstown) 2021; 21:E173-E175. [PMID: 34015828 DOI: 10.1093/ons/opab163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Prajwal Ghimire
- Department of Neurosurgery King's College Hospital NHS Foundation Trust London, United Kingdom
| | - Jose Pedro Lavrador
- Department of Neurosurgery King's College Hospital NHS Foundation Trust London, United Kingdom
| | | | - Richard Gullan
- Department of Neurosurgery King's College Hospital NHS Foundation Trust London, United Kingdom
| | - Francesco Vergani
- Department of Neurosurgery King's College Hospital NHS Foundation Trust London, United Kingdom
| | - Ranjeev Bhangoo
- Department of Neurosurgery King's College Hospital NHS Foundation Trust London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery King's College Hospital NHS Foundation Trust London, United Kingdom
| |
Collapse
|
12
|
Moiraghi A, Prada F, Delaidelli A, Guatta R, May A, Bartoli A, Saini M, Perin A, Wälchli T, Momjian S, Bijlenga P, Schaller K, DiMeco F. Navigated Intraoperative 2-Dimensional Ultrasound in High-Grade Glioma Surgery: Impact on Extent of Resection and Patient Outcome. Oper Neurosurg (Hagerstown) 2021; 18:363-373. [PMID: 31435672 DOI: 10.1093/ons/opz203] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/16/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Maximizing extent of resection (EOR) and reducing residual tumor volume (RTV) while preserving neurological functions is the main goal in the surgical treatment of gliomas. Navigated intraoperative ultrasound (N-ioUS) combining the advantages of ultrasound and conventional neuronavigation (NN) allows for overcoming the limitations of the latter. OBJECTIVE To evaluate the impact of real-time NN combining ioUS and preoperative magnetic resonance imaging (MRI) on maximizing EOR in glioma surgery compared to standard NN. METHODS We retrospectively reviewed a series of 60 cases operated on for supratentorial gliomas: 31 operated under the guidance of N-ioUS and 29 resected with standard NN. Age, location of the tumor, pre- and postoperative Karnofsky Performance Status (KPS), EOR, RTV, and, if any, postoperative complications were evaluated. RESULTS The rate of gross total resection (GTR) in NN group was 44.8% vs 61.2% in N-ioUS group. The rate of RTV > 1 cm3 for glioblastomas was significantly lower for the N-ioUS group (P < .01). In 13/31 (42%), RTV was detected at the end of surgery with N-ioUS. In 8 of 13 cases, (25.8% of the cohort) surgeons continued with the operation until complete resection. Specificity was greater in N-ioUS (42% vs 31%) and negative predictive value (73% vs 54%). At discharge, the difference between pre- and postoperative KPS was significantly higher for the N-ioUS (P < .01). CONCLUSION The use of an N-ioUS-based real-time has been beneficial for resection in noneloquent high-grade glioma in terms of both EOR and neurological outcome, compared to standard NN. N-ioUS has proven usefulness in detecting RTV > 1 cm3.
Collapse
Affiliation(s)
- Alessandro Moiraghi
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta," Milan, Italy.,Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia.,Focused Ultrasound Foundation, Charlottesville, Virginia
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ramona Guatta
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Adrien May
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Andrea Bartoli
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Marco Saini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta," Milan, Italy
| | - Alessandro Perin
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta," Milan, Italy
| | - Thomas Wälchli
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Group of CNS Angiogenesis and Neurovascular Link, Physician-Scientist Program, Institute for Regenerative Medicine, Neuroscience Center Zurich, University Hospital Zurich, Zurich, Switzerland.,Division of Neurosurgery, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), University Hospital Zurich, Zurich, Switzerland.,Department of Fundamental Neurobiology, Krembil Research Institute, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Canada
| | - Shahan Momjian
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Bijlenga
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta," Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, Maryland
| |
Collapse
|
13
|
Application of Multiparametric Intraoperative Ultrasound in Glioma Surgery. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6651726. [PMID: 33954192 PMCID: PMC8068524 DOI: 10.1155/2021/6651726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022]
Abstract
Gliomas are the most invasive and fatal primary malignancy of the central nervous system that have poor prognosis, with maximal safe resection representing the gold standard for surgical treatment. To achieve gross total resection (GTR), neurosurgery relies heavily on generating continuous, real-time, intraoperative glioma descriptions based on image guidance. Given the limitations of currently available equipment, developing a real-time image-guided resection technique that provides reliable functional and anatomical information during intraoperative settings is imperative. Nowadays, the application of intraoperative ultrasound (IOUS) has been shown to improve resection rates and maximize brain function preservation. IOUS, which presents an attractive option due to its low cost, minimal operational flow interruptions, and lack of radiation exposure, is able to provide real-time localization and accurate tumor size and shape descriptions while helping distinguish residual tumors and addressing brain shift. Moreover, the application of new advancements in ultrasound technology, such as contrast-enhanced ultrasound, three-dimensional ultrasound, navigable ultrasound, ultrasound elastography, and functional ultrasound, could help to achieve GTR during glioma surgery. The current review describes current advancements in ultrasound technology and evaluates the role and limitation of IOUS in glioma surgery.
Collapse
|
14
|
Cepeda S, García-García S, Arrese I, Velasco-Casares M, Sarabia R. Relationship between the overall survival in glioblastomas and the radiomic features of intraoperative ultrasound: a feasibility study. J Ultrasound 2021; 25:121-128. [PMID: 33594589 PMCID: PMC8964917 DOI: 10.1007/s40477-021-00569-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Predicting the survival of patients diagnosed with glioblastoma (GBM) is essential to guide surgical strategy and subsequent adjuvant therapies. Intraoperative ultrasound (IOUS) can contain biological information that could be correlated with overall survival (OS). We propose a simple extraction method and radiomic feature analysis based on IOUS imaging to estimate OS in GBM patients. METHODS A retrospective study of surgically treated glioblastomas between March 2018 and November 2019 was performed. Patients with IOUS B-mode and strain elastography were included. After preprocessing, segmentation and extraction of radiomic features were performed with LIFEx software. An evaluation of semantic segmentation was carried out using the Dice similarity coefficient (DSC). Using univariate correlations, radiomic features associated with OS were selected. Subsequently, survival analysis was conducted using Cox univariate regression and Kaplan-Meier curves. RESULTS Sixteen patients were available for analysis. The DSC revealed excellent agreement for the segmentation of the tumour region. Of the 52 radiomic features, two texture features from B-mode (conventional mean and the grey-level zone length matrix/short-zone low grey-level emphasis [GLZLM_SZLGE]) and one texture feature from strain elastography (grey-level zone length matrix/long-zone high grey-level emphasis [GLZLM_LZHGE]) were significantly associated with OS. After establishing a cut-off point of the statistically significant radiomic features, we allocated patients in high- and low-risk groups. Kaplan-Meier curves revealed significant differences in OS. CONCLUSION IOUS-based quantitative texture analysis in glioblastomas is feasible. Radiomic tumour region characteristics in B-mode and elastography appear to be significantly associated with OS.
Collapse
Affiliation(s)
- Santiago Cepeda
- Department of Neurosurgery, University Hospital Río Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain.
| | - Sergio García-García
- Department of Neurosurgery, University Hospital Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain
| | - Ignacio Arrese
- Department of Neurosurgery, University Hospital Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain
| | - María Velasco-Casares
- Department of Radiology, University Hospital Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain
| | - Rosario Sarabia
- Department of Neurosurgery, University Hospital Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain
| |
Collapse
|
15
|
Kaale AJ, Rutabasibwa N, Mchome LL, Lillehei KO, Honce JM, Kahamba J, Ormond DR. The use of intraoperative neurosurgical ultrasound for surgical navigation in low- and middle-income countries: the initial experience in Tanzania. J Neurosurg 2021; 134:630-637. [PMID: 32109864 DOI: 10.3171/2019.12.jns192851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/30/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neuronavigation has become a crucial tool in the surgical management of CNS pathology in higher-income countries, but has yet to be implemented in most low- and middle-income countries (LMICs) due to cost constraints. In these resource-limited settings, neurosurgeons typically rely on their understanding of neuroanatomy and preoperative imaging to help guide them through a particular operation, making surgery more challenging for the surgeon and a higher risk for the patient. Alternatives to assist the surgeon improve the safety and efficacy of neurosurgery are important for the expansion of subspecialty neurosurgery in LMICs. A low-cost and efficacious alternative may be the use of intraoperative neurosurgical ultrasound. The authors analyze the preliminary results of the introduction of intraoperative ultrasound in an LMIC setting. METHODS After a training program in intraoperative ultrasound including courses conducted in Dar es Salaam, Tanzania, and Aurora, Colorado, neurosurgeons at the Muhimbili Orthopaedic and Neurosurgical Institute began its independent use. The initial experience is reported from the first 24 prospective cases in which intraoperative ultrasound was used. When possible, ultrasound findings were recorded and compared with postoperative imaging findings in order to establish accuracy of intraoperative interpretation. RESULTS Of 24 cases of intraoperative ultrasound that were reported, 29.2% were spine surgeries and 70.8% were cranial. The majority were tumor cases (95.8%). Lesions were identified through the dura mater in all 24 cases, with 20.8% requiring extension of craniotomy or laminectomy due to inadequate exposure. Postoperative imaging (typically CT) was only performed in 11 cases, but all 11 matched the findings on post-dural closure ultrasound. CONCLUSIONS The use of intraoperative ultrasound, which is affordable and available locally, is changing neurosurgical care in Tanzania. Ultimately, expanding the use of intraoperative B-mode ultrasound in Tanzania and other LMICs may help improve neurosurgical care in these countries in an affordable manner.
Collapse
Affiliation(s)
- Aingaya J Kaale
- 1Division of Neurosurgery, Muhimbili Orthopaedic and Neurosurgical Institute, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; and
| | - Nicephorus Rutabasibwa
- 1Division of Neurosurgery, Muhimbili Orthopaedic and Neurosurgical Institute, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; and
| | - Laurent Lemeri Mchome
- 1Division of Neurosurgery, Muhimbili Orthopaedic and Neurosurgical Institute, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; and
| | | | - Justin M Honce
- 3Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Joseph Kahamba
- 1Division of Neurosurgery, Muhimbili Orthopaedic and Neurosurgical Institute, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; and
| | | |
Collapse
|
16
|
Toossi A, Bergin B, Marefatallah M, Parhizi B, Tyreman N, Everaert DG, Rezaei S, Seres P, Gatenby JC, Perlmutter SI, Mushahwar VK. Comparative neuroanatomy of the lumbosacral spinal cord of the rat, cat, pig, monkey, and human. Sci Rep 2021; 11:1955. [PMID: 33479371 PMCID: PMC7820487 DOI: 10.1038/s41598-021-81371-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
The overall goal of this work was to create a high-resolution MRI atlas of the lumbosacral enlargement of the spinal cord of the rat (Sprague-Dawley), cat, domestic pig, rhesus monkey, and human. These species were chosen because they are commonly used in basic and translational research in spinal cord injuries and diseases. Six spinal cord specimens from each of the studied species (total of 30 specimens) were fixed, extracted, and imaged. Sizes of the spinal cord segments, cross-sectional dimensions, and locations of the spinal cord gray and white matter were quantified and compared across species. The lumbar enlargement spans spinal cord levels L3-S1 in rats, L4-S1 in cats, L3-S1 in pigs, L2/L3-L7/S1 in monkeys, and T12/L1-S1/S2 in humans. The enlargements in pigs and humans are largest and most similar in size (length and cross-sectional area); followed by monkeys and cats; and followed by rats. The obtained atlas establishes a neuroanatomical reference for the intact lumbosacral spinal cord in these species. It can also be used to guide the planning of surgical procedures of the spinal cord and technology design and development of spinal cord neuroprostheses, as well as precise delivery of cells/drugs into target regions within the spinal cord parenchyma.
Collapse
Affiliation(s)
- Amirali Toossi
- Krembil Research Institute, University Health Network, Toronto, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Bradley Bergin
- Department of Medicine, University of Alberta, Edmonton, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Maedeh Marefatallah
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Behdad Parhizi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Neil Tyreman
- Department of Medicine, University of Alberta, Edmonton, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Dirk G Everaert
- Department of Medicine, University of Alberta, Edmonton, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Sabereh Rezaei
- Department of Materials Science and Engineering, University of Toronto, Toronto, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | | | - Steve I Perlmutter
- Department of Physiology and Biophysics, University of Washington, Seattle, USA
- Washington National Primate Research Centre, Seattle, USA
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Vivian K Mushahwar
- Department of Medicine, University of Alberta, Edmonton, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada.
| |
Collapse
|
17
|
Abstract
This article discusses intraoperative imaging techniques used during high-grade glioma surgery. Gliomas can be difficult to differentiate from surrounding tissue during surgery. Intraoperative imaging helps to alleviate problems encountered during glioma surgery, such as brain shift and residual tumor. There are a variety of modalities available all of which aim to give the surgeon more information, address brain shift, identify residual tumor, and increase the extent of surgical resection. The article starts with a brief introduction followed by a review of with the latest advances in intraoperative ultrasound, intraoperative MRI, and intraoperative computed tomography.
Collapse
Affiliation(s)
- Thomas Noh
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Hawaii Pacific Health, John A Burns School of Medicine, Honolulu, Hawaii, USA
| | - Martina Mustroph
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
18
|
Prada F, Del Bene M, Rampini A, Mattei L, Casali C, Vetrano IG, Gennari AG, Sdao S, Saini M, Sconfienza LM, DiMeco F. Intraoperative Strain Elastosonography in Brain Tumor Surgery. Oper Neurosurg (Hagerstown) 2020; 17:227-236. [PMID: 30496587 DOI: 10.1093/ons/opy323] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sonoelastography is an ultrasound imaging technique able to assess mechanical properties of tissues. Strain elastography (SE) is a qualitative sonoelastographic modality with a wide range of clinical applications, but its use in brain tumor surgery has been so far very limited. OBJECTIVE To describe the first large-scale implementation of SE in oncological neurosurgery for lesions discrimination and characterization. METHODS We analyzed retrospective data from 64 patients aiming at (i) evaluating the stiffness of the lesion and of the surrounding brain, (ii) assessing the correspondence between B-mode and SE, and (iii) performing subgroup analysis for gliomas characterization. RESULTS (i) In all cases, we visualized the lesion and the surrounding brain with SE, permitting a qualitative stiffness assessment. (ii) In 90% of cases, lesion representations in B-mode and SE were superimposable with identical morphology and margins. In 64% of cases, lesion margins were sharper in SE than in B-mode. (iii) In 76% of cases, glioma margins were sharper in SE than in B-mode. Lesions morphology/dimensions in SE and in B-mode were superimposable in 89%. Low-grade (LGG) and high-grade (HGG) gliomas were significantly different in terms of stiffness and stiffness contrast between tumors and brain, LGG appearing stiffer while HGG softer than brain (all P < ·001). A threshold of 2.5 SE score had 85.7% sensitivity and 94.7% specificity in differentiating LGG from HGG. CONCLUSION SE allows to understand mechanical properties of the brain and lesions in examination and permits a better discrimination between different tissues compared to B-mode. Additionally, SE can differentiate between LGG and HGG.
Collapse
Affiliation(s)
- Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia
| | - Massimiliano Del Bene
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Angela Rampini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Mattei
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilia Casali
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | - Silvana Sdao
- IRCCS Istituto Nazionale dei Tumori Foundation, Milan, Italy
| | - Marco Saini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Maria Sconfienza
- Unit of Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, USA.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Ishikawa M, Masamoto K, Hachiya R, Kagami H, Inaba M, Naritaka H, Katoh S. Neurosurgical intraoperative ultrasonography using contrast enhanced superb microvascular imaging -vessel density and appearance time of the contrast agent. Br J Neurosurg 2020:1-10. [PMID: 32648779 DOI: 10.1080/02688697.2020.1772958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Background: Ultrasonography (US) provides real-time information on structures within the skull during neurosurgical operations. Superb microvascular imaging (SMI) is the latest imaging technique for detecting very low-velocity flow with minimal motion artifacts, and we have reported on this technique for intraoperative US monitoring. We combined SMI with administration of contrast agent to obtain detailed information during neurosurgical operations.Materials and methods: Twenty patients diagnosed with brain tumor (10 meningiomas, 5 glioblastomas, 2 hemangioblastomas, 1 schwannoma, 1 malignant lymphoma, 1 brain abscess) underwent neurosurgery under US with SMI and contrast agent techniques. Vessel density and appearance time following contrast administration were analyzed.Results: Flow in numerous vessels was not visualized by SMI alone, but appeared following injection of contrast agent in all cases. Flow in tumors was drastically enhanced by contrast agent in schwannoma, hemangioblastoma and meningioma, compared to normal brain tissue. Flows in the dilated and bent vessels of glioblastoma were also enhanced, although flow in hypoechoic lymphoma remained inconspicuous. The characteristics of tumor vessels were clearly visualized and tumor borders were demonstrated by the difference between tumor flow and brain flow, by the increased tumor vessel density and decreased appearance time of contrast agent compared to normal brain vessels.Conclusions: The combination of SMI and contrast agent techniques for intraoperative US monitoring could provide innovative flow images of tumor and normal brain. The neurosurgeon obtains information about tumor flow and tumor borderline before tumor resection.
Collapse
Affiliation(s)
- Mami Ishikawa
- Department of Neurosurgery, Tachikawa Hospital, Tokyo, Japan.,Department of Neurosurgery, Edogawa Hospital, Tokyo, Japan
| | - Kazuto Masamoto
- Faculty of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Ryota Hachiya
- Faculty of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Hiroshi Kagami
- Department of Neurosurgery, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Makoto Inaba
- Department of Neurosurgery, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Heiji Naritaka
- Department of Neurosurgery, Edogawa Hospital, Tokyo, Japan
| | - Shojiro Katoh
- Department of Orthopedics, Edogawa Hospital, Tokyo, Japan
| |
Collapse
|
20
|
Verburg N, de Witt Hamer PC. State-of-the-art imaging for glioma surgery. Neurosurg Rev 2020; 44:1331-1343. [PMID: 32607869 PMCID: PMC8121714 DOI: 10.1007/s10143-020-01337-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022]
Abstract
Diffuse gliomas are infiltrative primary brain tumors with a poor prognosis despite multimodal treatment. Maximum safe resection is recommended whenever feasible. The extent of resection (EOR) is positively correlated with survival. Identification of glioma tissue during surgery is difficult due to its diffuse nature. Therefore, glioma resection is imaging-guided, making the choice for imaging technique an important aspect of glioma surgery. The current standard for resection guidance in non-enhancing gliomas is T2 weighted or T2w-fluid attenuation inversion recovery magnetic resonance imaging (MRI), and in enhancing gliomas T1-weighted MRI with a gadolinium-based contrast agent. Other MRI sequences, like magnetic resonance spectroscopy, imaging modalities, such as positron emission tomography, as well as intraoperative imaging techniques, including the use of fluorescence, are also available for the guidance of glioma resection. The neurosurgeon’s goal is to find the balance between maximizing the EOR and preserving brain functions since surgery-induced neurological deficits result in lower quality of life and shortened survival. This requires localization of important brain functions and white matter tracts to aid the pre-operative planning and surgical decision-making. Visualization of brain functions and white matter tracts is possible with functional MRI, diffusion tensor imaging, magnetoencephalography, and navigated transcranial magnetic stimulation. In this review, we discuss the current available imaging techniques for the guidance of glioma resection and the localization of brain functions and white matter tracts.
Collapse
Affiliation(s)
- Niels Verburg
- Department of Neurosurgery and Cancer Center Amsterdam, Amsterdam UMC location VU University Medical Center, Amsterdam, The Netherlands. .,Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge Brain Tumor Imaging Laboratory, University of Cambridge, Addenbrooke's Hospital, Hill Rd, Cambridge, CB2 0QQ, UK.
| | - Philip C de Witt Hamer
- Department of Neurosurgery and Cancer Center Amsterdam, Amsterdam UMC location VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Yeole U, Singh V, Mishra A, Shaikh S, Shetty P, Moiyadi A. Navigated intraoperative ultrasonography for brain tumors: a pictorial essay on the technique, its utility, and its benefits in neuro-oncology. Ultrasonography 2020; 39:394-406. [PMID: 32660206 PMCID: PMC7515658 DOI: 10.14366/usg.20044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Intraoperative imaging has become one of the most important adjuncts in neurosurgery, especially in the surgical treatment of intra-axial tumors. Navigation and intraoperative magnetic resonance imaging have limitations, and intraoperative ultrasonography (IOUS) has emerged as a versatile and multifaceted alternative. With technological advances in ultrasound scanners and newer multifunctional probes, the potential of IOUS is increasingly being utilized in the resection of tumors. The addition of image guidance to IOUS has exponentially increased the power of this technique. Navigated ultrasonography (nUS) can now overcome many of the limitations of conventional standalone two-dimensional ultrasonography. In this pictorial essay, we outline our nUS technique (both two- and three-dimensional) for the resection of intra-axial tumors with illustrated examples highlighting the various steps and corresponding benefits of the technique.
Collapse
Affiliation(s)
- Ujwal Yeole
- Neurosurgery Services, Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Vikas Singh
- Neurosurgery Services, Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Ajit Mishra
- Neurosurgery Services, Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Salman Shaikh
- Neurosurgery Services, Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- Neurosurgery Services, Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Neurosurgery Services, Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
22
|
Moiraghi A, Pallud J. Intraoperative ultrasound techniques for cerebral gliomas resection: usefulness and pitfalls. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:523. [PMID: 32411746 PMCID: PMC7214896 DOI: 10.21037/atm.2020.03.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Alessandro Moiraghi
- Department of Neurosurgery, Sainte-Anne Hospital, Paris, France.,Division of Neurosurgery, Geneva University Hospitals and University of Geneva Faculty of Medicine, Geneva, Switzerland.,Swiss Foundation for Innovation and Training in Surgery (SFITS), Geneva, Switzerland
| | - Johan Pallud
- Department of Neurosurgery, Sainte-Anne Hospital, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris, France
| |
Collapse
|
23
|
Naritaka H, Ishikawa M, Terao S, Kojima A, Kagami H, Inaba M, Kato S. Ultrasonographic superb microvascular imaging for emergency surgery of intracerebral hemorrhage. J Clin Neurosci 2020; 75:206-209. [PMID: 32204956 DOI: 10.1016/j.jocn.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
Ultrasonography (US) has been used as a reliable imaging modality, providing real-time information during neurosurgical operations. One recent innovative US technique, superb microvascular imaging (SMI), visualizes small vessels and flow, which are not detected with standard US with doppler. We apply SMI to intraoperative US monitoring in emergency surgery for intracerebral hemorrhage (ICH). Eleven consecutive patients with ICH underwent endoscopic emergency surgery under US monitoring with SMI. After performing a small craniotomy, US images were obtained using SMI, a fusion technique, and a contrast agent technique, with the probe on the brain surface during surgery. Fusion images were obtained with the probe on the head before craniotomy in some patients. Animated US images with SMI could differentiate hematoma containing no vessels from brain tissue, and flow images using SMI and contrast agent techniques clarified the borderlines. Animated fusion images of intraoperative US and preoperative CT provided information on the extent of hematoma and residual hematoma during emergency surgery. We made various fusion CT images showing intracranial hematoma with US probes and decided on the skin incision line before beginning surgery, as if we were using a neuronavigation system. US with SMI, contrast agent, and fusion techniques provide information on the extent of intracranial hematoma and residual hematoma with no vessels and no flow. Monitoring by US and fusion CT images is useful for ICH surgery as a next-generation neuronavigator.
Collapse
Affiliation(s)
- Heiji Naritaka
- Department of Neurosurgery, Edogawa Hospital, 2-24-18 Higashikoiwa Edogawaku, Tokyo 133-0052, Japan
| | - Mami Ishikawa
- Department of Neurosurgery, Edogawa Hospital, 2-24-18 Higashikoiwa Edogawaku, Tokyo 133-0052, Japan; Department of Neurosurgery, Tachikawa Hospital, Tokyo, Japan.
| | - Satoshi Terao
- Department of Neurosurgery, Saiseikai Central Hospital, Tokyo, Japan
| | - Atsuhiro Kojima
- Department of Neurosurgery, Saitama City Hospital, Saitama, Japan
| | - Hiroshi Kagami
- Department of Neurosurgery, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Makoto Inaba
- Department of Neurosurgery, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Shojiro Kato
- Department of Orthopedics, Edogawa Hospital, Tokyo, Japan
| |
Collapse
|
24
|
Ultrasound-based real-time neuronavigated fluorescence-guided surgery for high-grade gliomas: technical note and preliminary experience. Acta Neurochir (Wien) 2019; 161:2595-2605. [PMID: 31656986 DOI: 10.1007/s00701-019-04094-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The extent of resection (EOR) plays a fundamental role in the prognosis of patients with high-grade gliomas (HGG). One of the main challenges in achieving a complete resection is the distinction between tumor and normal brain. Nowadays, several technologies are employed to obtain a higher tumor removal rate and respect the normal tissue in glioma surgery and in the last decades, fluorescein sodium (FS) and intraoperative ultrasound (IOUS) have been widely used. The aim of our technical note is to demonstrate how combining these two tools offers an ultrasound-based real-time neuronavigated fluorescence-guided surgery in order to optimize HGG removal. METHODS Five patients (3 males, 2 females; mean age 55.2 years, range 36-68 years) undergoing craniotomies for removal of intraaxial lesions suggestive of high-grade gliomas on preoperative MRI were included in the study. Intraoperative navigated B-mode and CEUS associated with sodium fluorescein were used in all cases; white light appearance, IOUS, and fluorescence findings were recorded immediately after each surgery. Also, extent of resection was evaluated on postoperative Gd-enhanced MRI performed within 72 h. RESULTS All tumors effectively stained yellow with fluorescein sodium during the surgical procedure and four were well delineated by IOUS. IOUS was repeated frequently (average 2.6 time) to obtain an orientation of the gross residual tumor with respect to anatomical landmarks as the surgery proceeded. Tumor removal was completed under Yellow 560 filter. CONCLUSIONS In our technical report, we demonstrate that combining intraoperatively fluorescein sodium and IOUS improves the information and facilitates making decisions during the HGG surgery. Further experience gained in larger studies will help confirm these findings.
Collapse
|
25
|
Aly A, Noubi R, Ragab M, Abdelaziz K, Howarth S, Smith S. Extent of Glioma Resection on Intraoperative Ultrasound Correlates Well with Postoperative MRI Results. J Surg Oncol 2019. [DOI: 10.31487/j.jso.2019.04.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Maximal surgical resection is thought to confer survival benefit for both high- and low-grade gliomas. Intraoperative imaging assists with achieving maximal surgical resection. Different intraoperative imaging modalities have been implemented, but intra-operative MRI has a high cost that may limit its uptake in resource scarce healthcare systems.
Objectives: This study aims to evaluate intraoperative ultrasound as a surrogate for intra and post-operative MRI for assessing the extent of resection of glioma.
Methods: A partially prospective comparative study, which compares a prospective cohort group with a historical control group. We evaluated 74 glioma patients, who all underwent surgery in a regional UK Neurosurgical centre between October 2013 and October 2017. The study population was divided into 2 groups based on the use of ultrasound to guide the resection. We compared the size of the lesion prior and after excision to evaluate the extent of resection and undertook comparison with post-operative MRI.
Results: The mean extent of resection on the ultrasound images was 96.1 % and 97.7 % on the postoperative MR. Using Spearman’s correlation; extent of resection on the ultrasound images was strongly correlated with the extent of resection on the postoperative MR images (P=value <0.001). The use of intraoperative ultrasound was associated with a significant increase in the number of patients in whom 95% or greater extent of resection was achieved (Fisher’s exact test P= value 0.033).
Conclusion: Intra-operative ultrasonography could provide a reliable and cheaper alternative to intraoperative MRI to improve the extent of resection in glioma surgery.
Collapse
|
26
|
Oddo L, Paradossi G, Cerroni B, Ben-Harush C, Ariel E, Di Meco F, Ram Z, Grossman R. In Vivo Biodistribution of Engineered Lipid Microbubbles in Rodents. ACS OMEGA 2019; 4:13371-13381. [PMID: 31460465 PMCID: PMC6704434 DOI: 10.1021/acsomega.9b01544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
Maximal resection of intrinsic brain tumors is a major prognostic factor for survival. Real-time intraoperative imaging tools, including ultrasound (US), are crucial for maximal resection of such tumors. Microbubbles (MBs) are clinically used in daily practice as a contrast agent for ultrasound and can be further developed to serve combined therapeutic and diagnostic purposes. To achieve this goal, we have developed novel MBs conjugated to specific ligands to receptors which are overexpressed in brain tumors. These MBs are designed to target a tumor tissue, visualize it, and deliver therapeutic molecules into it. The objective of this study was to assess the biodistribution of the test items: We used MBs labeled with indocyanine green (MB-ICG) for visualization and MBs conjugated to a cyclic molecule containing the tripeptide Arg-Gly-Asp (RGD) labeled with ICG (MB-RGD-ICG) to target brain tumor integrins as the therapeutic tools. Male Sprague Dawley rats received a single dose of each MB preparation. The identification of the MB in various organs was monitored by fluorescence microscopy in anesthetized animals as well as real-time US for brain imaging. Equally sized control groups under identical conditions were used in this study. One control group was used to establish fluorescence background conditions (ICG), and two control groups were used to test autofluorescence from the test items (MBs and MB-RGD). ICG with or without MBs (naked or RGD-modified) was detected in the brain vasculature and also in other organs. The pattern, duration, and intensity of the fluorescence signal could not be differentiated between animals treated with ICG alone and animals treated with microbubbles MBs-ICG or MBs-RGD-ICG. Following MB injection, either naked or combined with RGD, there was a sharp rise in the Doppler signal within seconds of injection in the brain. The signal was mainly located at the choroid plexus, septum pellucidum, and the meninges of the brain. The signal subsided within a few minutes. Injection of saline or ICG alone to respective animals did not result in a similar raised signal. Following a single intravenous administration of MB-ICG and MB-RGD-ICG to rats, the MBs were found to be effectively present in the brain.
Collapse
Affiliation(s)
- Letizia Oddo
- Dipartimento di Scienze e Tecnologie Chimiche, Universitá degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Universitá degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Barbara Cerroni
- Dipartimento di Scienze e Tecnologie Chimiche, Universitá degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Carmit Ben-Harush
- Department of Neurosurgery,
Tel Aviv Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Eti Ariel
- Department of Neurosurgery,
Tel Aviv Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Francesco Di Meco
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Zvi Ram
- Department of Neurosurgery,
Tel Aviv Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Rachel Grossman
- Department of Neurosurgery,
Tel Aviv Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
- E-mail: . Phone: +972-3-6974273. Fax: +972-3-6974860
| |
Collapse
|
27
|
Paradossi G, Oddo L, Cerroni B, Ben-Harush C, Ariel E, Di Meco F, Ram Z, Grossman R. In Vivo Toxicity Study of Engineered Lipid Microbubbles in Rodents. ACS OMEGA 2019; 4:5526-5533. [PMID: 31497678 PMCID: PMC6715268 DOI: 10.1021/acsomega.8b03161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/16/2019] [Indexed: 05/08/2023]
Abstract
Real-time intraoperative imaging for brain tumor surgery is crucial for achieving complete resection. We are developing novel lipid-based microbubbles (MBs), engineered with specific ligands, which are able to interact with the integrins overexpressed in the endothelium of the brain tumor vasculature. These MBs are designed to visualize the tumor and to carry therapeutic molecules into the tumor tissue, preserving the ultrasound acoustic properties of the starting plain lipid MBs. The potential toxicity of this novel technology was assessed in rats by intravenous injections of two doses of plain MBs and MBs engineered for targeting and near-infrared fluorescence visualization at two time-points, 10 min and 7 days, for potential acute and chronic responses in rats [(1) MB, (2) MB-ICG, (3) MB-RGD, and (4) MB-ICG-RGD]. No mortality occurred during the 7-day study period in any of the dosing groups. All animals demonstrated a body weight gain during the study period. Minor, mostly reversible changes in hematological and biochemical analysis were observed in some of the treated animals. All changes were reversible by the 7-day time-point. Histopathology examination in the high-dose animals showed development of foreign body granulomatous inflammation. We concluded that the low-dose tested items appear to be safe. The results allow for proceeding to clinical testing of the product.
Collapse
Affiliation(s)
- Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Letizia Oddo
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Barbara Cerroni
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Carmit Ben-Harush
- Department of Neurosurgery,
Tel Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Eti Ariel
- Department of Neurosurgery,
Tel Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Francesco Di Meco
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Zvi Ram
- Department of Neurosurgery,
Tel Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Rachel Grossman
- Department of Neurosurgery,
Tel Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
- E-mail: . Phone: +972-3-6974273. Fax: +972-3-6974860
| |
Collapse
|
28
|
Dennis PB, Dave N, Shah H, Dias R. A novel use of ultrasound for the extraction of a fractured umbilical arterial catheter. Indian J Anaesth 2019; 63:660-662. [PMID: 31462813 PMCID: PMC6691633 DOI: 10.4103/ija.ija_202_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 7-day-old 600 grams baby with a post-conceptual age of 29 weeks presented with features suggestive of hollow viscous perforation, and was posted for an emergency laparotomy. In addition, she had a fractured indwelling umbilical arterial catheter which was planned for extraction in the same sitting. Radiological imaging showed that the catheter extended into the stump of the umbilical cord. She underwent exploratory laparotomy and ileal resection anastomosis, following which the stump was explored. However, the catheter could not be identified, and we suspected that it had embolised into the aorta. Using ultrasound guidance, we identified the catheter within the aorta. The aorta was cross-clamped, and the catheter extracted through an aortotomy which was later sutured.
Collapse
Affiliation(s)
- Praveen Benjamin Dennis
- Department of Paediatric Anaesthesiology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Nandini Dave
- Department of Paediatric Anaesthesiology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Harick Shah
- Department of Paediatric Anaesthesiology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Raylene Dias
- Department of Paediatric Anaesthesiology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
29
|
New Hope in Brain Glioma Surgery: The Role of Intraoperative Ultrasound. A Review. Brain Sci 2018; 8:brainsci8110202. [PMID: 30463249 PMCID: PMC6266135 DOI: 10.3390/brainsci8110202] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023] Open
Abstract
Maximal safe resection represents the gold standard for surgery of malignant brain tumors. As regards gross-total resection, accurate localization and precise delineation of the tumor margins are required. Intraoperative diagnostic imaging (Intra-Operative Magnetic Resonance-IOMR, Intra-Operative Computed Tomography-IOCT, Intra-Operative Ultrasound-IOUS) and dyes (fluorescence) have become relevant in brain tumor surgery, allowing for a more radical and safer tumor resection. IOUS guidance for brain tumor surgery is accurate in distinguishing tumor from normal parenchyma, and it allows a real-time intraoperative visualization. We aim to evaluate the role of IOUS in gliomas surgery and to outline specific strategies to maximize its efficacy. We performed a literature research through the Pubmed database by selecting each article which was focused on the use of IOUS in brain tumor surgery, and in particular in glioma surgery, published in the last 15 years (from 2003 to 2018). We selected 39 papers concerning the use of IOUS in brain tumor surgery, including gliomas. IOUS exerts a notable attraction due to its low cost, minimal interruption of the operational flow, and lack of radiation exposure. Our literature review shows that increasing the use of ultrasound in brain tumors allows more radical resections, thus giving rise to increases in survival.
Collapse
|
30
|
Wu DF, He W, Lin S, Zee CS, Han B. The real-time ultrasonography for fusion image in glioma neurosugery. Clin Neurol Neurosurg 2018; 175:84-90. [PMID: 30384121 DOI: 10.1016/j.clineuro.2018.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/05/2018] [Accepted: 10/14/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The aim of study is to evaluate the general performance and efficiency of the using real time intraoperative ultrasound system with Volume Navigation system technology in glioma. Compare glioma intraoperative ultrasound and contrast agent ultrasound images to obtained preoperative MRI with fusion image in a real-time. PATIENTS AND METHODS Fifteen patients had been performed fusion imaging involved intraoperative real-time ultrasound and contrast agent ultrasound with preoperative MR imaging including preoperative gadolinium-enhanced MRI from March 2017 to December 2017. The number of tumor was counted online fusion imaging in real time ultrasound with and without preoperative MR. We analyzed ultrasound coplanar MR modalities in real time including tumor location, margin (obscure or defined). In addition, intraoperative ultrasound enhancement pattern was analyzed compare it to preoperative reconstruction gadolinium-enhanced T1-weighted MRI. Two radiologists who made planning ultrasound assessment for the focus lesion based on a 4 scoring system according to the degree of confidence. RESULTS Thirteen of fifteen patients whose automatically registration successful intraoperative neurosurgery accepted preoperative MR examination. Seven of fifteen fine-tuning registration phase were performed and satisfactory with fusion image substantially. Intraoperatively, 73.3% (11/15) glioma nodules were definite on conventional B-mode US by a radiologist who doesn't know the MR result before fusion US with MRI. However, 100% tumors were detected on fusion B-mode ultrasound imaging with MRI. Two radiologists evaluated the score between fusion B-mode ultrasound and CEUS with coplanar MRI and had a result that score was upgraded in 69.2% (9/13) and 84.6% (11/13) patients. Inter-observer agreement was significant (kappa value = 1.0, p < 0.001) in B-mode ultrasound fusion image with MRI. Inter-observer agreement was moderate (kappa value = 0. 0.618, p < 0.001) in CEUS fusion image with MRI. CONCLUSION Fusion imaging is very useful to detect poor sonographic visibility tumor on fusion B-mode US imaging with MR images. Fusion image may demonstrate multiplane images including same standard and nonstandard MRI and US images to help localize tumor. The additional real time fusion CEUS mode image with MR is a safe method for neurosurgery and the use of CEUS should be considered when fusion B-mode ultrasound imaging alone is not satisfactory for margin.
Collapse
Affiliation(s)
- Dong-Fang Wu
- Department of Ultrasound, Beijing Tian tan Hospital, Capital Medical University, 6 Tiantan Xi Li, Dong Cheng District, Beijing, 100050, China
| | - Wen He
- Department of Ultrasound, Beijing Tian tan Hospital, Capital Medical University, 6 Tiantan Xi Li, Dong Cheng District, Beijing, 100050, China.
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xi Li, Dong Cheng District, Beijing, 100050, China
| | - Chi-Shing Zee
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xi Li, Dong Cheng District, Beijing, 100050, China
| |
Collapse
|
31
|
Graziano F, Bavisotto CC, Gammazza AM, Rappa F, de Macario EC, Macario AJL, Cappello F, Campanella C, Maugeri R, Iacopino DG. Chaperonology: The Third Eye on Brain Gliomas. Brain Sci 2018; 8:brainsci8060110. [PMID: 29904027 PMCID: PMC6024901 DOI: 10.3390/brainsci8060110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
The European Organization for Research and Treatment of Cancer/National Cancer Institute of Canada Phase III trial has validated as a current regimen for high-grade gliomas (HGG) a maximal safe surgical resection followed by radiotherapy with concurrent temozolamide. However, it is essential to balance maximal tumor resection with preservation of the patient’s neurological functions. Important developments in the fields of pre-operative and intra-operative neuro-imaging and neuro-monitoring have ameliorated the survival rate and the quality of life for patients affected by HGG. Moreover, even though the natural history remains extremely poor, advancement in the molecular and genetic fields have opened up new potential frontiers in the management of this devastating brain disease. In this review, we aim to present a comprehensive account of the main current pre-operative, intra-operative and molecular approaches to HGG with particular attention to specific chaperones, also called heat shock proteins (Hsps), which represent potential novel biomarkers to detect and follow up HGG, and could also be therapeutic agents.
Collapse
Affiliation(s)
- Francesca Graziano
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - C Caruso Bavisotto
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
- Institute of Biophysics, National Research Council, 90143 Palermo, Italy.
| | - A Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Albert J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Claudia Campanella
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Rosario Maugeri
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Domenico Gerardo Iacopino
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
32
|
Liu TJ, Shen F, Zhang C, Huang PT, Zhu YJ. Real-time ultrasound-MRI fusion image virtual navigation for locating intraspinal tumour in a pregnant woman. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:436-439. [PMID: 29380148 DOI: 10.1007/s00586-017-5442-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Standard fluoroscopic guidance (C-arm fluoroscopy) has been routinely used for intraoperative localization of spinal level for surgical removal of intraspinal tumour, while it is not suitable for selected patients, e.g. pregnant women, who need to avoid radiation exposure. Fusion imaging of real-time ultrasound (US) and magnetic resonance imaging (MRI) is a radiation-free technique which has been reported to have good localization accuracy in managing several conditions. CLINICAL PRESENTATION A 37-year-old pregnant patient, presented with a progressively aggravating lower back pain for 20 days and was incapable of lying supine with lower extremities swelling for 1 week, was referred to our hospital in her 18th week of gestation. Lumbar MRI identified an L1 level intraspinal lesion, and surgery was planned. To avoid the ionizing radiation generated by fluoroscopy, volume navigation technique (VNT) based fusion imaging of US and MRI was used to localize the intraspinal lesion, which was removed entirely via minimally invasive interlaminar approach. Pathological examination confirmed the diagnosis of ependymoma of the conus medullaris. Her symptoms were largely relieved after the operation, and a healthy baby was delivered at the 40th week of pregnancy. CONCLUSION We presented the first case of using VNT based fusion imaging of real-time US/MRI to guide the surgical resection of an intraspinal tumour. Future study with larger patient number is needed to validate this technique as an alternative to fluoroscopy in patients who need to avoid radiation exposure.
Collapse
Affiliation(s)
- Tian-Jian Liu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Fang Shen
- Department of Orthopaedic Surgery's Spine Division, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Chao Zhang
- Ultrasound Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pin-Tong Huang
- Ultrasound Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Jian Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
33
|
Wijsmuller AR, Romagnolo LGC, Agnus V, Giraudeau C, Melani AGF, Dallemagne B, Marescaux J. Advances in stereotactic navigation for pelvic surgery. Surg Endosc 2017; 32:2713-2720. [PMID: 29214516 PMCID: PMC5956093 DOI: 10.1007/s00464-017-5968-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/23/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Stereotactic navigation could improve the quality of surgery for rectal cancer. Critical challenges related to soft tissue stereotactic pelvic navigation include the potential difference in patient anatomy between intraoperative lithotomy and preoperative supine position for imaging. The objective of this study was to determine the difference in patient anatomy, sacral tilt, and skin fiducial position between these different patient positions and to investigate the feasibility and optimal set-up for stereotactic pelvic navigation. METHODS Four consecutive human anatomical specimens were submitted to repeated CT-scans in a supine and several degrees of lithotomy position. Patient anatomy, sacral tilt, and skin fiducial position were compared by means of an image computing platform. In two specimens, a 10-degree wedge was introduced to reduce the natural tilt of the sacrum during the shift from supine to lithotomy position. A simulation of laparoscopic and transanal surgical procedures was performed to assess the accuracy of the stereotactic navigation. RESULTS An up-to-supracentimetric change in patient anatomy was noted between different patient positions. This observation was minimized through the application of a wedge. When switching from supine to another position, sacral retroversion occurred independent of the use of a wedge. There was considerable skin fiducial motion between different positions. Accurate stereotactic navigation was obtained with the least registration error (1.9 mm) when the position of the anatomical specimen was registered in a supine position with straight legs, without pneumoperitoneum, using a conventional CT-scan with an identical specimen positioning. CONCLUSION The change in patient anatomy is small during the sacral tilt induced by positional changes when using a 10-degree wedge, allowing for an accurate stereotactic surgical navigation. This opens up new promising opportunities to increase the quality of surgery for rectal cancer cases where it is difficult or impossible to identify and dissect along the anatomical planes.
Collapse
Affiliation(s)
- A R Wijsmuller
- IRCAD/ EITS, Department of General, Digestive and Endocrine Surgery, Nouvel Hôpital Civil, University Hospital of Strasbourg, Strasbourg, France. .,Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands.
| | - L G C Romagnolo
- IRCAD Latin America, Department of Surgery, Barretos Cancer Center, Barretos, Brazil
| | - V Agnus
- IRCAD/ EITS, Department of General, Digestive and Endocrine Surgery, Nouvel Hôpital Civil, University Hospital of Strasbourg, Strasbourg, France
| | - C Giraudeau
- IHU Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
| | - A G F Melani
- IRCAD Latin America, Department of Surgery, Barretos Cancer Center, Barretos, Brazil.,Americas Medical City, Rio de Janeiro, Brazil
| | - B Dallemagne
- IRCAD/ EITS, Department of General, Digestive and Endocrine Surgery, Nouvel Hôpital Civil, University Hospital of Strasbourg, Strasbourg, France
| | - J Marescaux
- IRCAD/ EITS, Department of General, Digestive and Endocrine Surgery, Nouvel Hôpital Civil, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
34
|
Gao Y, Han Y, Nan G, Hu M, Zhou X, Hu X. Value of CT-MRI fusion in iodine-125 brachytherapy for high-grade glioma. Oncotarget 2017; 8:112883-112892. [PMID: 29348874 PMCID: PMC5762559 DOI: 10.18632/oncotarget.22844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/13/2017] [Indexed: 11/25/2022] Open
Abstract
Purposes To develop a fast, accurate and robust method of fusing Computed Tomography (CT) with pre-operative Magnetic Resonance Imaging (MRI) and evaluate the impact of using the fused data on the implantation of Iodine-125 (125I) seeds for brachytherapy of high-grade gliomas (HGG). Methods A study was performed on a cohort of 10 consecutive patients with HGG were treated by 125I brachytherapy with CT-MRI fusion image guided (CMGB), and 10 patients treated with CT alone guided (CGB). Statistical analysis was performed to compare (1) the planning target volume, (2) the accuracy of location of catheters, (3) the target volume covered by 150% prescribe dose (V150), (4) the target volume covered by 200% prescribe dose (V200), and (5) the conformity index (CI) with or without fused data. Results The median planning target volume was 50.1 cm3 in CGB, and 56.25 cm3 in CMGB with significant difference (p = 0.005). The accuracy of catheter insertion was 94.4% with CMGB and 78.9% with CGB. The median V150 and V200 was 45.32% vs 64.24% and 32.81% vs 53.17% in CGB and CMGB, respectively. There was significant difference for CI (83.5% vs. 74.5%, p < 0.05) in the two groups for the post-operative verification. Conclusions The proposed MRI-CT fusion method enables a quantitative assessment of impact on HGG brachytherapy. The additional information obtained from the fused images can be utilized for more accurate delineation of lesion boundaries and targeting of catheters. Experimental results show that the fusion algorithm is robust and reliable in clinical practice.
Collapse
Affiliation(s)
- Yang Gao
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China
| | - Yan Han
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266001, China
| | - Guo Nan
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan 250117 China
| | - Xiaobin Zhou
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China
| | - Xiaokun Hu
- Interventional Center, The Affiliated Hospital of Qingdao University, Qingdao 266001, China
| |
Collapse
|
35
|
Wang H, Felt SA, Guracar I, Taviani V, Zhou J, Sigrist RMS, Zhang H, Liau J, Vilches-Moure JG, Tian L, Saenz Y, Bettinger T, Hargreaves BA, Lutz AM, Willmann JK. Anatomical Road Mapping Using CT and MR Enterography for Ultrasound Molecular Imaging of Small Bowel Inflammation in Swine. Eur Radiol 2017; 28:2068-2076. [PMID: 29170798 DOI: 10.1007/s00330-017-5148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To evaluate the feasibility and time saving of fusing CT and MR enterography with ultrasound for ultrasound molecular imaging (USMI) of inflammation in an acute small bowel inflammation of swine. METHODS Nine swine with ileitis were scanned with either CT (n = 3) or MR (n = 6) enterography. Imaging times to load CT/MR images onto a clinical ultrasound machine, fuse them to ultrasound with an anatomical landmark-based approach, and identify ileitis were compared to the imaging times without anatomical road mapping. Inflammation was then assessed by USMI using dual selectin-targeted (MBSelectin) and control (MBControl) contrast agents in diseased and healthy control bowel segments, followed by ex vivo histology. RESULTS Cross-sectional image fusion with ultrasound was feasible with an alignment error of 13.9 ± 9.7 mm. Anatomical road mapping significantly reduced (P < 0.001) scanning times by 40%. Localising ileitis was achieved within 1.0 min. Subsequently performed USMI demonstrated significantly (P < 0.001) higher imaging signal using MBSelectin compared to MBControl and histology confirmed a significantly higher inflammation score (P = 0.006) and P- and E-selectin expression (P ≤ 0.02) in inflamed vs. healthy bowel. CONCLUSIONS Fusion of CT and MR enterography data sets with ultrasound in real time is feasible and allows rapid anatomical localisation of ileitis for subsequent quantification of inflammation using USMI. KEY POINTS • Real-time fusion of CT/MRI with ultrasound to localise ileitis is feasible. • Anatomical road mapping using CT/MRI significantly decreases the scanning time for USMI. • USMI allows quantification of inflammation in swine, verified with ex vivo histology.
Collapse
Affiliation(s)
- Huaijun Wang
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Stephen A Felt
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Ismayil Guracar
- Siemens Healthcare, Ultrasound Business Unit, Mountain View, CA, USA
| | - Valentina Taviani
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Jianhua Zhou
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Rosa Maria Silveira Sigrist
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Huiping Zhang
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Joy Liau
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | | | - Lu Tian
- Department of Health, Research & Policy, Stanford University, Stanford, CA, USA
| | - Yamil Saenz
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | | | - Brian A Hargreaves
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Amelie M Lutz
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA
| | - Jürgen K Willmann
- Department of Radiology, Stanford University, School of Medicine, 300 Pasteur Drive, Room H1307, Stanford, CA, 94305-5621, USA.
| |
Collapse
|
36
|
Perin A, Prada FU, Moraldo M, Schiappacasse A, Galbiati TF, Gambatesa E, d’Orio P, Riker NI, Basso C, Santoro M, Meling TR, Schaller K, DiMeco F. USim: A New Device and App for Case-Specific, Intraoperative Ultrasound Simulation and Rehearsal in Neurosurgery. A Preliminary Study. Oper Neurosurg (Hagerstown) 2017; 14:572-578. [DOI: 10.1093/ons/opx144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/19/2017] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
Intraoperative ultrasound (iUS) is an excellent aid for neurosurgeons to perform better and safer operations thanks to real time, continuous, and high-quality intraoperative visualization.
OBJECTIVE
To develop an innovative training method to teach how to perform iUS in neurosurgery.
METHODS
Patients undergoing surgery for different brain or spine lesions were iUS scanned (before opening the dura) in order to arrange a collection of 3-dimensional, US images; this set of data was matched and paired to preoperatively acquired magnetic resonance images in order to create a library of neurosurgical cases to be studied offline for training and rehearsal purposes. This new iUS training approach was preliminarily tested on 14 European neurosurgery residents, who participated at the 2016 European Association of Neurosurgical Societies Training Course (Sofia, Bulgaria).
RESULTS
USim was developed by Camelot and the Besta NeuroSim Center as a dedicated app that transforms any smartphone into a “virtual US probe,” in order to simulate iUS applied to neurosurgery on a series of anonymized, patient-specific cases of different central nervous system tumors (eg, gliomas, metastases, meningiomas) for education, simulation, and rehearsal purposes. USim proved to be easy to use and allowed residents to quickly learn to handle a US probe and interpret iUS semiotics.
CONCLUSION
USim could help neurosurgeons learn neurosurgical iUS safely. Furthermore, neurosurgeons could simulate many cases, of different brain/spinal cord tumors, that resemble the specific cases they have to operate on. Finally, the library of cases would be continuously updated, upgraded, and made available to neurosurgeons.
Collapse
Affiliation(s)
- Alessandro Perin
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Nazionale “C. Besta,” Milan, Italy
| | - Francesco Ugo Prada
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Nazionale “C. Besta,” Milan, Italy
| | | | | | | | - Enrico Gambatesa
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Nazionale “C. Besta,” Milan, Italy
| | - Piergiorgio d’Orio
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Nazionale “C. Besta,” Milan, Italy
| | - Nicole Irene Riker
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Nazionale “C. Besta,” Milan, Italy
| | | | | | | | - Karl Schaller
- Neurosurg-ery Department, Hopitaux Universitaires de Genève, Geneva, Switzerland
| | - Francesco DiMeco
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Nazionale “C. Besta,” Milan, Italy
| |
Collapse
|
37
|
Essayed WI, Zhang F, Unadkat P, Cosgrove GR, Golby AJ, O'Donnell LJ. White matter tractography for neurosurgical planning: A topography-based review of the current state of the art. Neuroimage Clin 2017; 15:659-672. [PMID: 28664037 PMCID: PMC5480983 DOI: 10.1016/j.nicl.2017.06.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
We perform a review of the literature in the field of white matter tractography for neurosurgical planning, focusing on those works where tractography was correlated with clinical information such as patient outcome, clinical functional testing, or electro-cortical stimulation. We organize the review by anatomical location in the brain and by surgical procedure, including both supratentorial and infratentorial pathologies, and excluding spinal cord applications. Where possible, we discuss implications of tractography for clinical care, as well as clinically relevant technical considerations regarding the tractography methods. We find that tractography is a valuable tool in variable situations in modern neurosurgery. Our survey of recent reports demonstrates multiple potentially successful applications of white matter tractography in neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
Collapse
Affiliation(s)
- Walid I Essayed
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prashin Unadkat
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - G Rees Cosgrove
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren J O'Donnell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Bayer S, Maier A, Ostermeier M, Fahrig R. Intraoperative Imaging Modalities and Compensation for Brain Shift in Tumor Resection Surgery. Int J Biomed Imaging 2017; 2017:6028645. [PMID: 28676821 PMCID: PMC5476838 DOI: 10.1155/2017/6028645] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/03/2017] [Indexed: 11/26/2022] Open
Abstract
Intraoperative brain shift during neurosurgical procedures is a well-known phenomenon caused by gravity, tissue manipulation, tumor size, loss of cerebrospinal fluid (CSF), and use of medication. For the use of image-guided systems, this phenomenon greatly affects the accuracy of the guidance. During the last several decades, researchers have investigated how to overcome this problem. The purpose of this paper is to present a review of publications concerning different aspects of intraoperative brain shift especially in a tumor resection surgery such as intraoperative imaging systems, quantification, measurement, modeling, and registration techniques. Clinical experience of using intraoperative imaging modalities, details about registration, and modeling methods in connection with brain shift in tumor resection surgery are the focuses of this review. In total, 126 papers regarding this topic are analyzed in a comprehensive summary and are categorized according to fourteen criteria. The result of the categorization is presented in an interactive web tool. The consequences from the categorization and trends in the future are discussed at the end of this work.
Collapse
Affiliation(s)
- Siming Bayer
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | | |
Collapse
|
39
|
TAMURA M, MURAGAKI Y, SAITO T, MARUYAMA T, NITTA M, TSUZUKI S, ISEKI H, OKADA Y. Strategy of Surgical Resection for Glioma Based on Intraoperative Functional Mapping and Monitoring. Neurol Med Chir (Tokyo) 2017; 55:383-98. [PMID: 26185825 PMCID: PMC4628166 DOI: 10.2176/nmc.ra.2014-0415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A growing number of papers have pointed out the relationship between aggressive resection of gliomas and survival prognosis. For maximum resection, the current concept of surgical decision-making is in “information-guided surgery” using multimodal intraoperative information. With this, anatomical information from intraoperative magnetic resonance imaging (MRI) and navigation, functional information from brain mapping and monitoring, and histopathological information must all be taken into account in the new perspective for innovative minimally invasive surgical treatment of glioma. Intraoperative neurofunctional information such as neurophysiological functional monitoring takes the most important part in the process to acquire objective visual data during tumor removal and to integrate these findings as digitized data for intraoperative surgical decision-making. Moreover, the analysis of qualitative data and threshold-setting for quantitative data raise difficult issues in the interpretation and processing of each data type, such as determination of motor evoked potential (MEP) decline, underestimation in tractography, and judgments of patient response for neurofunctional mapping and monitoring during awake craniotomy. Neurofunctional diagnosis of false-positives in these situations may affect the extent of resection, while false-negatives influence intra- and postoperative complication rates. Additionally, even though the various intraoperative visualized data from multiple sources contribute significantly to the reliability of surgical decisions when the information is integrated and provided, it is not uncommon for individual pieces of information to convey opposing suggestions. Such conflicting pieces of information facilitate higher-order decision-making that is dependent on the policies of the facility and the priorities of the patient, as well as the availability of the histopathological characteristics from resected tissue.
Collapse
Affiliation(s)
- Manabu TAMURA
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| | - Yoshihiro MURAGAKI
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
- Address reprint requests to: Yoshihiro Muragaki, MD, PhD, Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan. e-mail:
| | - Taiichi SAITO
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| | - Takashi MARUYAMA
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| | - Masayuki NITTA
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| | - Shunsuke TSUZUKI
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| | - Hiroshi ISEKI
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| | - Yoshikazu OKADA
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| |
Collapse
|
40
|
Fusion of Intraoperative 3D B-mode and Contrast-Enhanced Ultrasound Data for Automatic Identification of Residual Brain Tumors. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7040415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Costa F, Ortolina A, Cardia A, Riva M, Revay M, Pecchioli G, Anania CD, Asteggiano F, Fornari M. Preoperative Magnetic Resonance and Intraoperative Computed Tomography Fusion for Real-Time Neuronavigation in Intramedullary Lesion Surgery. Oper Neurosurg (Hagerstown) 2017; 13:188-195. [PMID: 28927206 DOI: 10.1093/ons/opw005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/18/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Image-guided surgery techniques in spinal surgery are usually based upon fluoroscopy or computed tomography (CT) scan, which allow for a real-time navigation of bony structures, though not of neural structures and soft tissue remains. OBJECTIVE To verify the effectiveness and efficacy of a novel technique of imaging merging between preoperative magnetic resonance imaging (MRI) and intraoperative CT scan during removal of intramedullary lesions. METHODS Ten consecutive patients were treated for intramedullary lesions using a navigation system aid. Preoperative contrast-enhanced MRI was merged in the navigation software, with an intraoperative CT acquisition, performed using the O-arm TM system (Medtronic Sofamor Danek, Minneapolis, Minnesota). Dosimetric and timing data were also acquired for each patient. RESULTS The fusion process was achieved in all cases and was uneventful. The merged imaging information was useful in all cases for defining the exact area of laminectomy, dural opening, and the eventual extension of cordotomy, without requiring exposition corrections. The radiation dose for the patients was 0.78 mSv. Using the authors' protocol, it was possible to merge a preoperative MRI with navigation based on intraoperative CT scanning in all cases. Information gained with this technique was useful during the different surgical steps. However, there were some drawbacks, such as the merging process, which still remains partially manual. CONCLUSION In this initial experience, MRI and CT merging and its feasibility were tested, and we appreciated its safety, precision, and ease.
Collapse
Affiliation(s)
- Francesco Costa
- Departments of Neurosurgery, Humani-tas Clinical and Research Center, Rozzano (MI), Italy
| | - Alessandro Ortolina
- Departments of Neurosurgery, Humani-tas Clinical and Research Center, Rozzano (MI), Italy
| | - Andrea Cardia
- Departments of Neurosurgery, Humani-tas Clinical and Research Center, Rozzano (MI), Italy
| | - Marco Riva
- Departments of Neurosurgery, Humani-tas Clinical and Research Center, Rozzano (MI), Italy
| | - Martina Revay
- Departments of Neurosurgery, Humani-tas Clinical and Research Center, Rozzano (MI), Italy
| | - Guido Pecchioli
- Departments of Neurosurgery, Humani-tas Clinical and Research Center, Rozzano (MI), Italy
| | - Carla Daniela Anania
- Departments of Neurosurgery, Humani-tas Clinical and Research Center, Rozzano (MI), Italy
| | - Francesco Asteggiano
- Departments of Radiology, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Maurizio Fornari
- Departments of Neurosurgery, Humani-tas Clinical and Research Center, Rozzano (MI), Italy
| |
Collapse
|
42
|
Lekht I, Brauner N, Bakhsheshian J, Chang KE, Gulati M, Shiroishi MS, Grant EG, Christian E, Zada G. Versatile utilization of real-time intraoperative contrast-enhanced ultrasound in cranial neurosurgery: technical note and retrospective case series. Neurosurg Focus 2016; 40:E6. [PMID: 26926064 DOI: 10.3171/2015.11.focus15570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intraoperative contrast-enhanced ultrasound (iCEUS) offers dynamic imaging and provides functional data in real time. However, no standardized protocols or validated quantitative data exist to guide its routine use in neurosurgery. The authors aimed to provide further clinical data on the versatile application of iCEUS through a technical note and illustrative case series. METHODS Five patients undergoing craniotomies for suspected tumors were included. iCEUS was performed using a contrast agent composed of lipid shell microspheres enclosing perflutren (octafluoropropane) gas. Perfusion data were acquired through a time-intensity curve analysis protocol obtained using iCEUS prior to biopsy and/or resection of all lesions. RESULTS Three primary tumors (gemistocytic astrocytoma, glioblastoma multiforme, and meningioma), 1 metastatic lesion (melanoma), and 1 tumefactive demyelinating lesion (multiple sclerosis) were assessed using real-time iCEUS. No intraoperative complications occurred following multiple administrations of contrast agent in all cases. In all neoplastic cases, iCEUS replicated enhancement patterns observed on preoperative Gd-enhanced MRI, facilitated safe tumor debulking by differentiating neoplastic tissue from normal brain parenchyma, and helped identify arterial feeders and draining veins in and around the surgical cavity. Intraoperative CEUS was also useful in guiding a successful intraoperative needle biopsy of a cerebellar tumefactive demyelinating lesion obtained during real-time perfusion analysis. CONCLUSIONS Intraoperative CEUS has potential for safe, real-time, dynamic contrast-based imaging for routine use in neurooncological surgery and image-guided biopsy. Intraoperative CEUS eliminates the effect of anatomical distortions associated with standard neuronavigation and provides quantitative perfusion data in real time, which may hold major implications for intraoperative diagnosis, tissue differentiation, and quantification of extent of resection. Further prospective studies will help standardize the role of iCEUS in neurosurgery.
Collapse
Affiliation(s)
| | | | - Joshua Bakhsheshian
- Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ki-Eun Chang
- Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | - Eisha Christian
- Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Gabriel Zada
- Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
43
|
Prada F, Bene MD, Fornaro R, Vetrano IG, Martegani A, Aiani L, Sconfienza LM, Mauri G, Solbiati L, Pollo B, DiMeco F. Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection. Neurosurg Focus 2016; 40:E7. [PMID: 26926065 DOI: 10.3171/2015.11.focus15573] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The purpose of this study was to assess the capability of contrast-enhanced ultrasound (CEUS) to identify residual tumor mass during glioblastoma multiforme (GBM) surgery, to increase the extent of resection. METHODS The authors prospectively evaluated 10 patients who underwent surgery for GBM removal with navigated ultrasound guidance. Navigated B-mode and CEUS were performed prior to resection, during resection, and after complete tumor resection. Areas suspected for residual tumors on B-mode and CEUS studies were localized within the surgical field with navigated ultrasound and samples were sent separately for histopathological analysis to confirm tumor presence. RESULTS In all cases tumor remnants were visualized as hyperechoic areas on B-mode, highlighted as CEUS-positive areas, and confirmed as tumoral areas on histopathological analysis. In 1 case only, CEUS partially failed to demonstrate residual tumor because the residual hyperechoic area was devascularized prior to ultrasound contrast agent injection. In all cases CEUS enhanced B-mode findings. CONCLUSIONS As has already been shown in other neoplastic lesions in other organs, CEUS is extremely specific in the identification of residual tumor. The ability of CEUS to distinguish between tumor and artifacts or normal brain on B-mode is based on its capacity to show the vascularization degree and not the echogenicity of the tissues. Therefore, CEUS can play a decisive role in the process of maximizing GBM resection.
Collapse
Affiliation(s)
| | | | | | | | | | - Luca Aiani
- Department of Radiology, Ospedale Valduce, Como
| | | | - Giovanni Mauri
- Department of Radiology, IRCCS Policlinico San Donato, Milan
| | - Luigi Solbiati
- Department of Radiology, Humanitas Research Hospital, Rozzano, Italy; and
| | - Bianca Pollo
- Neuropathology, Fondazione IRCCS Istituto Neurologico C. Besta, Milan
| | - Francesco DiMeco
- Departments of 1 Neurosurgery and.,Department of Neurosurgery, Johns Hopkins Medical School, Baltimore, Maryland
| |
Collapse
|
44
|
Mattei L, Prada F, Legnani FG, Perin A, Olivi A, DiMeco F. Neurosurgical tools to extend tumor resection in hemispheric low-grade gliomas: conventional and contrast enhanced ultrasonography. Childs Nerv Syst 2016; 32:1907-14. [PMID: 27659832 DOI: 10.1007/s00381-016-3186-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/07/2016] [Indexed: 12/26/2022]
Abstract
PURPOSE Pediatric low-grade gliomas (LGGs) are the most frequent solid tumor in childhood. Based on an increasing number of literature reports, maximal safe resection is recommended as the first line of treatment whenever possible. However, distinguishing tumor tissue from the surrounding normal brain is often challenging with infiltrating neoplasms, even with the assistance of intraoperative, microscopic and conventional neuronavigation systems. Therefore, any technique that enhances the detection and visualization of LGGs intraoperatively is certainly desirable. METHODS In this paper, we reviewed the role of intraoperative conventional ultrasound and contrast-enhanced ultrasound (CEUS) as a tool for extending tumor resection in LGGs. Moreover, our experience with this technology is reported and discussed. RESULTS Both B-mode and CEUS are helpful in highlighting LGGs, detecting tumor margins and providing additional information such as vascularization, thus improving the safety of a more radical resection. CONCLUSIONS Although the full potentialities of the method are yet to be explored, intraoperative ultrasound is a promising tool in oncologic surgery and LGG surgery.
Collapse
Affiliation(s)
- Luca Mattei
- Neurochirurgia I, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Giovanni Celoria 11, 20133, Milan, Italy.
| | - Francesco Prada
- Neurochirurgia I, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Giovanni Celoria 11, 20133, Milan, Italy
| | - Federico Giuseppe Legnani
- Neurochirurgia I, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Giovanni Celoria 11, 20133, Milan, Italy
| | - Alessandro Perin
- Neurochirurgia I, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Giovanni Celoria 11, 20133, Milan, Italy
| | - Alessandro Olivi
- Istituto di Neurochirurgia, Fondazione Policlinico Universitario "A. Gemelli" Università Cattolica e del Sacro Cuore, Largo A. Gemelli 8, 00186, Rome, Italy
| | - Francesco DiMeco
- Neurochirurgia I, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Giovanni Celoria 11, 20133, Milan, Italy.,Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
45
|
The use of ultrasound in intracranial tumor surgery. Acta Neurochir (Wien) 2016; 158:1179-85. [PMID: 27106844 DOI: 10.1007/s00701-016-2803-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/04/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND As an intraoperative imaging modality, ultrasound is a user-friendly and cost-effective real-time imaging technique. Despite this, it is still not routinely employed for brain tumor surgery. This may be due to the poor image quality in inexperienced hands, and the well-documented learning curve. However, with regular use, the operator issues are addressed, and intraoperative ultrasound can provide valuable real-time information. The aim of this review is to provide an understanding for neurosurgeons of the development and use of ultrasound in intracranial tumor surgery, and possible future advances. METHODS A systematic search of the electronic databases Embase, Medline OvidSP, PubMed, Cochrane, and Google Scholar regarding the use of ultrasound in intracranial tumor surgery was undertaken. RESULTS AND DISCUSSION Intraoperative ultrasound has been shown to be able to accurately account for brain shift and has potential for regular use in brain tumor surgery. Further developments in probe size, resolution, and image reconstruction techniques will ensure that intraoperative ultrasound is more accessible and attractive to the neuro-oncological surgeon. CONCLUSIONS This review has summarized the development of ultrasound and its uses with particular reference to brain tumor surgery, detailing the ongoing challenges in this area.
Collapse
|
46
|
A novel direct spray-from-tissue ionization method for mass spectrometric analysis of human brain tumors. Anal Bioanal Chem 2015; 407:7797-805. [PMID: 26277186 DOI: 10.1007/s00216-015-8947-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022]
Abstract
Real-time feedback about dissected tissue during the neurosurgical procedure is strongly requested. A novel direct ionization mass spectrometric method for identifying pathological differences in tissues is proposed. The method is based on simultaneous extraction of tissue lipids and electrospray ionization which allows mass spectrometric data to be obtained directly from soft tissues. The advantage of this method is the stable flow of solvent, which leads to stable time-dependent spectra. The tissues included necrotized tissues and tumor tissues in different combinations. Capability for direct analysis of samples of dissected tissues during the neurosurgical procedure is demonstrated. Data validation is conducted by compound identification using precise masses from the MS profile, MS/MS, and isotopic distribution structure analysis. The method can be upgraded and applied for real-time identification of tissues during surgery. This paper describes the technique and its application perspective. For these purposes, other methods were compared with the investigated one and the results were shown to be reproducible. Differences in lipid profiles were observed even in tissues from one patient where distinctions between different samples could be poor. The paper presents a proof of concept for the method to be applied in neurosurgery particularly and in tissue analysis generically. The paper also contains preliminary results proving the possibility of observing differences in mass spectra of different tumors.
Collapse
|
47
|
Fecci PE, Babu R, Adamson DC, Sampson JH. Editorial: Turning fluorescence into black and white. J Neurosurg 2015; 122:1356-8. [DOI: 10.3171/2014.10.jns141788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
From Grey Scale B-Mode to Elastosonography: Multimodal Ultrasound Imaging in Meningioma Surgery-Pictorial Essay and Literature Review. BIOMED RESEARCH INTERNATIONAL 2015; 2015:925729. [PMID: 26101779 PMCID: PMC4458537 DOI: 10.1155/2015/925729] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/10/2015] [Indexed: 11/17/2022]
Abstract
The main goal in meningioma surgery is to achieve complete tumor removal, when possible, while improving or preserving patient neurological functions. Intraoperative imaging guidance is one fundamental tool for such achievement. In this regard, intra-operative ultrasound (ioUS) is a reliable solution to obtain real-time information during surgery and it has been applied in many different aspect of neurosurgery. In the last years, different ioUS modalities have been described: B-mode, Fusion Imaging with pre-operative acquired MRI, Doppler, contrast enhanced ultrasound (CEUS), and elastosonography.
In this paper, we present our US based multimodal approach in meningioma surgery. We describe all the most relevant ioUS modalities and their intraoperative application to obtain precise and specific information regarding the lesion for a tailored approach in meningioma surgery. For each modality, we perform a review of the literature accompanied by a pictorial essay based on our routinely use of ioUS for meningioma resection.
Collapse
|
49
|
|