1
|
Malik S, Sah R, Ahsan O, Muhammad K, Waheed Y. Insights into the Novel Therapeutics and Vaccines against Herpes Simplex Virus. Vaccines (Basel) 2023; 11:325. [PMID: 36851203 PMCID: PMC9959597 DOI: 10.3390/vaccines11020325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Herpes simplex virus (HSV) is a great concern of the global health community due to its linked infection of inconspicuous nature and resultant serious medical consequences. Seropositive patients may develop ocular disease or genital herpes as characteristic infectious outcomes. Moreover, the infectious nature of HSV is so complex that the available therapeutic options have been modified in certain ways to cure it. However, no permanent and highly effective cure has been discovered. This review generates insights into the available prophylactic and therapeutic interventions against HSV. A methodological research approach is used for study design and data complication. Only the latest data from publications are acquired to shed light on updated therapeutic approaches. These studies indicate that the current antiviral therapeutics can suppress the symptoms and control viral transmission up to a certain level, but cannot eradicate the natural HSV infection and latency outcomes. Most trials that have entered the clinical phase are made part of this review to understand what is new within the field. Some vaccination approaches are also discussed. Moreover, some novel therapeutic options that are currently in research annals are given due consideration for future development. The data can enable the scientific community to direct their efforts to fill the gaps that remain unfilled in terms of therapies for HSV. The need is to integrate scientific efforts to produce a proper cure against HSV to control the virus spread, resistance, and mutation in future disease management.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Ranjit Sah
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu 44600, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Omar Ahsan
- Department of Medicine, School of Health Sciences, Foundation University Islamabad, DHA Phase I, Islamabad 44000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
2
|
Wan M, Yang X, Sun J, Ding X, Chen Z, Su W, Cai L, Hou A, Sun B, Gao F, Jiang C, Zhou Y. An Adenovirus-Based Recombinant Herpes Simplex Virus 2 (HSV-2) Therapeutic Vaccine Is Highly Protective against Acute and Recurrent HSV-2 Disease in a Guinea Pig Model. Viruses 2023; 15:219. [PMID: 36680259 PMCID: PMC9861952 DOI: 10.3390/v15010219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Genital herpes (GH) has become one of the most common sexually transmitted diseases worldwide, and it is spreading rapidly in developing countries. Approximately 90% of GH cases are caused by HSV-2. Therapeutic HSV-2 vaccines are intended for people already infected with HSV-2 with the goal of reducing clinical recurrences and recurrent virus shedding. In our previous work, we evaluated recombinant adenovirus-based vaccines, including rAd-gD2ΔUL25, rAd-ΔUL25, and rAd-gD2, for their potency as prophylactic vaccines. In this study, we evaluated these three vaccines as therapeutic vaccines against acute and recurrent diseases in intravaginal challenged guinea pigs. Compared with the control groups, the recombinant vaccine rAd-gD2ΔUL25 induced a higher titer of the binding antibody, and rAd-gD2 + rAd-ΔUL25 induced a higher titer of the neutralizing antibody. Both rAd-gD2ΔUL25 and rAd-gD2 + rAd-ΔUL25 vaccines significantly enhanced the survival rate by 50% compared to rAd-gD2 and reduced viral replication in the genital tract and recurrent genital skin disease. Our findings provide a new perspective for HSV-2 therapeutic vaccine research and provide a new technique to curtail the increasing spread of HSV-2.
Collapse
Affiliation(s)
- Mingming Wan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jie Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xue Ding
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhijun Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Stanfield BA, Bravo FJ, Dixon DA, Chouljenko VN, Kousoulas KG, Bernstein DI. Cross protective efficacy of the Non-Neurotropic live attenuated herpes simplex virus type 1 vaccine VC-2 is enhanced by intradermal vaccination and deletion of glycoprotein G. Vaccine 2022; 40:6093-6099. [PMID: 36114130 DOI: 10.1016/j.vaccine.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2 respectively) cause life-long latent infections resulting in recurrent orofacial and genital blisters or sores. Ensued disease can be painful and may lead to significant mental anguish of infected individuals. Currently, there are no FDA-approved vaccines for either prophylactic or therapeutic use, and recent clinical trials of subunit vaccines failed to achieve endpoints goals. Development of a safe live-attenuated herpes simplex vaccine may provide the antigenic breadth to ultimately protect individuals from acquiring HSV disease. We have previously shown that prophylactic use of the non-neurotropic live attenuated HSV-1 vaccine, VC-2, provides potent and durable protection from genital HSV-2 disease in the guinea pig model. Here, we investigated the effects of intradermal administration as well as the deletion of the viral glycoprotein G (gG) on the efficacy of prophylactic vaccination. Vaccination with either VC-2, VC-2 gG null, or gD2 MPL/Alum offered robust protection from acute disease regardless of route of vaccination. However, both the VC-2 gG-null and the ID vaccination route were more effective compared to the parent VC2 administered by the IM route. Specifically, the VC-2 gG-null administered ID, reduced HSV-2 vaginal replication on day 2 and day 4 as well as mean recurrent lesion scores more effectively than VC2 administered IM. Most importantly, only VC-2 gG null IM and VC-2 ID significantly reduced the frequency of recurrent shedding, the most likely source for virus transmission. Similarly, while all vaccinated groups demonstrated a significant reduction in the number of animals testing PCR-positive for HSV-2 in their dorsal root ganglia following challenge only VC2 ID vaccinated animals demonstrated a significant reduction in DRG viral load. All vaccinations induced neutralizing antibodies to HSV-2 MS when compared to unvaccinated guinea pigs. Therefore, further investigation of VC-2 gG null delivered ID is warranted.
Collapse
Affiliation(s)
- Brent A Stanfield
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - David A Dixon
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Vladimir N Chouljenko
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Zhang Y, Zeng LS, Wang J, Cai WQ, Cui W, Song TJ, Peng XC, Ma Z, Xiang Y, Cui SZ, Xin HW. Multifunctional Non-Coding RNAs Mediate Latent Infection and Recurrence of Herpes Simplex Viruses. Infect Drug Resist 2021; 14:5335-5349. [PMID: 34934329 PMCID: PMC8684386 DOI: 10.2147/idr.s334769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex viruses (HSVs) often cause latent infection for a lifetime, leading to repeated recurrence. HSVs have been engineered as oncolytic HSVs. The mechanism of the latent infection and recurrence remains largely unknown, which brings great challenges and limitations to eliminate HSVs in clinic and engineer safe oHSVs. Here, we systematically reviewed the latest development of the multi-step complex process of HSV latency and reactivation. Significantly, we first summarized the three HSV latent infection pathways, analyzed the structure and expression of the LAT1 and LAT2 of HSV-1 and HSV-2, proposed the regulation of LAT expression by four pathways, and dissected the function of LAT mediated by five LAT products of miRNAs, sRNAs, lncRNAs, sncRNAs and ORFs. We further analyzed that application of HSV LAT deletion mutants in HSV vaccines and oHSVs. Our review showed that deleting LAT significantly reduced the latency and reactivation of HSV, providing new ideas for the future development of safe and effective HSV therapeutics, vaccines and oHSVs. In addition, we proposed that RNA silencing or RNA interference may play an important role in HSV latency and reactivation, which is worth validating in future.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Gastroenterology, Chun’an County First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, Zhejiang Province, 311700, People’s Republic of China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Department of Molecular Biology and Biochemistry, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
| | - Li-Si Zeng
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, People’s Republic of China
| | - Juan Wang
- Department of Obstetrics and Gynecology, Lianjiang People’s Hospital, Guangdong, 524400, People’s Republic of China
| | - Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Department of Molecular Biology and Biochemistry, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
| | - Weiwen Cui
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Tong-Jun Song
- Department of Neurosurgery, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong Province, 518104, People’s Republic of China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
| | - Zhaowu Ma
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Department of Molecular Biology and Biochemistry, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Department of Molecular Biology and Biochemistry, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, People’s Republic of China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Department of Molecular Biology and Biochemistry, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
| |
Collapse
|
5
|
Two Sides to Every Story: Herpes Simplex Type-1 Viral Glycoproteins gB, gD, gH/gL, gK, and Cellular Receptors Function as Key Players in Membrane Fusion. Viruses 2021; 13:v13091849. [PMID: 34578430 PMCID: PMC8472851 DOI: 10.3390/v13091849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) and type-2 (HSV-2) are prototypical alphaherpesviruses that are characterized by their unique properties to infect trigeminal and dorsal root ganglionic neurons, respectively, and establish life-long latent infections. These viruses initially infect mucosal epithelial tissues and subsequently spread to neurons. They are associated with a significant disease spectrum, including orofacial and ocular infections for HSV-1 and genital and neonatal infections for HSV-2. Viral glycoproteins within the virion envelope bind to specific cellular receptors to mediate virus entry into cells. This is achieved by the fusion of the viral envelope with the plasma membrane. Similarly, viral glycoproteins expressed on cell surfaces mediate cell-to-cell fusion and facilitate virus spread. An interactive complex of viral glycoproteins gB, gD/gH/gL, and gK and other proteins mediate these membrane fusion phenomena with glycoprotein B (gB), the principal membrane fusogen. The requirement for the virion to enter neuronal axons suggests that the heterodimeric protein complex of gK and membrane protein UL20, found only in alphaherpesviruses, constitute a critical determinant for neuronal entry. This hypothesis was substantiated by the observation that a small deletion in the amino terminus of gK prevents entry into neuronal axons while allowing entry into other cells via endocytosis. Cellular receptors and receptor-mediated signaling synergize with the viral membrane fusion machinery to facilitate virus entry and intercellular spread. Unraveling the underlying interactions among viral glycoproteins, envelope proteins, and cellular receptors will provide new innovative approaches for antiviral therapy against herpesviruses and other neurotropic viruses.
Collapse
|
6
|
Stanfield BA, Kousoulas KG, Fernandez A, Gershburg E. Rational Design of Live-Attenuated Vaccines against Herpes Simplex Viruses. Viruses 2021; 13:1637. [PMID: 34452501 PMCID: PMC8402837 DOI: 10.3390/v13081637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Diseases caused by human herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) affect millions of people worldwide and range from fatal encephalitis in neonates and herpes keratitis to orofacial and genital herpes, among other manifestations. The viruses can be shed efficiently by asymptomatic carriers, causing increased rates of infection. Viral transmission occurs through direct contact of mucosal surfaces followed by initial replication of the incoming virus in skin tissues. Subsequently, the viruses infect sensory neurons in the trigeminal and lumbosacral dorsal root ganglia, where they are primarily maintained in a transcriptionally repressed state termed "latency", which persists for the lifetime of the host. HSV DNA has also been detected in other sympathetic ganglia. Periodically, latent viruses can reactivate, causing ulcerative and often painful lesions primarily at the site of primary infection and proximal sites. In the United States, recurrent genital herpes alone accounts for more than a billion dollars in direct medical costs per year, while there are much higher costs associated with the socio-economic aspects of diseased patients, such as loss of productivity due to mental anguish. Currently, there are no effective FDA-approved vaccines for either prophylactic or therapeutic treatment of human herpes simplex infections, while several recent clinical trials have failed to achieve their endpoint goals. Historically, live-attenuated vaccines have successfully combated viral diseases, including polio, influenza, measles, and smallpox. Vaccines aimed to protect against the devastation of smallpox led to the most significant achievement in medical history: the eradication of human disease by vaccination. Recently, novel approaches toward developing safe and effective live-attenuated vaccines have demonstrated high efficacy in various preclinical models of herpetic disease. This next generation of live-attenuated vaccines has been tailored to minimize vaccine-associated side effects and promote effective and long-lasting immune responses. The ultimate goal is to prevent or reduce primary infections (prophylactic vaccines) or reduce the frequency and severity of disease associated with reactivation events (therapeutic vaccines). These vaccines' "rational" design is based on our current understanding of the immunopathogenesis of herpesviral infections that guide the development of vaccines that generate robust and protective immune responses. This review covers recent advances in the development of herpes simplex vaccines and the current state of ongoing clinical trials in pursuit of an effective vaccine against herpes simplex virus infections and associated diseases.
Collapse
Affiliation(s)
- Brent A. Stanfield
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Konstantin G. Kousoulas
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Rational Vaccines Inc., Woburn, MA 01801, USA;
| | | | | |
Collapse
|
7
|
Sulzinski MA. Novel primary literature-based alternative to comprehensive final examination for undergraduate virology course. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 49:46-54. [PMID: 32638453 DOI: 10.1002/bmb.21390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
A novel approach is described using primary literature manuscripts for the final examination of an upper level undergraduate course in virology. This innovative technique was applied as an alternative to a core comprehensive final examination. A recent primary literature paper in virology was assigned several weeks before the end of the semester. Students were instructed to procure the electronic version of the manuscript, and to thoroughly read, highlight and outline the manuscript in advance. The examination was administered with an open book format and students were encouraged to bring laptops to access information as needed to answer questions. This primary literature-based examination format is presented here as an alternative to a comprehensive final exam. By comparing student examination scores for both final examination formats over a period of 11 years, it was determined that student performance was strong and not statistically different when compared to conventional comprehensive final examinations. Thus, the examination format described here was a useful assessment tool that provided students with valuable exposure to the discipline specific primary literature. While this article describes an application to an undergraduate virology course, the same examination techniques could be successfully applied to examinations in undergraduate or graduate classes in any areas of biochemistry and molecular biology.
Collapse
Affiliation(s)
- Michael A Sulzinski
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, USA
| |
Collapse
|
8
|
Bernstein DI, Cardin RD, Smith GA, Pickard GE, Sollars PJ, Dixon DA, Pasula R, Bravo FJ. The R2 non-neuroinvasive HSV-1 vaccine affords protection from genital HSV-2 infections in a guinea pig model. NPJ Vaccines 2020; 5:104. [PMID: 33298966 PMCID: PMC7648054 DOI: 10.1038/s41541-020-00254-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus (HSV) infections are common and can cause severe illness but no vaccine is currently available. The recent failure of subunit HSV vaccines has highlighted the need for vaccines that present a diverse array of antigens, including the development of next-generation live-attenuated vaccines. However, most attenuated HSV strains propagate poorly, limiting their ability to elicit protective immune responses. A live-attenuated vaccine that replicates in non-neural tissue but is ablated for transmission into the nervous system may elicit protective immune responses without evoking neurologic complications or establishing life-long infections. Initial studies of R2, a live-attenuated vaccine that is engineered to be unable to invade the nervous system, used the guinea pig genital HSV model to evaluate the ability of R2 to replicate at the site of inoculation, cause disease and infect neural tissues. R2 was then evaluated as a vaccine using three routes of inoculation: intramuscular (IM), intradermal (ID) and intravaginal (IVag) and compared to IM administered gD2+MPL/Alum vaccine in the same model. R2 replicated in the genital tract but did not produce acute or recurrent disease and did not infect the neural tissue. The R2 vaccine-induced neutralizing antibody and decreased the severity of acute and recurrent HSV-2 disease as well as recurrent shedding. The ID route was the most effective. ID administered R2 was more effective than gD2+MPL/Alum at inducing neutralizing antibody, suppressing acute disease, and acute vaginal virus replication. R2 was especially more effective at reducing recurrent virus shedding, the most common source of HSV transmission. The live-attenuated prophylactic HSV vaccine, R2, was effective in the guinea pig model of genital HSV-2 especially when administered by the ID route. The use of live-attenuated HSV vaccines that robustly replicate in mucosal tissues but are ablated for neuroinvasion offers a promising approach for HSV vaccines.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| | - Rhonda D Cardin
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA
| | - Patricia J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA
| | - David A Dixon
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Rajamouli Pasula
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
9
|
Yang H, Yang X, Wang Y, Zheng X, Zhang Y, Shao Y. Comparative analysis of the tear protein profile in herpes simplex virus type 1 epithelial keratitis. BMC Ophthalmol 2020; 20:355. [PMID: 32867704 PMCID: PMC7461310 DOI: 10.1186/s12886-020-01626-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/25/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Herpes simplex virus type 1 (HSV-1) keratitis is a major cause of corneal blindness in the world, and an in-depth understanding of its pathogenesis may help improve existing diagnosis and treatment. The purpose of this study is to compare and analysis the total tear protein profile of HSV-1 epithelial keratitis patients, and to quantify the potential candidate biomarkers of HSV-1 epithelial keratitis. METHODS We investigated the proteome in tear fluid from three HSV-1 epithelial keratitis patients and three healthy control subjects using nano-scale liquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis. Functional annotation of differentially expressed proteins was done with the Gene Ontology (GO) analysis. ELISA was done to quantify the potential candidate biomarkers in 26 clinical cases. RESULTS Tear fluid from three HSV-1 epithelial keratitis patients and three healthy control subjects contained a total of 1275 proteins and 326 proteins were unique to tear fluid of HSV-1 epithelial keratitis patients. Bioinformatics analysis revealed that tear proteins from HSV-1 epithelial keratitis patients may be involved in metabolic processes, antigen presentation, inflammatory response, and in the TNF-mediated and T cell receptor pathways. Furthermore, IL1A, IL12B, DEFB4A, and CAMP, which are associated with the inflammatory response and inhibition of viral infection, were significantly more abundant in the HSV-1 epithelial keratitis patients than in the healthy control subjects. CONCLUSIONS This study reports the proteomic profile of tears in HSV-1 epithelial keratitis for the first time and identifies a number of unique differentially expressed proteins.
Collapse
Affiliation(s)
- Hua Yang
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Xi'an, 710002, Shaanxi Province, China
- Shaanxi Key Laboratory of Ophthalmology, Xi'an, 710002, Shaanxi Province, China
- Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an, 710002, Shaanxi Province, China
- First Affiliated Hospital of Northwestern University, Xi'an, 710002, Shaanxi Province, China
| | - Xiaozhao Yang
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi Province, China.
- Shaanxi Institute of Ophthalmology, Xi'an, 710002, Shaanxi Province, China.
- Shaanxi Key Laboratory of Ophthalmology, Xi'an, 710002, Shaanxi Province, China.
- Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an, 710002, Shaanxi Province, China.
- First Affiliated Hospital of Northwestern University, Xi'an, 710002, Shaanxi Province, China.
| | - Yani Wang
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Xi'an, 710002, Shaanxi Province, China
- Shaanxi Key Laboratory of Ophthalmology, Xi'an, 710002, Shaanxi Province, China
- Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an, 710002, Shaanxi Province, China
- First Affiliated Hospital of Northwestern University, Xi'an, 710002, Shaanxi Province, China
| | - Xuan Zheng
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Xi'an, 710002, Shaanxi Province, China
- Shaanxi Key Laboratory of Ophthalmology, Xi'an, 710002, Shaanxi Province, China
- Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an, 710002, Shaanxi Province, China
- First Affiliated Hospital of Northwestern University, Xi'an, 710002, Shaanxi Province, China
| | - Yi Zhang
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Xi'an, 710002, Shaanxi Province, China
- Shaanxi Key Laboratory of Ophthalmology, Xi'an, 710002, Shaanxi Province, China
- Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an, 710002, Shaanxi Province, China
- First Affiliated Hospital of Northwestern University, Xi'an, 710002, Shaanxi Province, China
| | - Yan Shao
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an, 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Xi'an, 710002, Shaanxi Province, China
- Shaanxi Key Laboratory of Ophthalmology, Xi'an, 710002, Shaanxi Province, China
- Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an, 710002, Shaanxi Province, China
- First Affiliated Hospital of Northwestern University, Xi'an, 710002, Shaanxi Province, China
| |
Collapse
|
10
|
Xu X, Feng X, Wang L, Yi T, Zheng L, Jiang G, Fan S, Liao Y, Feng M, Zhang Y, Li D, Li Q. A HSV1 mutant leads to an attenuated phenotype and induces immunity with a protective effect. PLoS Pathog 2020; 16:e1008703. [PMID: 32776994 PMCID: PMC7440667 DOI: 10.1371/journal.ppat.1008703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/20/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 (HSV1) is a complicated structural agent with a sophisticated transcription process and a high infection rate. A vaccine against HSV1 is urgently needed. As multiple viral-encoded proteins, including structural and nonstructural proteins, contribute to immune response stimulation, an attenuated or deficient HSV1 vaccine may be relatively reliable. Advances in genomic modification technologies provide reliable means of constructing various HSV vaccine candidates. Based on our previous work, an M6 mutant with mutations in the UL7, UL41, LAT, Us3, Us11 and Us12 genes was established. The mutant exhibited low proliferation in cells and an attenuated phenotype in an animal model. Furthermore, in mice and rhesus monkeys, the mutant can induce remarkable serum neutralizing antibody titers and T cell activation and protect against HSV1 challenge by impeding viral replication, dissemination and pathogenesis.
Collapse
Affiliation(s)
- Xingli Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xiao Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ting Yi
- Weirui Biotechnology (Kunming) Co., Ltd, Kunming, China
| | - Lichun Zheng
- Weirui Biotechnology (Kunming) Co., Ltd, Kunming, China
| | - Guorun Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Dandan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| |
Collapse
|
11
|
The Mutation of the Genes Related to Neurovirulence in HSV-2 Produces an Attenuated Phenotype in Mice. Viruses 2020; 12:v12070770. [PMID: 32708847 PMCID: PMC7412103 DOI: 10.3390/v12070770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
Abstract
HSV-2 (Herpes simplex virus type 2) is a critical viral agent that mainly causes genital herpes and life-long latent infection in the dorsal root ganglia. Gene modification via CRISPR/Cas9 Clustered regularly interspaced short palindromic repeat sequences/CRISPR associated 9) was used here to construct HSV-2 mutant strains through the deletion of fragments of the RL1 (Repeat Long element 1) and/or LAT (Latency-associated Transcript) genes. The HSV-2 mutant strains LAT-HSV-2 and RL1-LAT-HSV-2 present different biological properties. The proliferation of RL1-LAT-HSV-2 in nerve cells was decreased significantly, and the plaques induced by RL1-LAT-HSV-2 in Vero cells were smaller than those induced by LAT-HSV-2 mutant and wild-type strains. The observation of mice infected with these two mutants compared to mice infected with the wild-type strain indicated that the mutant RL1-LAT-HSV-2 has an attenuated phenotype with reduced pathogenicity during both acute and latent infections and induces a stronger specific immune response than the wild-type strain, whereas the attenuation effect was not found in mice infected with the LAT-HSV-2 mutant containing the LAT gene deletion. However, the simultaneous mutation of both the RL1 and LAT genes did not completely restrict viral proliferation in nerve cells, indicating that multiple HSV genes are involved in viral replication in the neural system. This work suggests that the HSV-2 genes RL1 and/or LAT might be involved in the virulence mechanisms in mouse infections.
Collapse
|
12
|
Xu X, He Y, Fan S, Feng M, Jiang G, Wang L, Zhang Y, Liao Y, Li Q. Reducing Viral Inhibition of Host Cellular Apoptosis Strengthens the Immunogenicity and Protective Efficacy of an Attenuated HSV-1 Strain. Virol Sin 2019; 34:673-687. [PMID: 31506828 DOI: 10.1007/s12250-019-00156-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/17/2019] [Indexed: 02/05/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1), a member of α herpesviruses, shows a high infectivity rate of 30%-60% in populations of various ages. Some herpes simplex (HSV) vaccine candidates evaluated during the past 20 years have not shown protective efficacy against viral infection. An improved understanding of the immune profile of infected individuals and the associated mechanism is needed. HSV uses an immune evasion strategy during viral replication, and various virus-encoded proteins, such as ICP47 and Vhs, participate in this process through limiting the ability of CD8+ cytotoxic T lymphocytes to recognize target cells. Other proteins, e.g., Us3 and Us5, also play a role in viral immune evasion via interfering with cellular apoptosis. In this work, to study the mechanism by which HSV-1 strain attenuation interferes with the viral immune evasion strategy, we constructed a mutant strain, M5, with deletions in the Us3 and Us5 genes. M5 was shown to induce higher neutralizing antibody titers and a stronger cellular immune response than our previously reported M3 strain, and to prevent virus infection more effectively than the M3 strain in an in vivo mouse challenge test.
Collapse
Affiliation(s)
- Xingli Xu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yufeng He
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Shengtao Fan
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Min Feng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Guorun Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
13
|
Boucau J, Le Gall S. Antigen processing and presentation in HIV infection. Mol Immunol 2019; 113:67-74. [PMID: 29636181 PMCID: PMC6174111 DOI: 10.1016/j.molimm.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
The presentation of virus-derived peptides by MHC molecules constitutes the earliest signals for immune recognition by T cells. In HIV infection, immune responses elicited during infection do not enable to clear infection and correlates of immune protection are not well defined. Here we review features of antigen processing and presentation specific to HIV, analyze how HIV has adapted to the antigen processing machinery and discuss how advances in biochemical and computational protein degradation analyses and in immunopeptidome definition may help identify targets for efficient immune clearance and vaccine immunogen design.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States.
| |
Collapse
|
14
|
Abstract
This review on herpes simplex virus type I and type II (HSV‑I, HSV‑II) summarizes recent developments in clinical manifestations and treatment interventions for primary and recurrent orolabial and genital herpes, as well as those regarding vaccination issues. Among the clinical presentations, the relationship between pyogenic granuloma and chronic HSV‑I infection; HSV-related folliculitis; verrucous HSV‑I and HSV‑II lesions; the role of recurrent HSV‑I infection in burning mouth syndrome; HSV‑I and HSV‑II infection of the periareolar area; zosteriform HSV; the "knife-cut sign"; and the preferential colonization and infection of preexisting dermatoses by HSV‑I or HSV‑II are discussed. The usual antiviral treatment regimens for primary and recurrent orolabial and genital herpes are compared to short-term and one-day treatment options. New anti-HSV‑I and anti-HSV‑II agents include amenavir, pritelivir, brincidofovir, valomaciclovir, and FV-100. Therapeutic or preventive vaccination against HSV‑I and HSV‑II infections still remains a highly desirable treatment aim, which, unfortunately, has no clinically relevant applications to date.
Collapse
|
15
|
Bernstein DI, Pullum DA, Cardin RD, Bravo FJ, Dixon DA, Kousoulas KG. The HSV-1 live attenuated VC2 vaccine provides protection against HSV-2 genital infection in the guinea pig model of genital herpes. Vaccine 2019; 37:61-68. [DOI: 10.1016/j.vaccine.2018.11.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
|
16
|
Stanfield BA, Rider PJF, Caskey J, Del Piero F, Kousoulas KG. Intramuscular vaccination of guinea pigs with the live-attenuated human herpes simplex vaccine VC2 stimulates a transcriptional profile of vaginal Th17 and regulatory Tr1 responses. Vaccine 2018; 36:2842-2849. [PMID: 29655629 DOI: 10.1016/j.vaccine.2018.03.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022]
Abstract
Herpes simplex virus is a common causative agent of oral and genital diseases. Novel vaccines and therapeutics are needed to combat herpes infections especially after the failure of subunit vaccines in human clinical trials. We have shown that the live-attenuated HSV-1 VC2 vaccine strain is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. The guinea pig represents the best small animal model of genital HSV-2 disease. Reported here, twenty-one female Hartley guinea pigs received intramuscular injection with either the VC2 vaccine, or equal volume of conditioned tissue culture media. Animals received 2 booster vaccinations at 21 day intervals following the initial vaccination. After vaccination, animals were challenged with the highly virulent HSV-2 (G) strain. Histologically, VC2 vaccinated animals had little to no apparent inflammation/disease following challenge. Unvaccinated animals developed moderate to severe erosive and ulcerative vaginitis. Quantitative reverse-transcriptase PCR analysis in VC2 vaccinated and challenged animals identified transcriptional signatures of Th17 and regulatory Tr1 cells associated with the inflammatory response primed by VC2 vaccination. Treatment of cultured human vaginal epithelial cells (VK2 cells) with a combination of IL-17A and IL-22 resulted in the significant induction of beta-defensin 3 expression. Further, treatment of VK2 cells with IL-17A, IL-22, IL-36 or beta-defensin 3 resulted in diminished HSV-2 replication. Overall, these results suggest that intramuscular vaccination with the live-attenuated vaccine VC2 primes a mucosal immune response predisposing the adaptive expression of transcripts associated with a Th17 response to challenge and these responses contribute to antiviral immunity.
Collapse
Affiliation(s)
- Brent A Stanfield
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Paul J F Rider
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - John Caskey
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabio Del Piero
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
17
|
Zhang X, Jiang Q, Xu X, Wang Y, Liu L, Lian Y, Li H, Wang L, Zhang Y, Jiang G, Zeng J, Zhang H, Han JDJ, Li Q. Immune mechanisms induced by an HSV-1 mutant strain: Discrepancy analysis of the immune system gene profile in comparison with a wild-type strain. Vaccine 2018; 36:2394-2402. [PMID: 29602705 DOI: 10.1016/j.vaccine.2018.03.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/07/2018] [Accepted: 03/21/2018] [Indexed: 02/01/2023]
Abstract
Herpes simplex virus is a prevalent pathogen of humans of various age groups. The fact that no prophylactic or therapeutic vaccine is currently available suggests a significant need to further investigate the immune mechanisms induced by the virus and various vaccine candidates. We previously generated an HSV-1 mutant strain, M3, with partial deletions in ul7, ul41 and LAT that produced an attenuated phenotype in mice. In the present study, we performed a comparative analysis to characterize the immune responses induced by M3 versus wild-type HSV-1 in a mouse model. Infection with wild-type HSV-1 triggered an inflammatory-dominated response and adaptive immunity suppression and was accompanied by severe pathological damage. In contrast, infection with M3 induced a systematic immune response involving full activation of both innate and adaptive immunity and was accompanied by no obvious pathological changes. Furthermore, the immune response induced by M3 protected mice from lethal challenge with wild-type strains of HSV-1 and restrained virus proliferation and impaired latency. These data are useful for further HSV-1 vaccine development using a mutant strain construction strategy.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Quanlong Jiang
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xingli Xu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Yongrong Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Lei Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Yaru Lian
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Hao Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Guorun Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jieyuan Zeng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Han Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jing-Dong Jackie Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China.
| |
Collapse
|
18
|
Rider PJF, Musarrat F, Nabil R, Naidu S, Kousoulas KG. First Impressions-the Potential of Altering Initial Host-Virus Interactions for Rational Design of Herpesvirus Vaccine Vectors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:55-65. [PMID: 30560044 DOI: 10.1007/s40588-018-0082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose The earliest host-virus interactions occur during virus attachment and entry into cells. These initial steps in the virus lifecycle influence the outcome of infection beyond delivery of the viral genome into the cell. Herpesviruses alter host signaling pathways and processes during attachment and entry to facilitate virus infection and modulate innate immune responses. We suggest in this review that understanding these early signaling events may inform the rational design of therapeutic and prevention strategies for herpesvirus infection, as well as the engineering of viral vectors for immunotherapy purposes. Recent Findings Recent reports demonstrate that modulation of Herpes Simplex Virus Type-1 (HSV-1) entry results in unexpected enhancement of antiviral immune responses. Summary A variety of evidence suggests that herpesviruses promote specific cellular signaling responses that facilitate viral replication after binding to cell surfaces, as well as during virus entry. Of particular interest is the ability of the virus to alter innate immune responses through these cellular signaling events. Uncovering the underlying immune evasion strategies may lead to the design of live-attenuated vaccines that can generate robust and protective anti-viral immune responses against herpesviruses. These adjuvant properties may be extended to a variety of heterologous antigens expressed by herpesviral vectors.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Farhana Musarrat
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Rafiq Nabil
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Shan Naidu
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| |
Collapse
|
19
|
Mielcarska MB, Bossowska-Nowicka M, Toka FN. Functional failure of TLR3 and its signaling components contribute to herpes simplex encephalitis. J Neuroimmunol 2017; 316:65-73. [PMID: 29305044 DOI: 10.1016/j.jneuroim.2017.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/17/2017] [Accepted: 12/17/2017] [Indexed: 02/06/2023]
Abstract
Herpes simplex encephalitis (HSE) is a severe neurological disease in children and adults caused by herpes simplex virus. This review discusses recent findings on the role of Toll-like receptor 3 (TLR3) deficiencies in the HSE development. Critical checkpoints in the TLR3 signaling that contribute to innate response are discussed, including the importance of TLR3 ligand recognition site and transportation in the cell. We also indicate unresolved issues in the TLR3 functioning that might lead to thorough understanding of immunity during HSE. Such a knowledge base will lead to discovery and design of a rationale therapeutic and preventive approach against HSE.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 Str., 02-786 Warsaw, Poland.
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 Str., 02-786 Warsaw, Poland
| | - Felix Ngosa Toka
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 Str., 02-786 Warsaw, Poland; Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, PO Box 334, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
20
|
El Hayderi L, Rübben A, Nikkels AF. [The alpha-herpesviridae in dermatology : Herpes simplex virus types I and II. German version]. Hautarzt 2017; 68:181-186. [PMID: 28197699 DOI: 10.1007/s00105-016-3929-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review on herpes simplex virus type I and type II (HSV-I, HSV-II) summarizes recent developments in clinical manifestations and treatment interventions for primary and recurrent orolabial and genital herpes, as well as those regarding vaccination issues. Among the clinical presentations, the relationship between pyogenic granuloma and chronic HSV-I infection; HSV-related folliculitis; verrucous HSV-I and HSV-II lesions; the role of recurrent HSV-I infection in burning mouth syndrome; HSV-I and HSV-II infection of the periareolar area; zosteriform HSV; the "knife-cut sign"; and the preferential colonization and infection of preexisting dermatoses by HSV-I or HSV-II are discussed. The usual antiviral treatment regimens for primary and recurrent orolabial and genital herpes are compared to short-term and one-day treatment options. New anti-HSV-I and anti-HSV-II agents include amenavir, pritelivir, brincidofovir, valomaciclovir, and FV-100. Therapeutic or preventive vaccination against HSV-I and HSV-II infections still remains a highly desirable treatment aim, which, unfortunately, has no clinically relevant applications to date.
Collapse
Affiliation(s)
- L El Hayderi
- Department of Dermatology, CHU of Sart Tilman, University of Liège, 4000, Liège, Belgien
| | - A Rübben
- Hautklinik, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule Aachen, Pauwelsstraße 30, Aachen, 52074, Deutschland
| | - A F Nikkels
- Department of Dermatology, CHU of Sart Tilman, University of Liège, 4000, Liège, Belgien.
| |
Collapse
|
21
|
Xu X, Fan S, Wang X, Hu Y, Feng M, Wang L, Zhang Y, Liao Y, Zhang X, Li Q. Analysis of the Protective Immunity Induced by Herpes Simplex Virus 1 Strain M3 with an Attenuated Phenotype Due to Mutations in the Viral ul7, ul41, and LAT Genes. Front Microbiol 2017; 8:1958. [PMID: 29062310 PMCID: PMC5640706 DOI: 10.3389/fmicb.2017.01958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/22/2017] [Indexed: 01/30/2023] Open
Abstract
Herpes simplex virus 1 (HSV1) is an important pathogen with a worldwide epidemic trend that affects populations of various ages. It has a high morbidity, particularly in juveniles, but a successful HSV1 vaccine is not currently available. Thus, our study systematically observed the immune responses induced in mice immunized with the attenuated HSV1 M3 mutant strain, which has mutations in the genes encoding the UL7 and Vhs tegument proteins and the latency-associated transcript. The immunity induced by the M3 mutant strain can control acute viral infection during HSV1 wild-type strain infection. Moreover, this immunity exerts a potent effect on controlling viral entry into the trigeminal neurons. These data encourage further studies investigating the development of M3 as a potential vaccine candidate, and much work is necessary to evaluate the safety and improve the immunogenicity of this strain.
Collapse
Affiliation(s)
- Xingli Xu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Shengtao Fan
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xi Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yunguang Hu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Min Feng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiaolong Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
22
|
Attenuated phenotypes and analysis of a herpes simplex virus 1 strain with partial deletion of the UL7, UL41 and LAT genes. Virol Sin 2017; 32:404-414. [PMID: 28971351 DOI: 10.1007/s12250-017-3947-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/17/2017] [Indexed: 01/23/2023] Open
Abstract
We previously constructed a herpes simplex virus 1 (HSV-1) UL7 mutant virus (M1) and showed that a partial deletion mutation of the UL7 gene led to a lower proliferative rate and an attenuated phenotype. Using the M1 mutant, we further modified the UL41 gene, which encodes another tegument protein, and the latency-associated transcript (LAT) gene. Observations of the resulting mutants with modified UL7 and UL41 (M2) or UL7, UL41 and LAT (M3) genes indicated attenuated phenotypes, with lower proliferative ratios in various cells, non-lethal infections in mice and lower viral loads in nervous tissues compared with the wild-type strain. Furthermore, no LAT stable intron could be detected in the trigeminal ganglion of M3-infected animals. The results obtained with the three HSV-1 mutants indicate that the M3 mutant is an attenuated strain with low pathogenicity during both acute and latent infections. Together, the results support the use of the M3 mutant as a candidate for the development of an HSV-1 vaccine.
Collapse
|
23
|
Stanfield BA, Pahar B, Chouljenko VN, Veazey R, Kousoulas KG. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine 2016; 35:536-543. [PMID: 28017425 DOI: 10.1016/j.vaccine.2016.12.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/28/2016] [Accepted: 12/12/2016] [Indexed: 02/08/2023]
Abstract
We have shown that the live-attenuated HSV-1 VC2 vaccine strain with mutations in glycoprotein K (gK) and the membrane protein UL20 is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. To better understand the immune response generated by vaccination with VC2, we tested its ability to elicit immune responses in rhesus macaques. Vaccinated animals showed no signs of disease and developed increasing HSV-1 and HSV-2 reactive IgG1 after two booster vaccinations, while IgG subtypes IgG2 and IgG3 remained at low to undetectable levels. All vaccinated animals produced high levels of cross protective neutralizing antibodies. Flow cytometry analysis of cells isolated from draining lymph nodes showed that VC2 vaccination stimulated significant increases in plasmablast (CD27highCD38high) and mature memory (CD21-IgM-) B cells. T cell analysis on cells isolated from draining lymph node biopsies demonstrated a statistically significant increase in proliferating (Ki67+) follicular T helper cells and regulatory CXCR5+ CD8+ cytotoxic T cells. Analysis of plasma isolated two weeks post vaccination showed significant increases in circulating CXCL13 indicating increased germinal center activity. Cells isolated from vaginal biopsy samples collected over the course of the study exhibited vaccination-dependent increases in proliferating (Ki67+) CD4+ and CD8+ T cell populations. These results suggest that intramuscular vaccination with the live-attenuated HSV-1 VC2 vaccine strain can stimulate robust IgG1 antibody responses that persist for >250days post vaccination. In addition, vaccination lead to the maturation of B cells into plasmablast and mature memory B cells, the expansion of follicular T helper cells, and affects in the mucosal immune responses. These data suggest that the HSV VC2 vaccine induces potent immune responses that could help define correlates of protection towards developing an efficacious HSV-1/HSV-2 vaccine in humans.
Collapse
Affiliation(s)
- Brent A Stanfield
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Bapi Pahar
- Department of Comparative Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, United States
| | - Vladimir N Chouljenko
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Ronald Veazey
- Department of Comparative Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, United States
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
24
|
Haque M, Stanfield B, Kousoulas KG. Bovine herpesvirus type-1 glycoprotein K (gK) interacts with UL20 and is required for infectious virus production. Virology 2016; 499:156-164. [PMID: 27661734 DOI: 10.1016/j.virol.2016.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 02/05/2023]
Abstract
We have previously shown that the HSV-1 gK and UL20 proteins interact and function in virion envelopment, membrane fusion, and neuronal entry. Alignment of the predicted secondary structures of gKs encoded by BoHV-1, HSV-1, HSV-2, EHV-1 and VZV indicated a high degree of domain conservation. Two BoHV-1 gK-null mutant viruses were created by either gK gene deletion or stop codon insertion. In addition, a V5 epitope-tag was inserted at the carboxyl terminus of gK gene to detect gK. The engineered gK-null mutant viruses failed to replicate and produce viral plaques. Co-immunoprecipitation of gK and UL20 expressed via different methods revealed that gK and UL20 physically interacted in the presence or absence of other viral proteins. Confocal microscopy showed that gK and UL20 colocalized in infected cells. These results indicate that BoHV-1 gK and UL20 may function in a similar manner to other alphaherpesvirus orthologues specified by HSV-1, PRV and EHV-1.
Collapse
Affiliation(s)
- Muzammel Haque
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Brent Stanfield
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|