1
|
Menechino BSB, Kato RB, Franz HCF, da Silva PEA, Corat M, de Lima Neto DF. Interactions between DC-SIGN and the envelope protein from Dengue and Zika viruses: a structural perspective based on molecular dynamics and MM/GBSA analyses. Virol J 2023; 20:286. [PMID: 38049805 PMCID: PMC10696828 DOI: 10.1186/s12985-023-02251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) share a lot of similarities being both phylogenetically closely related, share the same insect vector passage for reaching the host, affinity for the same carbohydrate receptor domains (CRDs), indicating feasible competition between them on the natural field. Here, we prospected interactions of both envelope proteins with a DC-SIGN, a transmembrane c-type lectine receptor with the most implicated CRD with the Flavivirus infection presents on dendritic cells involved in viruses replication processes into the host, and among rares CRD receptors susceptible to interacting with a broad of subtypes of DENV. Protein-protein docking procedures produced structures for molecular dynamics experiments, suggesting the most energetically favorable complex. The difference found in the deltaG results prompted the experimentation with molecular dynamics. To investigate further specific residues involved with such interactions we produced a decomposition analysis using molecular dynamics of the docked proteins evaluated afterward with the Generalized Born Surface Area method. Solvent-accessible surface area (SASA) analysis for both showed very similar but with a slight reduction for ZIKV_E, which agreed with residues SASA analysis highlighting regions more exposed in the ZIVK protein than in DENV. Despite residues PHE313 is reponsible for most of the interactions with the envelope of these arboviruses, ZIKV interacted with this residue in DC-SIGN with lower energies and using more interactions with not expexted residues GLU241 and ARG386. Taken together these results suggest better competitive interaction of ZIKV with the DC-SIGN receptor, particularly in the CRD portion.
Collapse
Affiliation(s)
- Bruno Stein Barbosa Menechino
- Multidisciplinary Center for Biological Research - Laboratory for the Development of Biological Models, University of Campinas, 5 de Junho St., 230, Cidade Universitária, Campinas, SP, 13083-877, Brazil
| | - Rodrigo Bentes Kato
- General-Coordination of Public Health Laboratories, Department of Strategic Articulation in Health and Ambient, Ministry of Health, Brasília, Brazil
| | - Helena Cristina Ferreira Franz
- General-Coordination of Public Health Laboratories, Department of Strategic Articulation in Health and Ambient, Ministry of Health, Brasília, Brazil
| | - Pedro Eduardo Almeida da Silva
- General-Coordination of Public Health Laboratories, Department of Strategic Articulation in Health and Ambient, Ministry of Health, Brasília, Brazil
| | - Marcus Corat
- Multidisciplinary Center for Biological Research - Laboratory for the Development of Biological Models, University of Campinas, 5 de Junho St., 230, Cidade Universitária, Campinas, SP, 13083-877, Brazil.
| | - Daniel Ferreira de Lima Neto
- General-Coordination of Public Health Laboratories, Department of Strategic Articulation in Health and Ambient, Ministry of Health, Brasília, Brazil.
| |
Collapse
|
2
|
Benzarti E, Murray KO, Ronca SE. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses 2023; 15:v15030806. [PMID: 36992514 PMCID: PMC10053297 DOI: 10.3390/v15030806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can lead to encephalitis and death in susceptible hosts. Cytokines play a critical role in inflammation and immunity in response to WNV infection. Murine models provide evidence that some cytokines offer protection against acute WNV infection and assist with viral clearance, while others play a multifaceted role WNV neuropathogenesis and immune-mediated tissue damage. This article aims to provide an up-to-date review of cytokine expression patterns in human and experimental animal models of WNV infections. Here, we outline the interleukins, chemokines, and tumor necrosis factor superfamily ligands associated with WNV infection and pathogenesis and describe the complex roles they play in mediating both protection and pathology of the central nervous system during or after virus clearance. By understanding of the role of these cytokines during WNV neuroinvasive infection, we can develop treatment options aimed at modulating these immune molecules in order to reduce neuroinflammation and improve patient outcomes.
Collapse
Affiliation(s)
- Emna Benzarti
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy O Murray
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shannon E Ronca
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|