1
|
Gervais NC, Shapiro RS. Discovering the hidden function in fungal genomes. Nat Commun 2024; 15:8219. [PMID: 39300175 DOI: 10.1038/s41467-024-52568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
New molecular technologies have helped unveil previously unexplored facets of the genome beyond the canonical proteome, including microproteins and short ORFs, products of alternative splicing, regulatory non-coding RNAs, as well as transposable elements, cis-regulatory DNA, and other highly repetitive regions of DNA. In this Review, we highlight what is known about this 'hidden genome' within the fungal kingdom. Using well-established model systems as a contextual framework, we describe key elements of this hidden genome in diverse fungal species, and explore how these factors perform critical functions in regulating fungal metabolism, stress tolerance, and pathogenesis. Finally, we discuss new technologies that may be adapted to further characterize the hidden genome in fungi.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Kalita B, Roy A, Jayaprakash A, Arunachalam A, P.T.V L. Identification of lncRNA and weighted gene coexpression network analysis of germinating Rhizopus delemar causing mucormycosis. Mycology 2024; 14:344-357. [PMID: 38187880 PMCID: PMC10769135 DOI: 10.1080/21501203.2023.2265414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Rhizopus delemar, an opportunistic fungal pathogen, causes a highly fatal disease, mucormycosis. Spore germination is a crucial mechanism for disease pathogenesis. Thus, exploring the molecular mechanisms of fungal germination would underpin our knowledge of such transformation and, in turn, help control mucormycosis. To gain insight into the developmental process particularly associated with cell wall modification and synthesis, weighted gene co-expression network analysis (WGCNA) was performed including both coding and non-coding transcripts identified in the current study, to find out the module of interest in the germination stages. The module-trait relationship identified a particular module to have a high correlation only at the resting phase and further analysis revealed the module to be enriched for protein phosphorylation, carbohydrate metabolic process, and cellular response to stimulus. Moreover, co-expression network analysis of highly connected nodes revealed cell wall modifying enzymes, especially those involved in mannosylation, chitin-glucan crosslinking, and polygalacturonase activities co-expressing and interacting with the novel lncRNAs among which some of them predicted to be endogenous target mimic (eTM) lncRNAs. Hence, the present study provides an insight into the onset of spore germination and the information on the novel non-coding transcripts with key cell wall-related enzymes as potential targets against mucormycosis.
Collapse
Affiliation(s)
- Barsha Kalita
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Abhijeet Roy
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | | | | | - Lakshmi P.T.V
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
3
|
Vogt G. Environmental Adaptation of Genetically Uniform Organisms with the Help of Epigenetic Mechanisms-An Insightful Perspective on Ecoepigenetics. EPIGENOMES 2022; 7:1. [PMID: 36648862 PMCID: PMC9844400 DOI: 10.3390/epigenomes7010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Organisms adapt to different environments by selection of the most suitable phenotypes from the standing genetic variation or by phenotypic plasticity, the ability of single genotypes to produce different phenotypes in different environments. Because of near genetic identity, asexually reproducing populations are particularly suitable for the investigation of the potential and molecular underpinning of the latter alternative in depth. Recent analyses on the whole-genome scale of differently adapted clonal animals and plants demonstrated that epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs are among the molecular pathways supporting phenotypic plasticity and that epigenetic variation is used to stably adapt to different environments. Case studies revealed habitat-specific epigenetic fingerprints that were maintained over subsequent years pointing at the existence of epigenetic ecotypes. Environmentally induced epimutations and corresponding gene expression changes provide an ideal means for fast and directional adaptation to changing or new conditions, because they can synchronously alter phenotypes in many population members. Because microorganisms inclusive of human pathogens also exploit epigenetically mediated phenotypic variation for environmental adaptation, this phenomenon is considered a universal biological principle. The production of different phenotypes from the same DNA sequence in response to environmental cues by epigenetic mechanisms also provides a mechanistic explanation for the "general-purpose genotype hypothesis" and the "genetic paradox of invasions".
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Amatuzzi RF, Zamith-Miranda D, Munhoz da Rocha IF, Lucena ACR, de Toledo Martins S, Streit R, Staats CC, Trentin G, Almeida F, Rodrigues ML, Nosanchuk JD, Alves LR. Caspofungin Affects Extracellular Vesicle Production and Cargo in Candida auris. J Fungi (Basel) 2022; 8:990. [PMID: 36294557 PMCID: PMC9605528 DOI: 10.3390/jof8100990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Antifungal resistance has become more frequent, either due to the emergence of naturally resistant species or the development of mechanisms that lead to resistance in previously susceptible species. Among these fungal species of global threat, Candida auris stands out for commonly being highly resistant to antifungal drugs, and some isolates are pan-resistant. The rate of mortality linked to C. auris infections varies from 28% to 78%. In this study, we characterized C. auris extracellular vesicles (EVs) in the presence of caspofungin, an echinocandin, which is the recommended first line antifungal for the treatment of infections due to this emerging pathogen. Furthermore, we also analyzed the protein and RNA content of EVs generated by C. auris cultivated with or without treatment with caspofungin. We observed that caspofungin led to the increased production of EVs, and treatment also altered the type and quantity of RNA molecules and proteins enclosed in the EVs. There were distinct classes of RNAs in the EVs with ncRNAs being the most identified molecules, and tRNA-fragments (tRFs) were abundant in each of the strains studied. We also identified anti-sense RNAs, varying from 21 to 55 nt in length. The differentially abundant mRNAs detected in EVs isolated from yeast subjected to caspofungin treatment were related to translation, nucleosome core and cell wall. The differentially regulated proteins identified in the EVs produced during caspofungin treatment were consistent with the results observed with the RNAs, with the enriched terms being related to translation and cell wall. Our study adds new information on how an echinocandin can affect the EV pathway, which is associated with the yeast cell being able to evade treatment and persist in the host. The ability of C. auris to efficiently alter the composition of EVs may represent a mechanism for the fungus to mitigate the effects of antifungal agents.
Collapse
Affiliation(s)
- Rafaela F. Amatuzzi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Aline C. R. Lucena
- Laboratory for Applied Sciences and Technology in Health, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
| | - Sharon de Toledo Martins
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
| | - Rodrigo Streit
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil
| | - Charley C. Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14040-900, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14040-900, Brazil
| | - Marcio L. Rodrigues
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
- Microbiology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lysangela R. Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba 81350-010, Brazil
| |
Collapse
|
5
|
Kalem MC, Panepinto JC. Long Non-Coding RNAs in Cryptococcus neoformans: Insights Into Fungal Pathogenesis. Front Cell Infect Microbiol 2022; 12:858317. [PMID: 35372111 PMCID: PMC8968117 DOI: 10.3389/fcimb.2022.858317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are highly expressed and can modulate multiple cellular processes including transcription, splicing, translation, and many diverse signaling events. LncRNAs can act as sponges for miRNAs, RNA and DNA binding proteins, functioning as competitive endogenous RNAs. The contribution of lncRNAs to microbial pathogenesis is largely neglected in eukaryotic pathogens despite the abundance of RNA sequencing datasets encompassing conditions of stress, gene deletions and conditions that mimic the host environment. The human fungal pathogen Cryptococcus neoformans encodes 6975 (84%) protein-coding and 1359 (16%) non-protein-coding RNAs, of which 1182 (14.2%) are lncRNAs defined by a threshold of greater than 200 nucleotides in length. Here, we discuss the current state of knowledge in C. neoformans lncRNA biology. Utilizing existing RNA seq datasets, we examine trends in lncRNA expression and discuss potential implications for pathogenesis.
Collapse
Affiliation(s)
- Murat C. Kalem
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), University at Buffalo, Buffalo, NY, United States
| | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York (SUNY), University at Buffalo, Buffalo, NY, United States
| |
Collapse
|