1
|
Meevassana J, Varophas S, Prabsattru P, Kamolratanakul S, Ruangritchankul K, Kitkumthorn N. 5-Methylcytosine immunohistochemistry for predicting cutaneous melanoma prognosis. Sci Rep 2024; 14:7554. [PMID: 38555324 PMCID: PMC10981665 DOI: 10.1038/s41598-024-58011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
There is a correlation between DNA methylation and the diseased stage and poor survival. 5-methylcytosine (5-mC) is one of the epigenetic modifications of bases that researchers focus on. Staining with 5-mC immunohistochemistry was used to examine pathological samples taken from individuals diagnosed with cutaneous melanoma. Between Breslow levels 2 and 4, there was a significant difference in the H-score of 5-mC expression (p = 0.046). A significant reduction in 5-mC expression H-scores was seen in patients who were diagnosed with ulcers (p = 0.039). It was shown that patients with low 5-mC had a significantly worse overall survival rate (p = 0.027).
Collapse
Affiliation(s)
- Jiraroch Meevassana
- Center of Excellence in Burn and Wound Care, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shananya Varophas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyawan Prabsattru
- Center of Excellence in Burn and Wound Care, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, No. 6, Yothi Road, Ratchathewi District, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Canberk S, Gonçalves J, Rios E, Povoa AA, Tastekin E, Sobrinho-Simões M, Uguz A, Aydin O, Ince U, Soares P, Máximo V. The Role of 5-Hydroxymethylcytosine as a Potential Epigenetic Biomarker in a Large Series of Thyroid Neoplasms. Endocr Pathol 2024; 35:25-39. [PMID: 38285158 PMCID: PMC10944390 DOI: 10.1007/s12022-024-09800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Cytosine modifications at the 5-carbon position play a critical role in gene expression regulation and have been implicated in cancer development. 5-Hydroxymethylcytosine (5hmC), arising from 5-methylcytosine (5-mC) oxidation, has shown promise as a potential malignancy marker due to its depletion in various human cancers. However, its significance in thyroid tumors remains underexplored, primarily due to limited data. In our study, we evaluated 5hmC expression levels by immunohistochemistry in a cohort of 318 thyroid tumors. Our analysis revealed significant correlations between 5hmC staining extension scores and nodule size, vascular invasion, and oncocytic morphology. Nuclear 5hmC staining intensity demonstrated associations with focality, capsule status, extrathyroidal extension, vascular invasion, and oncocytic morphology. Follicular/oncocytic adenomas exhibited higher 5hmC expression than uncertain malignant potential (UMP) or noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP), as well as malignant neoplasms, including papillary thyroid carcinomas (PTCs), oncocytic carcinomas (OCAs), follicular thyroid carcinomas (FTCs), and invasive encapsulated follicular variants of PTC (IEFV-PTC). TERT promoter mutation cases showed notably lower values for the 5hmC expression, while RAS (H, N, or K) mutations, particularly HRAS mutations, were associated with higher 5hmC expression. Additionally, we identified, for the first time, a significant link between 5hmC expression and oncocytic morphology. However, despite the merits of these discoveries, we acknowledge that 5hmC currently cannot segregate minimally invasive from widely invasive tumors, although 5hmC levels were lower in wi-FPTCs. Further research is needed to explore the potential clinical implications of 5hmC in thyroid tumors.
Collapse
Affiliation(s)
- Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - João Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Elisabete Rios
- Department of Pathology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Antónia A Povoa
- Department of General Surgery, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E), 4434-502, Vila Nova de Gaia, Portugal
| | - Ebru Tastekin
- Medical Faculty, Department of Pathology, Trakya University, Edirne, Turkey
| | - Manuel Sobrinho-Simões
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Aysun Uguz
- Medical Faculty, Department of Pathology, Çukurova University, Adana, Turkey
| | - Ozlem Aydin
- Department of Pathology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Umit Ince
- Department of Pathology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
- Department of Pathology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
3
|
Parker AC, Quinteros BI, Piccolo SR. The DNA methylation landscape of five pediatric-tumor types. PeerJ 2022; 10:e13516. [PMID: 35707123 PMCID: PMC9190670 DOI: 10.7717/peerj.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/09/2022] [Indexed: 01/17/2023] Open
Abstract
Fewer DNA mutations have been identified in pediatric tumors than in adult tumors, suggesting that alternative tumorigenic mechanisms, including aberrant DNA methylation, may play a prominent role. In one epigenetic process of regulating gene expression, methyl groups are attached at the 5-carbon of the cytosine ring, leading to 5-methylcytosine (5mC). In somatic cells, 5mC occurs mostly in CpG islands, which are often within promoter regions. In Wilms tumors and acute myeloid leukemias, increased levels of epigenetic silencing have been associated with worse patient outcomes. However, to date, researchers have studied methylation primarily in adult tumors and for specific genes-but not on a pan-pediatric cancer scale. We addressed these gaps first by aggregating methylation data from 309 noncancerous samples, establishing baseline expectations for each probe and gene. Even though these samples represent diverse, noncancerous tissue types and population ancestral groups, methylation levels were consistent for most genes. Second, we compared tumor methylation levels against the baseline values for 489 pediatric tumors representing five cancer types: Wilms tumors, clear cell sarcomas of the kidney, rhabdoid tumors, neuroblastomas, and osteosarcomas. Tumor hypomethylation was more common than hypermethylation, and as many as 41.7% of genes were hypomethylated in a given tumor, compared to a maximum of 34.2% for hypermethylated genes. However, in known oncogenes, hypermethylation was more than twice as common as in other genes. We identified 139 probes (31 genes) that were differentially methylated between at least one tumor type and baseline levels, and 32 genes that were differentially methylated across the pediatric tumor types. We evaluated whether genomic events and aberrant methylation were mutually exclusive but did not find evidence of this phenomenon.
Collapse
|
4
|
Feng J, Zhao D, Lv F, Yuan Z. Epigenetic Inheritance From Normal Origin Cells Can Determine the Aggressive Biology of Tumor-Initiating Cells and Tumor Heterogeneity. Cancer Control 2022; 29:10732748221078160. [PMID: 35213254 PMCID: PMC8891845 DOI: 10.1177/10732748221078160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The acquisition of genetic- and epigenetic-abnormalities during transformation has been recognized as the two fundamental factors that lead to tumorigenesis and determine the aggressive biology of tumor cells. However, there is a regularity that tumors derived from less-differentiated normal origin cells (NOCs) usually have a higher risk of vascular involvement, lymphatic and distant metastasis, which can be observed in both lymphohematopoietic malignancies and somatic cancers. Obviously, the hypothesis of genetic- and epigenetic-abnormalities is not sufficient to explain how the linear relationship between the cellular origin and the biological behavior of tumors is formed, because the cell origin of tumor is an independent factor related to tumor biology. In a given system, tumors can originate from multiple cell types, and tumor-initiating cells (TICs) can be mapped to different differentiation hierarchies of normal stem cells, suggesting that the heterogeneity of the origin of TICs is not completely chaotic. TIC’s epigenome includes not only genetic- and epigenetic-abnormalities, but also established epigenetic status of genes inherited from NOCs. In reviewing previous studies, we found much evidence supporting that the status of many tumor-related “epigenetic abnormalities” in TICs is consistent with that of the corresponding NOC of the same differentiation hierarchy, suggesting that they may not be true epigenetic abnormalities. So, we speculate that the established statuses of genes that control NOC’s migration, adhesion and colonization capabilities, cell-cycle quiescence, expression of drug transporters, induction of mesenchymal formation, overexpression of telomerase, and preference for glycolysis can be inherited to TICs through epigenetic memory and be manifested as their aggressive biology. TICs of different origins can maintain different degrees of innate stemness from NOC, which may explain why malignancies with stem cell phenotypes are usually more aggressive.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Dawei Zhao
- Medical Imaging Department, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Fudong Lv
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Zhongyu Yuan
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| |
Collapse
|
5
|
Emerging Biomarkers in Thyroid Practice and Research. Cancers (Basel) 2021; 14:cancers14010204. [PMID: 35008368 PMCID: PMC8744846 DOI: 10.3390/cancers14010204] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Tumor biomarkers are molecules at genetic or protein level, or certain evaluable characteristics. These help in perfecting patient management. Over the past decade, advanced and more sensitive techniques have led to the identification of many new biomarkers in the field of oncology. A knowledge of the recent developments is essential for their application to clinical practice, and furthering research. This review provides a comprehensive account of such various markers identified in thyroid carcinoma, the most common endocrine malignancy. While some of these have been brought into use in routine patient management, others are novel and need more research before clinical application. Abstract Thyroid cancer is the most common endocrine malignancy. Recent developments in molecular biological techniques have led to a better understanding of the pathogenesis and clinical behavior of thyroid neoplasms. This has culminated in the updating of thyroid tumor classification, including the re-categorization of existing and introduction of new entities. In this review, we discuss various molecular biomarkers possessing diagnostic, prognostic, predictive and therapeutic roles in thyroid cancer. A comprehensive account of epigenetic dysregulation, including DNA methylation, the function of various microRNAs and long non-coding RNAs, germline mutations determining familial occurrence of medullary and non-medullary thyroid carcinoma, and single nucleotide polymorphisms predisposed to thyroid tumorigenesis has been provided. In addition to novel immunohistochemical markers, including those for neuroendocrine differentiation, and next-generation immunohistochemistry (BRAF V600E, RAS, TRK, and ALK), the relevance of well-established markers, such as Ki-67, in current clinical practice has also been discussed. A tumor microenvironment (PD-L1, CD markers) and its influence in predicting responses to immunotherapy in thyroid cancer and the expanding arena of techniques, including liquid biopsy based on circulating nucleic acids and plasma-derived exosomes as a non-invasive technique for patient management, are also summarized.
Collapse
|
6
|
MCM-2, Ki-67, and EGFR downregulated expression levels in advanced stage laryngeal squamous cell carcinoma. Sci Rep 2021; 11:14607. [PMID: 34272446 PMCID: PMC8285532 DOI: 10.1038/s41598-021-94077-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022] Open
Abstract
We present the conceptual study investigated the capacity of minichromosome maintenance-2 (MCM-2), Ki-67, and epidermal growth factor receptor (EGFR) to assess the severity and progression of laryngeal squamous cell carcinoma (LSCC) disease and to study the correlations among these markers. A total of 30 patients with LSCC with immunohistochemistry (IHC) staining for MCM-2, Ki-67 and EGFR were examined. Mean expression levels of the three markers were evaluated for comparing between early and advanced stages of LSCC. The mean MCM-2, Ki-67, and EGFR expression levels were significantly decreased in advanced-stage compared with early-stage LSCC. Pearson correlation analysis showed a statistically significant correlation between the MCM-2 and Ki-67. Regarding subgroup analyses, MCM-2, Ki-67, and EGFR showed significant differences between early- and advanced-stage LSCC with non-recurrence, while for the recurrent subgroup LSCC, only MCM-2 revealed a significant difference between early- and advanced-stage LSCC. Altogether, these results support the role for downregulation of MCM-2, Ki-67 and EGFR in advanced-stage LSCC and correlation of MCM-2 and Ki-67 expressions that would be a promising strategy to predict prognosis of LSCC including severity and progression. We contextualize our findings and advocate the position of the biological markers, especially MCM-2, as an emerging evaluation tool for LSCC disease.
Collapse
|
7
|
Canberk S, Lima AR, Pinto M, Máximo V. Translational Potential of Epigenetic-Based Markers on Fine-Needle Aspiration Thyroid Specimens. Front Med (Lausanne) 2021; 8:640460. [PMID: 33834032 PMCID: PMC8021713 DOI: 10.3389/fmed.2021.640460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
The awareness of epigenetic alterations leading to neoplasia attracted the attention of researchers toward its potential use in the management of cancer, from diagnosis to prognosis and prediction of response to therapies. Our group has focused its attention on the epigenomics of thyroid neoplasms. Although most of the epigenetic studies have been applied on histological samples, the fact is that cytology, through fine-needle aspiration, is a primary diagnostic method for many pathologies, of which thyroid nodules are one of the most paradigmatic examples. This has led to an increasing literature report of epigenetic studies using these biological samples over the past decade. In this review, our group aimed to document recent research of epigenetic alterations and its associated assessment techniques, based on cytology material. Our review covers the main epigenetic categories—DNA methylation, histone modification, and RNA-silencing—whose evidence in thyroid cytology samples may represent solid soil for future prospectively designed studies aiming at validating patterns of epigenetic alterations and their potential use in the clinical management of thyroid neoplasms.
Collapse
Affiliation(s)
- Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana Rita Lima
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Mafalda Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| |
Collapse
|
8
|
Iancu IV, Botezatu A, Plesa A, Huica I, Fudulu A, Albulescu A, Bostan M, Mihaila M, Grancea C, Manda DA, Dobrescu R, Vladoiu SV, Anton G, Badiu CV. Alterations of regulatory factors and DNA methylation pattern in thyroid cancer. Cancer Biomark 2021; 28:255-268. [PMID: 32390600 DOI: 10.3233/cbm-190871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE DNA methylation plays an important role in thyroid oncogenesis. The aim of this study was to investigate the connection between global and local DNA methylation status and to establish the levels of important DNA methylation regulators (TET family and DNMT1) in thyroid tumours: follicular adenoma-FA, papillary thyroid carcinoma-PTC (classic papillary thyroid carcinoma-cPTC and papillary thyroid carcinoma follicular variant fvPTC). METHODS Global DNA methylation profile in thyroid tumours tissue (41 paired samples) was assessed by 5-methylcytosine and 5-hydroxymethylcytosine levels evaluation (ELISA), along with TETs and DNMT1 genes expression quantification. Also, it was investigated for the first time TET1 and TET2 promoter's methylation in thyroid tumours. BRAF V600E mutation and RET/PTC translocation testing were performed on all investigated samples. In vitro studies upon DNA methylation in K1 thyroid cancer cells were performed with demethylating agents (5-AzaC and vitamin C). RESULTS TET1 and TET2 displayed a significantly reduced gene expression level in PTC, while DNMT1 gene presented a high level of expression. PTC samples presented increased levels of 5-methylcytosine and low levels of 5-hydroxymethylcytosine. 5-methylcytosine levels were associated with TET1/TET2 expression levels. TET1 gene expression was significantly lower in patients positive for BRAF mutation and with RET/PTC rearrangement. TET2 gene was found hypermethylated in thyroid carcinoma patients overall, especially in PTC-follicular variant samples (p= 0.0002), where TET2 gene expression levels were significantly reduced (p= 0.0031). Furthermore, the data indicate for all thyroid cancer patients a good sensitivity (81.08%) and specificity (86.49%) regarding the use of TET1 (p< 0.0001), and TET2 (71.79%, 64.10%, p= 0.0001) hypermethylation as biomarkers for thyroid oncogenesis. CONCLUSIONS These results suggest that TET1/TET2 gene expression and methylation may serve as potential diagnostic tools for thyroid neoplasia. Our study showed that the methylation of TET1 increases in malignant thyroid tumours. fvPTC patients presented lower methylation levels compared to cPTC and could be a discriminatory factor between two cancer types and benign lesions. TET2 is a poorer discriminator between FA and fvPTC, but it can be useful for cPTC identification. K1-cells treated with demethylating agents showed a demethylation effect, especially upon TET2 gene. The cumulative effect of L-AA and 5-AzaC proved to have a potent combined demethylating effect on genes promoter's activation and could open new perspectives for thyroid cancer therapy.
Collapse
Affiliation(s)
- Iulia V Iancu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Anca Botezatu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Adriana Plesa
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Irina Huica
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Alina Fudulu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Adrian Albulescu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,National Institute for Chemical Pharmaceutical Research and Development, Bucharest, Romania
| | - Marinela Bostan
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Mirela Mihaila
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Camelia Grancea
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Dana Alice Manda
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Ruxandra Dobrescu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Susana Vilma Vladoiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Gabriela Anton
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Corin Virgil Badiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| |
Collapse
|
9
|
Zafon C, Gil J, Pérez-González B, Jordà M. DNA methylation in thyroid cancer. Endocr Relat Cancer 2019; 26:R415-R439. [PMID: 31035251 DOI: 10.1530/erc-19-0093] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
In recent years, cancer genomics has provided new insights into genetic alterations and signaling pathways involved in thyroid cancer. However, the picture of the molecular landscape is not yet complete. DNA methylation, the most widely studied epigenetic mechanism, is altered in thyroid cancer. Recent technological advances have allowed the identification of novel differentially methylated regions, methylation signatures and potential biomarkers. However, despite recent progress in cataloging methylation alterations in thyroid cancer, many questions remain unanswered. The aim of this review is to comprehensively examine the current knowledge on DNA methylation in thyroid cancer and discuss its potential clinical applications. After providing a general overview of DNA methylation and its dysregulation in cancer, we carefully describe the aberrant methylation changes in thyroid cancer and relate them to methylation patterns, global hypomethylation and gene-specific alterations. We hope this review helps to accelerate the use of the diagnostic, prognostic and therapeutic potential of DNA methylation for the benefit of thyroid cancer patients.
Collapse
Affiliation(s)
- Carles Zafon
- Diabetes and Metabolism Research Unit (VHIR) and Department of Endocrinology, University Hospital Vall d'Hebron and Autonomous University of Barcelona, Barcelona, Spain
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
| | - Joan Gil
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Beatriz Pérez-González
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Mireia Jordà
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| |
Collapse
|
10
|
Klein Hesselink EN, Zafon C, Villalmanzo N, Iglesias C, van Hemel BM, Klein Hesselink MS, Montero-Conde C, Buj R, Mauricio D, Peinado MA, Puig-Domingo M, Riesco-Eizaguirre G, Reverter JL, Robledo M, Links TP, Jordà M. Increased Global DNA Hypomethylation in Distant Metastatic and Dedifferentiated Thyroid Cancer. J Clin Endocrinol Metab 2018; 103:397-406. [PMID: 29165662 DOI: 10.1210/jc.2017-01613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Global DNA hypomethylation is a major event for the development and progression of cancer, although the significance in thyroid cancer remains unclear. Therefore, we aimed to investigate its role in thyroid cancer progression and its potential as a prognostic marker. METHODS Global hypomethylation of Alu repeats was used as a surrogate marker for DNA global hypomethylation, and was assessed using the Quantification of Unmethylated Alu technique. Mutations in BRAF and RAS were determined by Sanger sequencing. RESULTS Ninety primary thyroid tumors were included [28 low-risk differentiated thyroid cancer (DTC), 13 pediatric DTC, 33 distant metastatic DTC, 7 poorly differentiated thyroid cancer (PDTC), and 9 anaplastic thyroid cancer (ATC)], as well as 24 distant metastases and 20 normal thyroid tissues. An increasing hypomethylation was found for distant metastatic DTC [median, 4.0; interquartile range (IQR), 3.1 to 6.2] and PDTC/ATC (median, 9.3; IQR, 7.0 to 12.1) as compared with normal thyroid tissue (median, 2.75; IQR, 2.30 to 3.15), whereas low-risk and pediatric DTC were not affected by hypomethylation. Alu hypomethylation was similar between distant metastases and matched primary tumors. Within distant metastatic DTC, Alu hypomethylation was increased in BRAF vs RAS mutated tumors. Kaplan-Meier and Cox regression analyses showed that thyroid cancer-related and all-cause mortality were associated with tumor hypomethylation, but this association was lost after adjustment for thyroid cancer risk category. CONCLUSION Distant metastatic DTC, PDTC, and ATC were increasingly affected by global Alu hypomethylation, suggesting that this epigenetic entity may be involved in thyroid cancer progression and dedifferentiation.
Collapse
Affiliation(s)
- Esther N Klein Hesselink
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carles Zafon
- Diabetes and Metabolism Research Unit, Vall d'Hebron University Hospital, Barcelona, Spain
- Department of Endocrinology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Diseases, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
- Consortium for the Study of Thyroid Cancer, CECaT, Barcelona, Spain
| | - Núria Villalmanzo
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
| | - Carmela Iglesias
- Consortium for the Study of Thyroid Cancer, CECaT, Barcelona, Spain
- Department of Pathology, Vall D'Hebron University Hospital, Barcelona, Spain
| | - Bettien M van Hemel
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mariëlle S Klein Hesselink
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center, Madrid, Spain
| | - Raquel Buj
- Consortium for the Study of Thyroid Cancer, CECaT, Barcelona, Spain
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
| | - Dídac Mauricio
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Diseases, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
- Consortium for the Study of Thyroid Cancer, CECaT, Barcelona, Spain
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Miguel A Peinado
- Consortium for the Study of Thyroid Cancer, CECaT, Barcelona, Spain
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
| | - Manel Puig-Domingo
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Diseases, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
- Consortium for the Study of Thyroid Cancer, CECaT, Barcelona, Spain
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
- Biomedical Research Networking Center in Rare Diseases, CIBERER, Institute of Health Carlos III, Madrid, Spain
| | - Garcilaso Riesco-Eizaguirre
- Department of Endocrinology and Nutrition, Hospital Universitario de Móstoles, Madrid, Spain
- Biomedical Research Networking Center in Oncology, CIBERONC, Institute of Health Carlos III, Madrid, Spain
| | - Jordi L Reverter
- Consortium for the Study of Thyroid Cancer, CECaT, Barcelona, Spain
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center, Madrid, Spain
- Biomedical Research Networking Center in Rare Diseases, CIBERER, Institute of Health Carlos III, Madrid, Spain
| | - Thera P Links
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mireia Jordà
- Consortium for the Study of Thyroid Cancer, CECaT, Barcelona, Spain
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
| |
Collapse
|
11
|
[Fine-needle aspiration (FNA) of the thyroid gland : Analysis of discrepancies between cytological and histological diagnoses]. DER PATHOLOGE 2017; 37:465-72. [PMID: 27350133 DOI: 10.1007/s00292-016-0172-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Diagnostic problems of thyroid cytology are frequently discussed, but relevance and causes of discrepant cytological and histological diagnoses are rarely studied in detail. OBJECTIVES Investigation of causes and relevance of discrepant diagnoses. MATERIALS AND METHOD The analysis includes 297 patients who had thyroid resection after prior fine needle aspiration (FNA) and is based on the cytological and histological reports. In special cases, cytological and histological specimens were re-examined. RESULTS Malignant tumors were found in 45 patients (15.1 %). In 5 patients the cytological diagnosis was "false negative". Three of these 5 tumors were papillary carcinomas (PTC) of ≤10 mm, one an obviously nonmalignant papillary proliferation of the thyroidal epithelium and one a malignant lymphoma complicating autoimmune thyreoiditis (AIT). In 11 of the 35 patients with a FNA diagnosis "suspicious of malignancy" or "malignant," 1 AIT, 4 goiter nodules, and 6 adenomas were diagnosed histologically. However, since distinct nuclear atypia was found in three of five false positive diagnoses, there still remains doubt in their benignity. CONCLUSIONS Carcinomas of ≤10 mm incidentally detected in the resected thyroid tissue may not be relevant to the patient and do not reduce the high negative predictive value of FNA. The final diagnosis on the resected tissue should include the cytological findings. Discrepant findings should be commented in the report to the clinician.
Collapse
|