1
|
Wu S, Liu Y, Zeng Y, Ruan X, Tao M, Lin W, Liu C, Chen H, Liu H, Wu Y. Prognostic value of EMT-related genes and immune cell infiltration in thyroid carcinoma. Front Immunol 2024; 15:1463258. [PMID: 39559351 PMCID: PMC11570584 DOI: 10.3389/fimmu.2024.1463258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Background The Epithelial-Mesenchymal Transition (EMT) is a very important process involved in cancer invasion and metastasis. Additionally, the Cathepsin K (CTSK) gene is closely related to the degradation of the extracellular matrix, which is a critical component of the EMT. The purpose of this study was to determine the relationships between EMT-related genes and immune cell infiltration and their prognostic value in Thyroid carcinoma (THCA). The effect of the CTSK gene on the aggressive biological features of THCA was assessed. Methods Within the framework of the present study, the THCA cohort was analyzed in detail based on data obtained from The TCGA database in the context of the EMT. The TCGA-THCA cohort was then divided into two groups, namely, high- and low-risk groups, based on the calculated EMT scores. Finally, based on the findings from the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm, LASSO regression analysis, and Kaplan-Meier plotter, we selected five genes (CTSK, C3ORF80, FBLN2, PRELP and SRPX2) associated with patient prognosis. Furthermore, this study examined the presence of various immune cells within the THCA samples using three distinct algorithms, namely ssGSEA, xCell, and MCPcounter. Additional studies have been conducted to establish the roles of CTSK in THCA cell proliferation and migration using various assays, such as CCK8, colony formation, EdU proliferation, Transwell migration and wound healing assays. Additionally, the involvement of CTSK in the regulation of various EMT-related markers was confirmed using Western blot analysis. Results Based on EMT scores, TCGA-THCA patients were further divided into two groups, and the study revealed that patients in the high-risk group had a worse prognosis than those in the low-risk group. Among the five genes linked to the prognostic value of EMT (CTSK, C3ORF80, FBLN2, PRELP, and SRPX2), CTSK exhibited notably elevated expression in the high-risk cohort. This group also exhibited pronounced immune cell infiltration, with a marked correlation observed between CTSK expression and the levels of macrophages, MDSCs, and various T-cell subtypes. Furthermore, in vitro studies demonstrated that reducing CTSK expression led to significant reductions in THCA cell viability; clonogenic, proliferative, motility and migratory capacities; and the expression of key EMT-related proteins, including N-cadherin, vimentin, slug, and snail. Conclusion Our results suggest that the expression of CTSK, a gene associated with the EMT, may be associated with THCA onset and progression and thus may serve as a promising prognostic biomarker.
Collapse
Affiliation(s)
- Shuping Wu
- Department of Head and Neck Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yu Liu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yu Zeng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mei Tao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wenrong Lin
- Department of Ultrasound, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Chang Liu
- Department of Head and Neck Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Hongbin Chen
- Department of Head and Neck Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Hui Liu
- Department of Head and Neck Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yu Wu
- Department of Head and Neck Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Armos R, Bojtor B, Papp M, Illyes I, Lengyel B, Kiss A, Szili B, Tobias B, Balla B, Piko H, Illes A, Putz Z, Kiss A, Toth E, Takacs I, Kosa JP, Lakatos P. MicroRNA Profiling in Papillary Thyroid Cancer. Int J Mol Sci 2024; 25:9362. [PMID: 39273308 PMCID: PMC11395536 DOI: 10.3390/ijms25179362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Genetic alterations are well known to be related to the pathogenesis and prognosis of papillary thyroid carcinoma (PTC). Some miRNA expression dysregulations have previously been described in the context of cancer development including thyroid carcinoma. In our study, we performed original molecular diagnostics on tissue samples related to our own patients. We aimed to identify all dysregulated miRNAs in potential association with PTC development via sequencing much higher numbers of control-matched PTC tissue samples and analyzing a wider variety of miRNA types than previous studies. We analyzed the expression levels of 2656 different human miRNAs in the context of 236 thyroid tissue samples (118 tumor and control pairs) related to anonymized PTC cases. Also, KEGG pathway enrichment analysis and GO framework analysis were used to establish the links between miRNA dysregulation and certain biological processes, pathways of signaling, molecular functions, and cellular components. A total of 30 significant differential miRNA expressions with at least ±1 log2 fold change were found related to PTC including, e.g., miR-551b, miR-146b, miR-221, miR-222, and miR-375, among others, being highly upregulated, as well as miR-873 and miR-204 being downregulated. In addition, we identified miRNA patterns in vast databases (KEGG and GO) closely similar to that of PTC including, e.g., miRNA patterns of prostate cancer, HTLV infection, HIF-1 signaling, cellular responses to growth factor stimulus and organic substance, and negative regulation of gene expression. We also found 352 potential associations between certain miRNA expressions and states of clinicopathological variables. Our findings-supported by the largest case number of original matched-control PTC-miRNA relation research-suggest a distinct miRNA expression profile in PTC that could contribute to a deeper understanding of the underlying molecular mechanisms promoting the pathogenesis of the disease. Moreover, significant miRNA expression deviations and their signaling pathways in PTC presented in our study may serve as potential biomarkers for PTC diagnosis and prognosis or even therapeutic targets in the future.
Collapse
Affiliation(s)
- Richard Armos
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary
| | - Bence Bojtor
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Marton Papp
- Centre for Bioinformatics, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Ildiko Illyes
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Balazs Lengyel
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Andras Kiss
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Balazs Szili
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Balint Tobias
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary
| | - Bernadett Balla
- SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary
| | - Henriett Piko
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Anett Illes
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Zsuzsanna Putz
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary
| | - Andras Kiss
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Erika Toth
- Department of Surgical and Molecular Pathology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Istvan Takacs
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Janos P Kosa
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary
| | - Peter Lakatos
- Department of Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- SE HUN-REN-TKI ENDOMOLPAT Research Group, 1085 Budapest, Hungary
| |
Collapse
|
3
|
Gu Y, Zhang X, Li Y, Shi J, Cui H, Ren Y, Liu S, Qiao Y, Cheng Y, Liu Y. MiR-204-5p-targeted AP1S2 is necessary for papillary thyroid carcinoma. Mol Cell Endocrinol 2023; 574:111993. [PMID: 37328093 DOI: 10.1016/j.mce.2023.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
MiR-204-5p, as a tumour suppressor, has been found in several cancers. However, whether miR-204-5p is involved in papillary thyroid carcinoma (PTC) has not yet been investigated. In this study, we identified miR-204-5p as a down-regulated miRNA in PTC tissues, unveiling that the levels of miR-204-5p in serum of patients with PTC were linked to PTC risk, and that the expression in patients concomitant with both PTC and benign lesions was much lower than that in patients only with PTC. Furthermore, we documented that miR-204-5p inhibited proliferation, migration, invasion, and cell cycle progression and triggered apoptosis of PTC cells via cell biology experiments. Finally, we identified that AP1S2 was a target of miR-204-5p using RNA-seq, iTRAQ, and bioinformatics prediction. Overall, miR-204-5p functions as a suppressor for PTC pathogenesis via the miR-204-5p/AP1S2 axis.
Collapse
Affiliation(s)
- Yulu Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China; National Health Commission Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, 999078, PR China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Heran Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Yaxuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Sainan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Yichun Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Yi Cheng
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, 130021, PR China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
4
|
Powell BH, Turchinovich A, Wang Y, Gololobova O, Buschmann D, Zeiger MA, Umbricht CB, Witwer KW. miR-210 Expression Is Strongly Hypoxia-Induced in Anaplastic Thyroid Cancer Cell Lines and Is Associated with Extracellular Vesicles and Argonaute-2. Int J Mol Sci 2023; 24:4507. [PMID: 36901936 PMCID: PMC10002857 DOI: 10.3390/ijms24054507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Hypoxia, or low oxygen tension, is frequently found in highly proliferative solid tumors such as anaplastic thyroid carcinoma (ATC) and is believed to promote resistance to chemotherapy and radiation. Identifying hypoxic cells for targeted therapy may thus be an effective approach to treating aggressive cancers. Here, we explore the potential of the well-known hypoxia-responsive microRNA (miRNA) miR-210-3p as a cellular and extracellular biological marker of hypoxia. We compare miRNA expression across several ATC and papillary thyroid cancer (PTC) cell lines. In the ATC cell line SW1736, miR-210-3p expression levels indicate hypoxia during exposure to low oxygen conditions (2% O2). Furthermore, when released by SW1736 cells into the extracellular space, miR-210-3p is associated with RNA carriers such as extracellular vesicles (EVs) and Argonaute-2 (AGO2), making it a potential extracellular marker for hypoxia.
Collapse
Affiliation(s)
- Bonita H. Powell
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrey Turchinovich
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Biolabs GmbH, 69120 Heidelberg, Germany
| | - Yongchun Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dominik Buschmann
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martha A. Zeiger
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Christopher B. Umbricht
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Ma W, Xu L, Sun X, Qi Y, Chen S, Li D, Jin Y, Chen N, Zhu X, Luo J, Li C, Zhao K, Zheng Y, Yu D. Using a human bronchial epithelial cell-based malignant transformation model to explore the function of hsa-miR-200 family in the progress of PM 2.5-induced lung cancer development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120981. [PMID: 36587786 DOI: 10.1016/j.envpol.2022.120981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Numerous studies have revealed that ambient long-term exposure to fine particulate matter (PM2.5) is significantly related to the development of lung cancer, but the molecular mechanisms of PM2.5 exposure-induced lung cancer remains unknown. As an important epigenetic regulator, microRNAs (miRNAs) play vital roles in responding to environment exposure and various diseases including lung cancer development. Here we constructed a PM2.5-induced malignant transformed cell model and found that miR-200 family, especially miR-200a-3p, was involved in the process of PM2.5 induced lung cancer. Further investigation of the function of miR-200 family (miR-200a-3p as a representative revealed that miR-200a-3p promoted cell migration by directly suppressing TNS3 expression. These results suggested that ambient PM2.5 exposure may increase the expression of miR-200 family and then promote the proliferation and migration of lung cancer cells. Our study provided novel model and insights into the molecular mechanism of ambient PM2.5 exposure-induced lung cancer.
Collapse
Affiliation(s)
- Wanli Ma
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Qi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Macerola E, Poma AM, Vignali P, Proietti A, Torregrossa L, Ugolini C, Basolo A, Matrone A, Elisei R, Santini F, Basolo F. MicroRNA expression profiling of RAS-mutant thyroid tumors with follicular architecture: microRNA signatures to discriminate benign from malignant lesions. J Endocrinol Invest 2023:10.1007/s40618-023-02023-5. [PMID: 36749451 DOI: 10.1007/s40618-023-02023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE RAS mutations represent common driver alterations in thyroid cancer. They can be found in benign, low-risk and malignant thyroid tumors with follicular architecture, which are often diagnosed as indeterminate nodules on preoperative cytology. Therefore, the detection of RAS mutations in preoperative setting has a suboptimal predictive value for malignancy. In this study, we investigated differentially expressed microRNA (miRNA) in benign and malignant thyroid tumors with follicular architecture carrying mutations in RAS genes. METHODS Total RNA was purified from 60 RAS-mutant follicular-patterned thyroid tumors, including follicular adenoma (FA), noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP), papillary and follicular thyroid carcinoma cases (PTC, FTC); 22 RAS-negative FAs were used as controls. The expression analysis of 798 miRNAs was performed by digital counting (nCounter nanoString platform). RESULTS Comparing RAS-mutant and RAS-negative FAs, 12 miRNAs showed significant deregulation, which was likely related to the oncogenic effects of RAS mutations. Twenty-two miRNAs were differentially expressed in RAS-mutant benign versus malignant tumors. Considering the tumor type, 24 miRNAs were deregulated in PTC, 19 in NIFTP, and seven in FTC and compared to FA group; among these, miR-146b-5p, miR-144-3p, and miR-451a showed consistent deregulation in all the comparisons with the highest fold change. CONCLUSIONS The miRNA expression analysis of follicular-patterned thyroid tumors demonstrated that RAS mutations influences miRNA profile in benign tumors. In addition, several miRNAs showed a histotype-specific deregulation and could discriminate between RAS-mutant benign and RAS-mutant malignant thyroid lesions, thus deserving further investigation as potential diagnostic markers.
Collapse
Affiliation(s)
- E Macerola
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - A M Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - P Vignali
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - A Proietti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - L Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - C Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - A Basolo
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - A Matrone
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - R Elisei
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - F Santini
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - F Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, via Savi, 10, 56126, Pisa, Italy.
| |
Collapse
|
7
|
Lin J, Qiu Y, Zheng X, Dai Y, Xu T. The miR-199a-5p/PD-L1 axis regulates cell proliferation, migration and invasion in follicular thyroid carcinoma. BMC Cancer 2022; 22:756. [PMID: 35818041 PMCID: PMC9275143 DOI: 10.1186/s12885-022-09838-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Background Follicular thyroid carcinoma (FTC) is the second most common cancer of the thyroid and easily develops into distant metastasis. PD-L1 is known to be associated with the carcinogenesis and progression of thyroid carcinoma. Our study aimed to investigate the biological functions of PD-L1 and to identify miRNAs that were responsible for modulating the activity of PD-L1. Methods A total of 72 patients with FTC at The Second Affiliated Hospital of Fujian Medical University were enrolled in this retrospective study. Immunohistochemical (IHC) assay was used to measure PD-L1 expression in FTC. The association between PD-L1 expression and clinicopathologic characteristics was evaluated. Bioinformatics analysis, RT–qPCR and western blotting were used to examine the relationships between miR-199a-5p, PD-L1 and Claudin-1. Cell proliferation, migration and invasion were evaluated by using CCK8 and Transwell migration and invasion assays. Target prediction and luciferase reporter assays were performed to verify the binding between miR-199a-5p and PD-L1. Rescue assay was performed to confirm whether PD-L1 downregulation abolished the inhibitory effect of miR-199a-5p. Results Among 72 pairs of tumor and normal specimens, the proportion of PD-L1 positive samples was higher in FTC tissues than in normal tissues. The results of ESTIMATE and CIBERSORT illustrated that there was a positive correlation between PD-L1 expression and immune infiltration, especially regulatory T cells and M1 macrophages. Prediction of immunotherapy revealed that patients with high PD-L1 expression might benefit from immune checkpoint inhibitors. Transwell migration and invasion assays showed that PD-L1 downregulation in FTC cells could significantly inhibit cell migration and invasion. The bioinformatics analysis and luciferase activity results indicated that PD-L1 was a potential target of miR-199a-5p. Knockdown of PD-L1 reversed the miR-199a-5p inhibitor mediated promotion effect. In addition, we found that PD-L1 expression was positively correlated with Claudin-1 expression and that miR-199a-5p affected the progression of FTC cells through the negative regulation of PD-L1 and Claudin-1. Conclusions Our study revealed that PD-L1 expression was elevated in FTC and was closely associated with tumor aggressiveness and progression. MiR-199a-5p has a functional role in the progression and metastasis of FTC by regulating PD-L1 and Claudin-1 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09838-0.
Collapse
Affiliation(s)
- Jianguang Lin
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yanru Qiu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xueqin Zheng
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yijun Dai
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| | - Tianwen Xu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
8
|
De Martino M, Esposito F, Capone M, Pallante P, Fusco A. Noncoding RNAs in Thyroid-Follicular-Cell-Derived Carcinomas. Cancers (Basel) 2022; 14:cancers14133079. [PMID: 35804851 PMCID: PMC9264824 DOI: 10.3390/cancers14133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Thyroid tumors represent the most common neoplastic pathology of the endocrine system. Mutations occurring in oncogenes and tumor suppressor genes are responsible for thyroid carcinogenesis; however, the complete mutational landscape characterizing these neoplasias has not been completely unveiled. It has been established that only the 2% of the human genome codes for proteins, suggesting that the vast majority of the genome has regulatory capabilities, which, if altered, could account for the onset of cancer. Hence, many scientific efforts are currently focused on the characterization of the heterogeneous class of noncoding RNAs, which represent an abundant part of the transcribed noncoding genome. In this review, we mainly focus on the involvement of microRNAs, long noncoding RNAs, and pseudogenes in thyroid cancer. The determination of the diagnosis, prognosis, and treatment of thyroid cancers based on the evaluation of the noncoding RNA network could allow the implementation of a more personalized approach to fighting these pathologies. Abstract Among the thyroid neoplasias originating from follicular cells, we can include well-differentiated carcinomas, papillary (PTC) and follicular (FTC) thyroid carcinomas, and the undifferentiated anaplastic (ATC) carcinomas. Several mutations in oncogenes and tumor suppressor genes have already been observed in these malignancies; however, we are still far from the comprehension of their full regulation-altered landscape. Even if only 2% of the human genome has the ability to code for proteins, most of the noncoding genome is transcribed, constituting the heterogeneous class of noncoding RNAs (ncRNAs), whose alterations are associated with the development of several human diseases, including cancer. Hence, many scientific efforts are currently focused on the elucidation of their biological role. In this review, we analyze the scientific literature regarding the involvement of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and pseudogenes in FTC, PTC, and ATC. Recent findings emphasized the role of lncRNAs in all steps of cancer progression. In particular, lncRNAs may control progression steps by regulating the expression of genes and miRNAs involved in cell proliferation, apoptosis, epithelial–mesenchymal transition, and metastatization. In conclusion, the determination of the diagnosis, prognosis, and treatment of cancer based on the evaluation of the ncRNA network could allow the implementation of a more personalized approach to fighting thyroid tumors.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Francesco Esposito
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Maria Capone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
| | - Pierlorenzo Pallante
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Correspondence: (P.P.); (A.F.)
| | - Alfredo Fusco
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
- Correspondence: (P.P.); (A.F.)
| |
Collapse
|
9
|
Wang C, Wang Y, Fu Z, Huang W, Yu Z, Wang J, Zheng K, Zhang S, Li S, Chen J. MiR-29b-3p Inhibits Migration and Invasion of Papillary Thyroid Carcinoma by Downregulating COL1A1 and COL5A1. Front Oncol 2022; 12:837581. [PMID: 35530352 PMCID: PMC9075584 DOI: 10.3389/fonc.2022.837581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate genetic expression and are also vital for tumor initiation and development. MiR-29b-3p was found to be involved in regulating various biological processes of tumors, including tumor cell proliferation, metastasis, and apoptosis inhibition; however, the biofunction and molecule-level mechanisms of miR-29b-3p inpapillary thyroid carcinoma (PTC) remain unclear. Methods The expression of miR-29b-3p in PTC samples was tested via qRT-PCR. Cellular proliferation was analyzed by CCK-8 and EdU assays, and cellular migratory and invasive abilities were assessed utilizing wound-healing and Transwell assays. In addition, protein expressions of COL1A1, COL5A1, E-cadherin, N-cadherin, Snail, and Vimentin were identified via Western blot (WB) assay. Bioinformatics, qRT-PCR, WB, and dual luciferase reporter assays were completed to identify whether miR-29b-3p targeted COL1A1 and COL5A1. In addition, our team explored the treatment effects of miR-29b-3p on a murine heterograft model. Results Our findings revealed that miR-29b-3p proved much more regulated downward in PTC tissue specimens than in adjacent non-cancerous tissues. Meanwhile, decreased expression of miR-29b-3p was strongly related to the TNM stage of PTC patients (p<0.001), while overexpression of miR-29b-3p in PTC cells suppressed cellular migration, invasion, proliferation, and EMT. Conversely, silencing miR-29b-3p yielded the opposite effect. COL1A1 and COL5A1 were affirmed as the target of miR-29b-3p. Additionally, the COL1A1 and COL5A1 were highly expressed in PTC tumor samples than in contrast to neighboring healthy samples. Functional assays revealed that overexpression of COL1A1 or COL5A1 reversed the suppressive role of miR-29b-3p in migration, invasion, and EMT of PTC cells. Finally, miR-29b-3p agomir treatment dramatically inhibited Xenograft tumor growth in the animal model. Conclusions These findings document that miR-29b-3p inhibited PTC cells invasion and metastasis by targeting COL1A1 and COL5A1; this study also sparks new ideas for risk assessment and miRNA replacement therapy in PTC.
Collapse
Affiliation(s)
- Congjun Wang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Ye Wang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Zhao Fu
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Weijia Huang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Zhu Yu
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Jiancheng Wang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Kaitian Zheng
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Siwen Zhang
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Shen Li
- Department of Gastrointestinal, Hernia and Enterofistula Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Junqiang Chen
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Clinical Research Lab, Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
- *Correspondence: Junqiang Chen,
| |
Collapse
|
10
|
Sánchez-Ares M, Cameselle-García S, Abdulkader-Nallib I, Rodríguez-Carnero G, Beiras-Sarasquete C, Puñal-Rodríguez JA, Cameselle-Teijeiro JM. Susceptibility Genes and Chromosomal Regions Associated With Non-Syndromic Familial Non-Medullary Thyroid Carcinoma: Some Pathogenetic and Diagnostic Keys. Front Endocrinol (Lausanne) 2022; 13:829103. [PMID: 35295987 PMCID: PMC8918666 DOI: 10.3389/fendo.2022.829103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/07/2022] [Indexed: 12/05/2022] Open
Abstract
Thyroid cancer is the malignant tumor that is increasing most rapidly in the world, mainly at the expense of sporadic papillary thyroid carcinoma. The somatic alterations involved in the pathogenesis of sporadic follicular cell derived tumors are well recognized, while the predisposing alterations implicated in hereditary follicular tumors are less well known. Since the genetic background of syndromic familial non-medullary carcinoma has been well established, here we review the pathogenesis of non-syndromic familial non-medullary carcinoma emphasizing those aspects that may be useful in clinical and pathological diagnosis. Non-syndromic familial non-medullary carcinoma has a complex and heterogeneous genetic basis involving several genes and loci with a monogenic or polygenic inheritance model. Most cases are papillary thyroid carcinoma (classic and follicular variant), usually accompanied by benign thyroid nodules (follicular thyroid adenoma and/or multinodular goiter). The possible diagnostic and prognostic usefulness of the changes in the expression and/or translocation of various proteins secondary to several mutations reported in this setting requires further confirmation. Given that non-syndromic familial non-medullary carcinoma and sporadic non-medullary thyroid carcinoma share the same morphology and somatic mutations, the same targeted therapies could be used at present, if necessary, until more specific targeted treatments become available.
Collapse
Affiliation(s)
- María Sánchez-Ares
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| | - Soledad Cameselle-García
- Department of Medical Oncology, University Hospital Complex of Ourense, Galician Healthcare Service (SERGAS), Ourense, Spain
| | - Ihab Abdulkader-Nallib
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
- School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Gemma Rodríguez-Carnero
- Department of Endocrinology and Nutrition, Clinical University Hospital of Santiago de Compostela, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| | - Carolina Beiras-Sarasquete
- Department of Surgery, Clinical University Hospital of Santiago de Compostela, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| | - José Antonio Puñal-Rodríguez
- School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Surgery, Clinical University Hospital of Santiago de Compostela, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain
- School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
11
|
Crocin induces ROS-mediated papillary thyroid cancer cell apoptosis by modulating the miR-34a-5p/PTPN4 axis in vitro. Toxicol Appl Pharmacol 2022; 437:115892. [DOI: 10.1016/j.taap.2022.115892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
|
12
|
MiR-429 Inhibits the Angiogenesis of Human Brain Microvascular Endothelial Cells through SNAI2-Mediated GSK-3 β/ β-Catenin Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6753926. [PMID: 34966442 PMCID: PMC8712146 DOI: 10.1155/2021/6753926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023]
Abstract
MicroRNA (miRNA) dysfunction has been confirmed as a key event of ischemic stroke appearance. This study is aimed at revealing the role of miR-429 in the angiogenesis of HBMECs. The HBMECs were treated with oxygen and glucose deprivation (OGD) to establish the ischemic cell model. The qRT-PCR was used to measure the expression levels of the miR-429 in the serums of the patients or cells, and CCK-8, wound healing assay, and tube formation assay were used to observe the effects of miR-429 on the phenotype of HBMECs. Moreover, the Targetscan, dual-luciferase reporter assay, and Western blot were used to reveal the downstream target and regulation mechanism of miR-429 in OGD-induced HBMECs. The results showed that miR-429 was significantly upregulated in the serums of the patients, and overexpressed miR-429 could extremely inhibit the viability, migration, and tube formation of OGD-induced HBMECs. Furthermore, it was found that SNAI2 was a downstream factor of miR-429, and SNAI2 could rescue the effects of miR-429 on OGD-induced HBMECs. Besides, the Western blot showed that miR-429 could affect the activity of GSK-3β/β-catenin pathway via inhibiting the expression of SNAI2. In conclusion, this study suggests that miR-429 inhibits the angiogenesis of HBMECs through SNAI2-mediated GSK-3β/β-catenin pathway.
Collapse
|
13
|
Misiak D, Bauer M, Lange J, Haase J, Braun J, Lorenz K, Wickenhauser C, Hüttelmaier S. MiRNA Deregulation Distinguishes Anaplastic Thyroid Carcinoma (ATC) and Supports Upregulation of Oncogene Expression. Cancers (Basel) 2021; 13:5913. [PMID: 34885022 PMCID: PMC8657272 DOI: 10.3390/cancers13235913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most fatal and rapidly evolving endocrine malignancy invading the head and neck region and accounts for up to 50% of thyroid cancer-associated deaths. Deregulation of the microRNA (miRNA) expression promotes thyroid carcinoma progression by modulating the reorganization of the ATC transcriptome. Here, we applied comparative miRNA-mRNA sequencing on a cohort of 28 thyroid carcinomas to unravel the association of deregulated miRNA and mRNA expression. This identified 85 miRNAs significantly deregulated in ATC. By establishing a new analysis pipeline, we unraveled 85 prime miRNA-mRNA interactions supporting the downregulation of candidate tumor suppressors and the upregulation of bona fide oncogenes such as survivin (BIRC5) in ATC. This miRNA-dependent reprogramming of the ATC transcriptome provided an mRNA signature comprising 65 genes sharply distinguishing ATC from other thyroid carcinomas. The validation of the deregulated protein expression in an independent thyroid carcinoma cohort demonstrates that miRNA-dependent oncogenes comprised in this signature, the transferrin receptor TFRC (CD71) and the E3-ubiquitin ligase DTL, are sharply upregulated in ATC. This upregulation is sufficient to distinguish ATC even from poorly differentiated thyroid carcinomas (PDTC). In sum, these findings provide new diagnostic tools and a robust resource to explore the key miRNA-mRNA regulation underlying the progression of thyroid carcinoma.
Collapse
Affiliation(s)
- Danny Misiak
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.M.); (J.L.); (J.H.); (J.B.)
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (M.B.); (C.W.)
| | - Jana Lange
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.M.); (J.L.); (J.H.); (J.B.)
| | - Jacob Haase
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.M.); (J.L.); (J.H.); (J.B.)
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juliane Braun
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.M.); (J.L.); (J.H.); (J.B.)
- Merck KGaA, 64293 Darmstadt, Germany
| | - Kerstin Lorenz
- Department of Visceral, Vascular, and Endocrine Surgery, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany;
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany; (M.B.); (C.W.)
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.M.); (J.L.); (J.H.); (J.B.)
| |
Collapse
|
14
|
Gai L, Huang Y, Zhao L, Li F, Zhuang Z. Long non-coding RNA HAGLROS regulates the proliferation, migration, and apoptosis of esophageal cancer cells via the HAGLROS-miR-206- NOTCH3 axis. J Gastrointest Oncol 2021; 12:2093-2108. [PMID: 34790377 DOI: 10.21037/jgo-21-586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/09/2021] [Indexed: 01/28/2023] Open
Abstract
Background Esophageal cancer (EC) is a common malignant tumor of the digestive tract, the treatment of which involves surgery combined with radiotherapy and chemotherapy, as well as other comprehensive types of treatment. The pathogenesis of EC remains unclear, which hinders the development of clinical therapy and the identification of molecular targets for this disease. Long non-coding RNAs (lncRNAs) have been shown to be associated with the malignant biological behavior of EC, but the specific molecular mechanisms underlying the carcinogenesis of EC are not fully understood. Methods Reverse transcription-quantitative PCR (RT-qPCR) was applied to measure the lncRNA HAGLR opposite strand lncRNA (HAGLROS) levels in EC cell lines and tissues. Cell Counting Kit-8 (CCK-8) detection, scratch test, and Transwell assay were performed to determine the proliferation, migration and invasion of EC cell. The interaction between HAGLROS, microRNA (miR)-206, and notch receptor 3 (NOTCH3) was confirmed by RNA immunoprecipitation and dual luciferase reporter gene assays. Results HAGLROS is upregulated in esophageal squamous cell carcinoma (ESCC) tissues and predicts poor prognosis. Silent HAGLROS is negatively associated with malignant behavior in EC cells. Low expression of HAGLROS can induce decreased invasive and migratory abilities in EC cells. Downregulated HAGLROS significantly inhibits the proliferation of EC cells and accelerates apoptosis. HAGLROS promotes EC cell tumorigenesis in vivo. HAGLROS participates in the HAGLROS/miR-206/NOTCH3 regulatory axis in EC cells. Conclusions HAGLROS may play a role in the progression of EC by modulating the miR-206/NOTCH3 signaling axis, and may be a novel target for the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Ling Gai
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
| | - Yeqing Huang
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
| | - Lingling Zhao
- Department of Medical Ultrasound, The First People's Hospital of Nantong, Nantong, China
| | - Feng Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Li D, Liu SH, Liu QY, Zou QQ, Lv L, Liu GL, Wu Y. Analysis of the Role and Regulatory Mechanism of hsa-miR-504 in Cervical Cancer Based on The Cancer Genome Atlas Database. Cancer Biother Radiopharm 2021; 36:511-520. [PMID: 32589477 DOI: 10.1089/cbr.2020.3798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Dan Li
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Si-Hong Liu
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Qiong-Yao Liu
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qing-Qing Zou
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lin Lv
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guo-Long Liu
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yong Wu
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Orois A, Mora M, Halperin I, Oriola J. Familial non medullary thyroid carcinoma: Beyond the syndromic forms. ENDOCRINOL DIAB NUTR 2021; 68:260-269. [PMID: 34266638 DOI: 10.1016/j.endien.2020.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/17/2020] [Indexed: 10/20/2022]
Abstract
Familial non-medullary thyroid cancer is defined as the presence of non-medullary thyroid cancer in two or more first-degree relatives, in the absence of other predisposing factors. It represents up to 9% of differentiated thyroid cancers, and only a minority appears in well-known hereditary syndromes that associate thyroid cancer among many other clinical manifestations. However, in more than 95% of cases, thyroid cancer appears isolated, and its genetic causes have yet to be elucidated. We review here the current knowledge of the genetic basis of this pathology, as well as its clinical characteristics. Understanding the genetic mechanisms implied would help to comprehend the metabolic pathways involved, with the consequent potential therapeutic application. In addition, it would allow genetic counseling and to focus our efforts on patients at risk of developing this disorder.
Collapse
Affiliation(s)
- Aida Orois
- Servicio de Endocrinología y Nutrición, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain; Servicio de Endocrinología y Nutrición, ICMDM, Hospital Clínic de Barcelona, Barcelona, Spain.
| | - Mireia Mora
- Servicio de Endocrinología y Nutrición, ICMDM, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Irene Halperin
- Servicio de Endocrinología y Nutrición, ICMDM, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Josep Oriola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain; Servicio de Bioquímica y Genética Molecular, CDB, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Epigenetic signature associated with thyroid cancer progression and metastasis. Semin Cancer Biol 2021; 83:261-268. [PMID: 33785448 DOI: 10.1016/j.semcancer.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Thyroid cancer is not among the top cancers in terms of diagnosis or mortality but it still ranks fifth among the cancers diagnosed in women. Infact, women are more likely to be diagnosed with thyroid cancer than the males. The burden of thyroid cancer has dramatically increased in last two decades in China and, in the United States, it is the most diagnosed cancer in young adults under the age of twenty-nine. All these factors make it worthwhile to fully understand the pathogenesis of thyroid cancer. Towards this end, microRNAs (miRNAs) have constantly emerged as the non-coding RNAs of interest in various thyroid cancer subtypes on which there have been numerous investigations over the last decade and half. This comprehensive review takes a look at the current knowledge on the topic with cataloging of miRNAs known so far, particularly related to their utility as epigenetic signatures of thyroid cancer progression and metastasis. Such information could be of immense use for the eventual development of miRNAs as therapeutic targets or even therapeutic agents for thyroid cancer therapy.
Collapse
|
18
|
He L, Qing F, Li M, Lan D. Effects of laparoscopic and traditional open surgery on the levels of IL-6, TNF-α, and Gal-3 in patients with thyroid cancer. Gland Surg 2021; 10:1085-1092. [PMID: 33842252 DOI: 10.21037/gs-21-60] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Traditional open surgery and laparoscopic surgery are common treatments for thyroid cancer patients, this paper aims to explore their effects on the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and galectin-3 (Gal-3) in patients with thyroid cancer. Methods The clinical data of patients with thyroid cancer who received surgery in our hospital from September 2017 to February 2020 were collected. In total, 106 cases that met the inclusion and exclusion criteria were included. The patients were then allocated into two groups according to the surgery received, including a study group (56 cases treated with endoscopy) and a basic group (50 cases treated with traditional open surgery). Rehabilitation indicators and inflammatory cytokines were compared between the two groups. Results There was no significant difference in the number of intraoperative lymph node dissections (P>0.05), postoperative complication rate (16.08% vs. 20.00%, P>0.05), and 6-month rate of recurrence or metastasis (P>0.05) between the two groups. Compared to the basic group, the operation time of the study group was longer, while the amount of intraoperative blood loss, 24 h drainage of the catheter and the length of hospital stay were significantly lower in the study group (P<0.05). The pain scores of the study group at 24 and 48 h after surgery were significantly lower than those of the basic group (P<0.05). The levels of IL-6, TNF-α, Gal-3, and other inflammatory factors in the two groups increased on the first day postoperatively, however the levels of these factors in the study group were lower than those in the basic group (P<0.05). Finally, the postoperative cosmetic satisfaction rate of the study group (94.64%) was higher than that of the basic group (86.00%), and the difference was statistically significant (P<0.05). Conclusions The use of laparoscopic treatment can reduce the amount of intraoperative blood loss in patients with thyroid cancer, effectively reduce the degree of postoperative pain, and inhibit postoperative inflammation in the patient to a certain extent. Moreover, laparoscopic treatment can increase postoperative cosmetic satisfaction, reduce the occurrence of postoperative complications and recurrence rate, and improve the patient's prognosis.
Collapse
Affiliation(s)
- Li He
- Department of Thyroid and Breast Surgery, Sichuan Provincial People's Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Fangzhen Qing
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Stomatology, Sichuan Provincial People's Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
| | - Maode Li
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
| | - Daitian Lan
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Park JL, Kim SK, Jeon S, Jung CK, Kim YS. MicroRNA Profile for Diagnostic and Prognostic Biomarkers in Thyroid Cancer. Cancers (Basel) 2021; 13:632. [PMID: 33562573 PMCID: PMC7916038 DOI: 10.3390/cancers13040632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The challenge in managing thyroid nodules is to accurately diagnose the minority of those with malignancy. We aimed to identify diagnostic and prognostic miRNA markers for thyroid nodules. In a discovery cohort, we identified 20 candidate miRNAs to differentiate between noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) and papillary thyroid carcinomas (PTC) by using the high-throughput small RNA sequencing method. We then selected three miRNAs (miR-136, miR-21, and miR-127) that were differentially expressed between the PTC follicular variant and other variants in The Cancer Genome Atlas data. High expression of three miRNAs differentiated thyroid cancer from nonmalignant tumors, with an area under curve (AUC) of 0.76-0.81 in an independent cohort. In patients with differentiated thyroid cancer, the high-level expression of the three miRNAs was an independent indicator for both distant metastases and recurrent or persistent disease. In patients with PTC, a high expression of miRNAs was associated with an aggressive histologic variant, extrathyroidal extension, distant metastasis, or recurrent or persistent disease. Three miRNAs may be used as diagnostic markers for differentiating thyroid cancers from benign tumors and tumors with extremely low malignant potential (NIFTP), as well as prognostic markers for predicting the risk of recurrent/persistent disease for differentiated thyroid cancer.
Collapse
Affiliation(s)
- Jong-Lyul Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Bioinformatics, University of Science and Technology, Daejeon 34141, Korea
| | - Sora Jeon
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Chan-Kwon Jung
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yong-Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, University of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
20
|
Dong S, Xue S, Sun Y, Han Z, Sun L, Xu J, Liu J. MicroRNA-363-3p downregulation in papillary thyroid cancer inhibits tumor progression by targeting NOB1. J Investig Med 2021; 69:66-74. [PMID: 33077486 PMCID: PMC7803892 DOI: 10.1136/jim-2020-001562] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2020] [Indexed: 12/29/2022]
Abstract
MicroRNA-363-3 p (miR-363-3 p) has been reported to play a crucial role in tumor development and progression, and function as a tumor suppressor in many types of cancer. In our previous studies, we found that miRNA-363-3 p inhibited papillary thyroid carcinoma (PTC) progression by targeting PIK3CA. Meanwhile, we found that NIN1/RPN12 binding protein 1 (NOB1) was significantly upregulated in thyroid carcinoma tissue and downregulation of NOB1 expression significantly inhibited cell proliferation, migration and invasion in PTC. However, the correlation of NOB1 and miR-363-3 p has not been investigated. Here, we performed bioinformatic analysis to explore miRNA targeting NOB1. We found that NOB1 was a target of miR-363-3 p and miR-363-3 p regulated NOB1 expression at the translational and transcriptional levels by targeting its 3' untranslated region (3'-UTR). Further, we showed that miR-363-3 p inhibited tumor progression by targeting NOB1 in vitro and in vivo. We found that overexpression miR-363-3 p or silencing NOB1 significantly increased G0/G1-phase and decreased S-phase in the human papillary thyroid cells, which led to a significant delay in cell proliferation, indicating miR-363-3 p and NOB1 are crucial for human papillary thyroid cancer tumorigenesis. Collectively, our data unveil that miR-363-3 p negatively regulates NOB1 activity by reducing its stability. This study provides a new therapeutic target for regulation of NOB1 stability to modulate human papillary thyroid cancer progression.
Collapse
Affiliation(s)
- Su Dong
- Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Shuai Xue
- Thyroid Surgery, First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- First Operating Room, First Hospital of Jilin University, Changchun, China
| | - Zhe Han
- Thyroid Surgery, First Hospital of Jilin University, Changchun, China
| | - Lele Sun
- Thyroid Surgery, First Hospital of Jilin University, Changchun, China
| | - Jialu Xu
- Thyroid Surgery, First Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Thyroid Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Tang M, Wang Q, Wang K, Wang F. Mesenchymal stem cells-originated exosomal microRNA-152 impairs proliferation, invasion and migration of thyroid carcinoma cells by interacting with DPP4. J Endocrinol Invest 2020; 43:1787-1796. [PMID: 32876927 DOI: 10.1007/s40618-020-01406-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/23/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Thyroid carcinoma (THCA) is the most prevalent tumor in the endocrine system with an increasing incidence. Recent studies have underscored the function of microRNAs (miRNAs) in THCA. Nevertheless, knowledge regarding the effects of exosomal miRNAs in THCA is still limited. This report intended to probe the regulatory effects of exosomal miR-152 on THCA and the underlying mechanism. METHODS The expression profile of miR-152 was studied in clinical samples as well as B-CPAP and TPC-1 cells. Transwell, CCK-8, and flow cytometric assays were performed to investigate the roles of miR-152 on invasion, migration, proliferation, and apoptosis in B-CPAP and TPC-1 cells. The putative target of miR-152 was predicted using the bioinformatic analysis, and the targeting relationship was confirmed verified subsequently. Afterward, exosomes were isolated from bone marrow mesenchymal stem cells (BM-MSCs) and co-cultured with B-CPAP and TPC-1 cells to explore the function of exosomal miR-152 on THCA cells. RESULTS miR-152 was reduced in THCA tissues and cells. Restoration of miR-152 inhibited proliferation, invasion and migration of B-CPAP and TPC-1 cells, but promoted cell apoptosis. Dipeptidyl dipeptidase 4 (DPP4), a target of miR-152, was found to promote THCA cell invasion and migration. miR-152 ferried by BM-MSCs-derived exosomes repressed THCA cell invasion and migration, and pcDNA-DPP4 weakened the repression effect. CONCLUSION Exosomal miR-152 inhibited proliferation, migration and invasion of THCA cells by binding with DPP4, which may represent a novel target for the treatment of THCA.
Collapse
Affiliation(s)
- M Tang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Q Wang
- Department of Rehabilitation, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China
| | - K Wang
- Department of Rehabilitation, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China.
| | - F Wang
- Department of Rehabilitation, The First Affiliated Hospital of Chengdu Medical College, No. 278, Middle Section of Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
22
|
CCNA1 gene as a potential diagnostic marker in papillary thyroid cancer. Acta Histochem 2020; 122:151635. [PMID: 33007517 DOI: 10.1016/j.acthis.2020.151635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022]
Abstract
The malignancy that most affects the endocrine system is thyroid neoplasm, with an increasing incidence over the years. The most prevalent histological type of the carcinomas that affect the thyroid gland is papillary carcinoma with a prevalence of 80 % worldwide. The current diagnostic methodology may present inconclusive results, emphasizing the need for new effective and sensitive techniques to aid the diagnosis. For this, it is necessary to understand molecular and protein mechanisms in the identification of diagnostic and predictive markers in the lesions. The Cyclin A1 protein, encoded by the CCNA1 gene, is an important cell cycle regulator, belonging to the MAPK/ERK signaling pathway directly involved with thyroid cancer. The aim of this study was to evaluate the CCNA1 gene and Cyclin A1 protein expression in papillary thyroid carcinoma, follicular thyroid carcinoma, and benign thyroid lesions, by real time quantitative PCR and immunohistochemistry analysis, respectively, to verify their roles as potential diagnostic and predictive markers to future applications in the clinical routine. Overexpression of CCNA1 gene was observed in the papillary carcinoma group compared to the normal group (P = 0.0023), benign lesions (P = 0.0011), colloid goiter (P = 0.0124), and follicular carcinoma (P = 0.0063). No differential expression was observed in the papillary primary tumor group from negative lymph nodes compared with the one from positive lymph nodes (P = 0.3818). Although an increased expression of Cyclin A1 was observed in the PTC group compared to the other one in the IHC analysis, no significant difference was observed (Fisher's exact Test). A Cyclin A1 overexpression was detected with weak to mid-moderate immunoreactivity in the benign group (k = 0.56), (score 1.5); mid-moderate to moderate in the goiter group (k = 0.58); weak in the FTC group (k = 0.33); and mid-moderate to moderate in the PTC group (k = 0.48). Due to the small sample size in the IHC analysis and to the fact that not all RNA is translated into protein, the diagnostic potential of Cyclin A1 could not be assessed. However, these findings highlight the potential of the CCNA1 gene as a diagnostic marker for papillary thyroid carcinoma.
Collapse
|
23
|
Orois A, Mora M, Halperin I, Oriola J. Familial non medullary thyroid carcinoma: Beyond the syndromic forms. ACTA ACUST UNITED AC 2020; 68:260-269. [PMID: 33191196 DOI: 10.1016/j.endinu.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/25/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022]
Abstract
Familial non-medullary thyroid cancer is defined as the presence of non-medullary thyroid cancer in two or more first-degree relatives, in the absence of other predisposing factors. It represents up to 9% of differentiated thyroid cancers, and only a minority appears in well-known hereditary syndromes that associate thyroid cancer among many other clinical manifestations. However, in more than 95% of cases, thyroid cancer appears isolated, and its genetic causes have yet to be elucidated. We review here the current knowledge of the genetic basis of this pathology, as well as its clinical characteristics. Understanding the genetic mechanisms implied would help to comprehend the metabolic pathways involved, with the consequent potential therapeutic application. In addition, it would allow genetic counseling and to focus our efforts on patients at risk of developing this disorder.
Collapse
Affiliation(s)
- Aida Orois
- Servicio de Endocrinología y Nutrición, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, España; Servicio de Endocrinología y Nutrición, ICMDM, Hospital Clínic de Barcelona, Barcelona, España.
| | - Mireia Mora
- Servicio de Endocrinología y Nutrición, ICMDM, Hospital Clínic de Barcelona, Barcelona, España; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España; Facultad de Medicina, Universidad de Barcelona, Barcelona, España; Centro de Investigación Biomédica en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - Irene Halperin
- Servicio de Endocrinología y Nutrición, ICMDM, Hospital Clínic de Barcelona, Barcelona, España
| | - Josep Oriola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España; Facultad de Medicina, Universidad de Barcelona, Barcelona, España; Servicio de Bioquímica y Genética Molecular, CDB, Hospital Clínic de Barcelona, Barcelona, España
| |
Collapse
|
24
|
Tabatabaeian H, Peiling Yang S, Tay Y. Non-Coding RNAs: Uncharted Mediators of Thyroid Cancer Pathogenesis. Cancers (Basel) 2020; 12:E3264. [PMID: 33158279 PMCID: PMC7694276 DOI: 10.3390/cancers12113264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Thyroid cancer is the most prevalent malignancy of the endocrine system and the ninth most common cancer globally. Despite the advances in the management of thyroid cancer, there are critical issues with the diagnosis and treatment of thyroid cancer that result in the poor overall survival of undifferentiated and metastatic thyroid cancer patients. Recent studies have revealed the role of different non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) that are dysregulated during thyroid cancer development or the acquisition of resistance to therapeutics, and may play key roles in treatment failure and poor prognosis of the thyroid cancer patients. Here, we systematically review the emerging roles and molecular mechanisms of ncRNAs that regulate thyroid tumorigenesis and drug response. We then propose the potential clinical implications of ncRNAs as novel diagnostic and prognostic biomarkers for thyroid cancer.
Collapse
Affiliation(s)
- Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Samantha Peiling Yang
- Endocrinology Division, Department of Medicine, National University Hospital, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
25
|
Ke D, Guo Q, Fan TY, Xiao X. Analysis of the Role and Regulation Mechanism of hsa-miR-147b in Lung Squamous Cell Carcinoma Based on The Cancer Genome Atlas Database. Cancer Biother Radiopharm 2020; 36:280-291. [PMID: 33112657 DOI: 10.1089/cbr.2020.4187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: This study aimed to explore the role and regulatory mechanism of hsa-miR-147b in lung squamous cell carcinoma (LUSC) through The Cancer Genome Atlas (TCGA) database. Methods: The expression and clinical value of miR-147b in LUSC were analyzed in the TCGA database. The target genes of miR-147b were screened via miRWalk 2.0 and verified in TCGA database. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to analyzed the differential target genes of miR-147b. Kaplan-Meier survival analysis and Cox regression were used to screen the prognosis-related target genes. Results: The expression of miR-147b in LUSC tissues increased, and was associated with poor prognosis, gender, and stage of LUSC patients. The area under the curve (AUC) of miR-147b was 0.8478 by the receiver-operating characteristic curve. There were 428 differentially expressed genes of miR-147b that played a critical role in drug transport, DNA binding, calcium signaling pathway, and Ras signaling pathway through GO and KEGG. PTGIS, SUSD4, ARC, HTR2C, SHISA9, and PLA2G4D were independent risk factors for poor prognosis in LUSC patients. LUSC patients in the high-risk group had a higher risk of death. The time-dependent AUC was 0.673. Conclusions: MiR-147b might be a potential molecular marker for poor prognosis in patients with LUSC.
Collapse
Affiliation(s)
- Di Ke
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Teng-Yang Fan
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xue Xiao
- Department of General Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
26
|
Toraih EA, Fawzy MS, Abushouk AI, Shaheen S, Hobani YH, Alruwetei AM, A Mansouri O, Kandil E, Badran DI. Prognostic value of the miRNA-27a and PPAR/RXRα signaling axis in patients with thyroid carcinoma. Epigenomics 2020; 12:1825-1843. [PMID: 32969715 DOI: 10.2217/epi-2020-0167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The authors aimed to evaluate the prognostic value of miRNA-27a (miR-27a), peroxisome proliferator-activated receptor alpha/gamma (PPARα/γ) and retinoid X receptor alpha (RXRα) tissue expression in patients with thyroid carcinoma. The expression levels were quantified in 174 archived thyroid specimens using real-time quantitative PCR. Downregulation of miR-27a was associated with lymph node stage and multifocality. PPARα expression was associated with histopathological type, tumor size and lymph node invasion. Moreover, RXRα expression was lower in patients who underwent total/subtotal thyroidectomy or received radioactive iodine treatment. Patients with upregulated miR-27a and downregulated RXRα showed a higher frequency of advanced lymph node stage and relapse by cluster analysis. Both miR-27a and PPARα/RXRα showed association with different poor prognostic indices in thyroid cancer patients.
Collapse
Affiliation(s)
- Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA.,Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | | | - Sameerah Shaheen
- Department of Anatomy & Stem Cell Unit, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia
| | - Yahya H Hobani
- Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, KSA
| | - Abdulmohsen M Alruwetei
- Department of Medical Laboratory, College of Applied Medical Sciences, Qassim University, Qassim 51452, Saudi Arabia
| | - Omniah A Mansouri
- Department of Biology, University of Jeddah, College of Science, Jeddah, 21959, Saudi Arabia
| | - Emad Kandil
- Department of Surgery, Division of Endocrine & Oncologic Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Dahlia I Badran
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
27
|
Wang T, Yang Y, Wang Z, Zhang X, Li D, Wei J. A SNP of miR-146a is involved in bladder cancer relapse by affecting the function of bladder cancer stem cells via the miR-146a signallings. J Cell Mol Med 2020; 24:8545-8556. [PMID: 32596945 PMCID: PMC7412697 DOI: 10.1111/jcmm.15480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/24/2020] [Accepted: 05/24/2020] [Indexed: 12/28/2022] Open
Abstract
MiR‐146a‐5p in urine samples was recently reported to be possibly used as a prognostic marker for bladder cancer (BC). Interestingly, YAP1 and COX2 were both demonstrated to function as stem cell regulators in BC. Therefore, in this study, we aimed to establish the molecular mechanism underlying the role of miR‐146a, YAP1 and COX2 in BC relapse. We also studied the possibility of using the C > G genotype of miR‐146a rs2910164 SNP as an indicator of BC relapse. A total of 170 BC patients were assigned into different groups based on their genotypes of rs2910164 SNP. Kaplan‐Meier survival curves were plotted to compare the recurrence‐free rate among these groups. Real‐time PCR, Western Blot, bioinformatic analysis, luciferase assay and IHC assay were conducted to study the role of rs2910164 SNP in the progression of BC. Accordingly, GC/CC‐genotyped patients presented a higher risk of recurrence when compared with GG‐genotyped patients, while the expression of BC regulators was influenced by the presence of rs2910164. COX2 mRNA and YAP1 mRNA were, respectively, validated as direct target genes of miR‐146a, and the expression of YAP1 and COX2 mRNA/protein was both suppressed by miR‐146a precursors. The expression of ALDH1A1 mRNA/protein was inhibited upon the down‐regulation of YAP1, while the expression of let7 and SOX2 mRNA/protein was inhibited upon the down‐regulation of COX2. In conclusion, two signalling pathways, miR‐146a/YAP1/ALDH1A1 and miR‐146a/COX2/PGE2/let7/SOX2, were modulated by miR‐146a. As an SNP regulating the expression of miR‐146a, the rs2910164 G > C SNP could be utilized as a biomarker for BC relapse.
Collapse
Affiliation(s)
- Tianen Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfeng Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiyong Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuechong Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongsheng Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinxing Wei
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Ma HF, Lv GX, Zhang DH. miR-381 Mediates the Development of Head and Neck Squamous Cell Carcinoma via Targeting STC2. Onco Targets Ther 2020; 13:4485-4493. [PMID: 32547079 PMCID: PMC7247612 DOI: 10.2147/ott.s246289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Objective miR-381 is implicated in the occurrence and development of various cancers, yet its role in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. This study sought to research the direct target of miR-381 in HNSCC and investigate their roles in cancer progression. Methods miRNA and mRNA expression files of HNSCC were accessed from TCGA database and then processed for differential analysis. Bioinformatics databases were employed to predict the target mRNAs of the potential miRNA. qRT-PCR was conducted to determine the expression levels of the target miRNA and mRNA. Then, a series of in vitro experiments like CCK-8, colony formation assay, wound healing assay and transwell assay were performed to detect cell proliferation, migration and invasion. Dual-luciferase reporter gene assay was carried out for the further validation of the targeted relationship between the miRNA and mRNA. Results miR-381 was observed to be greatly down-regulated in HNSCC cells, and its overexpression could inhibit cell proliferation, migration and invasion. Besides, dual-luciferase reporter gene assay confirmed that STC2 was a direct target of miR-381, and their expression levels were reversely correlated. Moreover, rescue experiments demonstrated that overexpressing STC2 could rescue the inhibitory effect of miR-381 overexpression on cell proliferation, migration and invasion. Also, we verified that miR-381/STC2 exerted its function on HNSCC proliferation by mediating the FAK/PI3K/Akt/mTOR signaling pathway. Conclusion miR-381 suppresses cell proliferation, migration and invasion in HNSCC through targeting STC2, and participates in HNSCC development probably via the FAK/PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hai-Feng Ma
- Department of Radiotherapy, Zhejiang Dongyang People's Hospital, Dongyang 322100, Zhejiang Province, People's Republic of China
| | - Guo-Xiao Lv
- Department of Radiotherapy, Zhejiang Dongyang People's Hospital, Dongyang 322100, Zhejiang Province, People's Republic of China
| | - Da-Hai Zhang
- Department of Radiotherapy, Zhejiang Dongyang People's Hospital, Dongyang 322100, Zhejiang Province, People's Republic of China
| |
Collapse
|
29
|
Circular RNA hsa_circ_0002052 promotes osteosarcoma via modulating miR-382/STX6 axis. Hum Cell 2020; 33:810-818. [PMID: 32274658 DOI: 10.1007/s13577-020-00335-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
Circular RNAs (circRNAs) exert pivotal effects on regulating the progression of osteosarcoma (OS). It was found through microarray analysis that circ-0002052 is abnormally expressed in OS, but the role of circ-0002052 in OS remains obscure. The results of this research manifested that relative to that in non-tumor controls, circ-0002052 level was raised in OS tissues. Up-regulated circ-0002052 was associated with advanced stage, tumor size, and metastasis. Additionally, circ-0002052 elevation indicated a low survival rate in OS patients and silencing of circ-0002052 suppressed proliferation, migration, and invasion of OS cells. It was proved that circ-0002052 sponged miR-382 and stimulated STX6 expression, thus activating Wnt/β-catenin. The function of circ-0002052 reduction in OS cells was effectively reversed by miR-382 suppression. To sum up, it can be concluded that circ-0002052, functioning as a sponge for miR-382, enhances the activation of Wnt/β-catenin mediated by STX6 to stimulate the progression of OS, and circ-0002052 may be an underlying treatment target and a biomarker for prognosis of osteosarcoma.
Collapse
|
30
|
Wang Y, Tian Y, Li Z, Zheng Z, Zhu L. miR-92 Regulates the Proliferation, Migration, Invasion and Apoptosis of Glioma Cells by Targeting Neogenin. Open Med (Wars) 2020; 15:283-291. [PMID: 32318624 PMCID: PMC7160221 DOI: 10.1515/med-2020-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022] Open
Abstract
This study aimed to explore the pathological mechanism in regulating glioma progression. The expression of miR-92 and neogenin was evaluated by qRT-PCR and western blot. Cell viability and apoptosis were measured by MTT and flow cytometry assays, respectively. The migration and invasion abilities were examined by transwell assays. The interaction between miR-92 and neogenin was conducted by dual-luciferase reporter system. As a result, we found that the expression of miR-92 was up-regulated in glioma tissues and cell lines. Down-regulation of miR-92 inhibited glioma cell proliferation, migration, invasion and promoted cell apoptosis rate of U251 and U87 cells. Notably, miR-92 was identified to directly target to 3’-UTR of neogenin. Furthermore, neogenin was down-regulated in glioma tissues and cells in a miR-92-correlated manner. Overexpression of neigenin could cause similar results to miR-92 knockdown in U251 and U87 cells. However, the silencing of neogenin partially reversed the effects of miR-92 knockdown on cell proliferation, migration, invasion and apoptosis of glioma cells in vitro. In conclusion, we clarified that miR-92 knockdown could suppress the malignant progression of glioma cells in vitro by targeting neogenin. Therefore, miR-92 could serve as a potential diagnostic and prognostic marker in glioma patients
Collapse
Affiliation(s)
- Yi Wang
- The Second Department of Neurosurgery, the Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 060000, Hebei, China
| | - Yaohui Tian
- The Second Department of Neurosurgery, the Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 060000, Hebei, China
| | - Zonghao Li
- The Second Department of Neurosurgery, the Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 060000, Hebei, China
| | - Zhaoke Zheng
- The Second Department of Neurosurgery, the Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 060000, Hebei, China
| | - Liangliang Zhu
- The Second Department of Neurosurgery, the Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 060000, Hebei, China
| |
Collapse
|
31
|
Akyay OZ, Gov E, Kenar H, Arga KY, Selek A, Tarkun İ, Canturk Z, Cetinarslan B, Gurbuz Y, Sahin B. Mapping the Molecular Basis and Markers of Papillary Thyroid Carcinoma Progression and Metastasis Using Global Transcriptome and microRNA Profiling. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:148-159. [PMID: 32073999 DOI: 10.1089/omi.2019.0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer (TC). In a subgroup of patients with PTC, the disease progresses to an invasive stage or in some cases to distant organ metastasis. At present, there is an unmet clinical and diagnostic need for early identification of patients with PTC who are at risk of disease progression or metastasis. In this study, we report several molecular leads and potential biomarker candidates of PTC metastasis for further translational research. The study design was based on comparisons of PTC in three different groups using cross-sectional sampling: Group 1, PTC localized to the thyroid (n = 20); Group 2, PTC with extrathyroidal progression (n = 22); and Group 3, PTC with distant organ metastasis (n = 20). Global transcriptome and microRNAs (miRNA) analyses were conducted using an initial screening set comprising nine formalin-fixed paraffin-embedded PTC samples obtained from three independent patients per study group. The findings were subsequently validated by quantitative real-time polymerase chain reaction (qRT-PCR) using the abovementioned independent patient sample set (n = 62). Comparative analyses of differentially expressed miRNAs showed that miR-193-3p, miR-182-5p, and miR-3607-3p were novel miRNAs associated with PTC metastasis. These potential miRNA biomarkers were associated with TC metastasis and miRNA-target gene associations, which may provide important clinicopathological information on metastasis. Our findings provide new molecular leads for further translational biomarker research, which could facilitate the identification of patients at risk of PTC disease progression or metastasis.
Collapse
Affiliation(s)
- Ozlem Zeynep Akyay
- Department of Endocrinology and Metabolism, Sanliurfa Mehmet Akif İnan Education and Research Hospital, Health Sciences University, Sanliurfa, Turkey
| | - Esra Gov
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Halime Kenar
- Experimental and Clinical Research Center, Diabetes and Obesity Research Laboratory, Kocaeli University, Kocaeli, Turkey
| | - Kazım Yalcın Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Alev Selek
- Department of Endocrinology and Metabolism, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - İlhan Tarkun
- Department of Endocrinology and Metabolism, Anadolu Medical Center, İstanbul, Turkey
| | - Zeynep Canturk
- Department of Endocrinology and Metabolism, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Berrin Cetinarslan
- Department of Endocrinology and Metabolism, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Yesim Gurbuz
- Department of Pathology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Busra Sahin
- Department of Pathology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
32
|
Anania MC, Di Marco T, Mazzoni M, Greco A. Targeting Non-Oncogene Addiction: Focus on Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12010129. [PMID: 31947935 PMCID: PMC7017043 DOI: 10.3390/cancers12010129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs with an increasing incidence in industrialized countries. The majority of TC are characterized by a good prognosis, even though cases with aggressive forms not cured by standard therapies are also present. Moreover, target therapies have led to low rates of partial response and prompted the emergence of resistance, indicating that new therapies are needed. In this review, we summarize current literature about the non-oncogene addiction (NOA) concept, which indicates that cancer cells, at variance with normal cells, rely on the activity of genes, usually not mutated or aberrantly expressed, essential for coping with the transformed phenotype. We highlight the potential of non-oncogenes as a point of intervention for cancer therapy in general, and present evidence for new putative non-oncogenes that are essential for TC survival and that may constitute attractive new therapeutic targets.
Collapse
|
33
|
Wu SQ, He HQ, Kang Y, Xu R, Zhang L, Zhao XK, Zhu X. MicroRNA-200c affects bladder cancer angiogenesis by regulating the Akt2/mTOR/HIF-1 axis. Transl Cancer Res 2019; 8:2713-2724. [PMID: 35117029 PMCID: PMC8798978 DOI: 10.21037/tcr.2019.10.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/10/2019] [Indexed: 11/25/2022]
Abstract
Background Bladder cancer is one of the most frequent urologic tumours in the world. MicroRNA-200c (miR-200c) has been considered a regulator of tumour angiogenesis. Akt2/mTOR was considered a regulator of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1α (HIF-1α). However, the mechanism by which miR-200c regulates bladder cancer angiogenesis remains unknown. Methods Western blotting and qRT-PCR were used to detect the expression of protein and mRNA, respectively. Cell proliferation, migration and invasion were detected using MTT, wound-healing and transwell assays, respectively. A dual luciferase reporter assay was used to identify the binding site between miR-200c and Akt2. A tube formation assay was also applied to detect the angiogenesis ability. Results Significantly higher expression levels of HIF-1α and VEGF and lower levels of miR-200c were observed in three types of bladder cancer cell lines. Transfection with the miR-200c mimic markedly inhibited cell viability, angiogenesis, and the expression of VEGF and HIF-1α. Overexpression of miR-200c remarkably suppressed the expression of Akt2, and the binding site between them was identified. Knockdown of Akt2 remarkably decreased the expression of VEGF and HIF-1α by regulating mTOR. miR-200c influenced the expression of VEGF and HIF-1α through the Akt2/mTOR signalling pathway and further regulated angiogenesis in bladder cancer cells. Conclusions We proved that miR-200c could suppress HIF-1α/VEGF expression in bladder cancer cells and inhibit angiogenesis, and these regulations were achieved by targeting Akt2/mTOR. This study may provide new insight into the prevention and treatment of bladder cancer.
Collapse
Affiliation(s)
- Shui-Qing Wu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hai-Qing He
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ye Kang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lei Zhang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Xiao-Kun Zhao
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Xuan Zhu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
34
|
Song F, Xuan Z, Yang X, Ye X, Pan Z, Fang Q. Identification of key microRNAs and hub genes in non-small-cell lung cancer using integrative bioinformatics and functional analyses. J Cell Biochem 2019; 121:2690-2703. [PMID: 31692035 DOI: 10.1002/jcb.29489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is an extremely debilitating respiratory malignancy. However, the pathogenesis of NSCLC has not been fully clarified. The main objective of our study was to identify potential microRNAs (miRNAs) and their regulatory mechanism in NSCLC. Using a systematic review, two NSCLC-associated miRNA data sets (GSE102286 and GSE56036) were obtained from Gene Expression Omnibus, and the differentially expressed miRNAs (DE-miRNAs) were accessed by GEO2R. Survival analysis of candidate DE-miRNAs was conducted using the Kaplan-Meier plotter database. To further illustrate the roles of DE-miRNAs in NSCLC, their potential target genes were predicted by miRNet and were annotated by the Database for Annotation, Visualization and Integrated Discovery (DAVID) program. Moreover, the protein-protein interaction (PPI) and miRNA-hub gene regulatory network were established using the STRING database and Cytoscape software. The function of DE-miRNAs in NSCLC cells was evaluated by transwell assay. Compared with normal tissues, a total of eight DE-miRNAs was commonly changed in two data sets. The survival analysis showed that six miRNAs (miR-21-5p, miR-31-5p, miR-708-5p, miR-30a-5p, miR-451a, and miR-126-3p) were significantly correlated with overall survival. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that target genes of upregulated miRNAs were enriched in pathways in cancer, microRNAs in cancer and proteoglycans in cancer, while the target genes of downregulated miRNAs were mainly associated with pathways in cancer, the PI3K-Akt signaling pathway and HTLV-I infection. Based on the miRNA-hub gene network and expression analysis, PTEN, EGFR, STAT3, RHOA, VEGFA, TP53, CTNNB1, and KRAS were identified as potential target genes. Furthermore, all six miRNAs exhibited significant effects on NSCLC cell invasion. These findings indicate that six DE-miRNAs and their target genes may play important roles in the pathogenesis of NSCLC, which will provide novel information for NSCLC treatments.
Collapse
Affiliation(s)
- Feifeng Song
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zixue Xuan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiuli Yang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaolan Ye
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zongfu Pan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qingxia Fang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
35
|
Zhang X, Zhang Q, Jiang Y, Zhang S, Hong Q, Guo X, Chi X, Tong M. Expression and significance of miR - 20b in retinal photoreceptor cells exposed to PCB 1254. Aging (Albany NY) 2019; 11:8969-8981. [PMID: 31619580 PMCID: PMC6834413 DOI: 10.18632/aging.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/05/2019] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that PCB1254 has an adverse effect on zebrafish retinal development, but the basic mechanism behind it is not clear. The purpose of this study was to investigate the molecular mechanisms of PCB-induced retinal dysplasia. RT-qPCR, immunoblotting, HE staining and immunofluorescence were adopted to detect the expression at mRNA and protein level. Functional experiments were carried out in 661w cells including CCK-8 assay, caspase-3 assay, and the flow cytometry, while the functional role of miR - 20b was further investigated by using the zebrafish model. The result showed that PCB1254 exposure inhibited cell proliferation and increased the apoptosis of the 661w cells, and the dose–response relationship between the retinal development-related genes (SWS1, CRX, Rho), miR-20b expression and PCB1254 exposure was also discovered. We confirmed that miR-20b targeted FGF2 and GRB2 by constructing a dual luciferase reporter gene and suppressed the cell function as well as PCB1254. In the miR-20b overexpression zebrafish model, we found abnormal retinal morphology characterized by sparse and irregular photoreceptor cells and the thick photoreceptor cell layers. Our results demonstrate for the first time that PCBs target the MAPK/ERK signaling through miR-20b, affecting retinal cell development and leading to visual impairment.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Child Health Care, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing 210004, China.,Department of Child Health Care, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.,Department of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Qingyu Zhang
- Department of Pediatrics, Nanjing Medical University, Nanjing 210029, China.,Department of Child Health Care, Northwest Women's and Children's Hospital, Xian 710061, China
| | - Yue Jiang
- Department of Child Health Care, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing 210004, China.,Department of Child Health Care, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.,Department of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Shuchun Zhang
- Department of Child Health Care, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing 210004, China.,Department of Child Health Care, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.,Department of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Qin Hong
- Department of Child Health Care, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing 210004, China.,Department of Child Health Care, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.,Department of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Xirong Guo
- Department of Child Health Care, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing 210004, China.,Department of Child Health Care, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.,Department of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Xia Chi
- Department of Child Health Care, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing 210004, China.,Department of Child Health Care, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.,Department of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Meiling Tong
- Department of Child Health Care, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing 210004, China.,Department of Child Health Care, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.,Department of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
36
|
Shabani N, Sheikholeslami S, Paryan M, Zarif Yeganeh M, Tavangar SM, Azizi F, Mohammadi-Yeganeh S, Hedayati M. An investigation on the expression of miRNAs including miR-144 and miR-34a in plasma samples of RET-positive and RET-negative medullar thyroid carcinoma patients. J Cell Physiol 2019; 235:1366-1373. [PMID: 31297834 DOI: 10.1002/jcp.29055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a scarce cancerous disease, originating from parafollicular C cells of the thyroid gland. MTC can be manifested as an aggressive carcinoma with metastasis, especially in sporadic forms. Mutations of the rearranged during transfection (RET) proto-oncogene occurs in all hereditary and a few somatic MTCs, so detection of RET mutations is needed for prompt and appropriate treatment. MicroRNAs (miRNAs) are noncoding regulatory RNAs. Extensive studies have done in progress or suppression of several types of cancers such as MTCs with the remarkable application as prognostic markers. Of the effective miRNAs in cancers, miR-144 and miR-34 were evaluated in our study. Blood samples of 25 RET-positive and 25 RET-negative blood samples of patients with MTC were evaluated for these miRNAs, using quantitative real-time polymerase chain reaction (RT-qPCR). Analysis of the results was performed by the 2 -ΔΔCt method, showing that miR-144 and miR-34a expression had a relative increase in patients with MTC compared with normal control samples and also in RET positives versus RET negatives. We recruited 50 out of 350 MTC plasma samples (27 female and 23 male) which were selected based on RET mutation in exon 11 (25 RET-positive and 25 RET-negative), with a mean ± SD age of 37.04 ± 1.74 years. Receiver operating characteristic (ROC) curve analysis was done to investigate the prognostic value of these miRNAs; although, they showed no significant prognostic value as MTC biomarkers in plasma samples. In conclusion, miRNAs can be used as biomarkers of cancers such as MTC; however, more studies are needed to find the best candidate miRNAs for the diagnosis of cancers.
Collapse
Affiliation(s)
- Noushin Shabani
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sheikholeslami
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Marjan Zarif Yeganeh
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center (CMERC), Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Zhang L, Lu D, Liu M, Zhang M, Peng Q. Identification and interaction analysis of key miRNAs in medullary thyroid carcinoma by bioinformatics analysis. Mol Med Rep 2019; 20:2316-2324. [PMID: 31322209 PMCID: PMC6691269 DOI: 10.3892/mmr.2019.10463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is an endocrine tumor and comprises 5–10% of all primary thyroid malignancies. However, the biomechanical contribution to the development and progression of MTC remains unclear. In this study, To discover the key microRNAs (miRNAs or miRs) and their potential roles in the tumorigenesis of MTC, the microarray datasets GSE97070, GSE40807 and GSE27155 were analyzed. The datasets were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed miRNAs (DEMs) and genes (DEGs) were accessed by R. Targets of DEMs and predicted using starBase, and functional and pathway enrichment analyses were performed using Metascape. A protein-protein interaction (PPI) network and an analysis of modules were constructed using NetworkAnalyst. Finally, a network was constructed to show the regulatory association between transcription factors (TFs), DEMs and downstream genes. A total of 5 DEMs were found both in GSE97070 and GSE40807, including 3 upregulated DEMs and 2 downregulated DEMs. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses from Metascape revealed that the target genes of upregulated DEMs were significantly enriched in adherens junction, kinase and protein binding, while the target genes of downregulated DEMs were mainly involved in non-canonical Wnt signaling pathway and RNA transport. From the PPI network, 13 nodes were screened as hub genes. Pathway enrichment analysis revealed that the top 5 modules were mostly enriched in the neurotrophin signaling pathway, mRNA surveillance pathway and MAPK signaling pathway. In addition, the TF-DEMs-target gene and DEGs regulatory network revealed that 17 TFs regulated 2 miRNAs, including upregulated or downregulated DEMs, CREB1 regulated all upregulated DEMs, and TGFB1 was an activator of hsa-miR-199a-3p and a repressor of hsa-miR-429. Taken together, the present study identified several miRNAs and potential biological mechanisms involved in the tumorigenesis of MTC. This study identified the key DEMs and potential mechanisms underlying the development of MTC, and provided a series of biomarkers and targets for the management of MTC.
Collapse
Affiliation(s)
- Lijie Zhang
- Tumor Diagnosis and Treatment Center, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| | - Donghui Lu
- Tumor Diagnosis and Treatment Center, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| | - Meiqin Liu
- Tumor Diagnosis and Treatment Center, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| | - Mingjin Zhang
- General Surgery Department, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| | - Quan Peng
- General Surgery Department, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
38
|
Song Z, Yang H, Wu X, Kong C, Xu C. microRNA-564 inhibits the aggressive phenotypes of papillary thyroid cancer by directly targeting astrocyte-elevated gene-1. Onco Targets Ther 2019; 12:4869-4881. [PMID: 31388302 PMCID: PMC6607985 DOI: 10.2147/ott.s201282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/15/2019] [Indexed: 01/19/2023] Open
Abstract
Background: Accumulating evidence has revealed that an increasing number of microRNAs (miRNAs) are dysregulated in papillary thyroid cancer (PTC) and that their dysregulation plays an important role in PTC onset and progression. Reportedly, miRNA-564 (miR-564) is downregulated in several types of human cancer. However, its expression profile and specific functions in PTC remain unclear to date. Methods: In this study, we used reverse transcription-quantitative polymerase chain reaction to detect miR-564 expression in PTC tissues and cell lines. Further, the regulatory roles of miR-564 in the malignant development of PTC in vitro and in vivo were examined using a series of functional experiments. In addition, the possible underlying mechanisms and signaling pathways involved were investigated. Results: We demonstrated that miR-564 expression markedly decreased in PTC tissues and cell lines, and this decrease correlated with the lymph node metastasis and tumor-node-metastasis stage. miR-564 upregulation significantly inhibited cell proliferation, migration, and invasion and induced cell apoptosis in vitro as well as hindered tumor growth in vivo. Furthermore, astrocyte-elevated gene-1 (AEG-1) was identified as a direct target gene of miR-564 in PTC cells. Its expression was upregulated and inversely correlated with miR-564 expression in clinically PTC tissues. Additionally, the silencing of AEG-1 expression could imitate the action of miR-564 overexpression in PTC cells. Remarkably, the restoration of AEG-1 expression partially abolished the tumor-suppressing effects induced by a miR-564 upregulation in PTC cells. Ectopic miR-564 expression deactivated the PTEN/Akt pathway in PTC cells in vitro and in vivo. Conclusion: Overall, the findings of the current study suggest that miR-564 is a tumor-suppressive miRNA that exerts crucial roles in the development and progression of PTC. Therefore, this miRNA might be a promising candidate target in the anticancer treatment of patients with PTC.
Collapse
Affiliation(s)
- Zhenzhen Song
- Department of Laboratory, The Third People’s Hospital of Linyi, Linyi, Shandong276023, People’s Republic of China
| | - Huimei Yang
- Department of Laboratory, The Third People’s Hospital of Linyi, Linyi, Shandong276023, People’s Republic of China
| | - Xia Wu
- Department of Oncology, The Third People’s Hospital of Linyi, Linyi, Shandong276023, People’s Republic of China
| | - Cui Kong
- Department of Oncology, The Third People’s Hospital of Linyi, Linyi, Shandong276023, People’s Republic of China
| | - Cong’e Xu
- Department of Radiation Oncology, Linyi Cancer Hospital, Linyi, Shandong276000, People’s Republic of China
| |
Collapse
|
39
|
Pignatti E, Vighi E, Magnani E, Kara E, Roncati L, Maiorana A, Santi D, Madeo B, Cioni K, Carani C, Rochira V, Simoni M, Brigante G. Expression and clinicopathological role of miR146a in thyroid follicular carcinoma. Endocrine 2019; 64:575-583. [PMID: 30701447 DOI: 10.1007/s12020-019-01845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Dysregulation of microRNA expression has been involved in the development and progression of follicular thyroid carcinoma (FTC). The aim of this work was to study the expression of miRNA146a in FTC and the association with clinicopathological features of the disease. METHODS Thirty-eight patients affected by FTC were included in the study. Twenty patients carrying follicular thyroid adenoma (FA) were also enroled as the benign counterpart of FTC. Total RNA including miRNA146a was extracted from formalin-fixed paraffin-embedded (FFPE) pairs of affected/unaffected tissue and its expression was assessed by real-time PCR. Two selected target genes, TRAF6 (tumour necrosis factor receptor-associated factor 6) and IRAK1 (Il-1 receptor-associated kinase 1/2), were also analysed. RESULTS miR146a expression in FTC tissue was overall not downregulated in malignant versus unaffected tissue, but its expression was inversely correlated with clinicopathological features of FTCs at diagnosis. A decreased expression of miR146a became apparent in FTC thyroid tissue of widely compared to minimally invasive tumours. However, miR146a expression differences between contralateral unaffected tissue (extra-FTC) and FTC were not observed regardless of clinicopathological features. IRAK1, a known target for miR146a, was upregulated in FTC and the increase was mainly appreciable in Hurtle FTC variant. Unexpectedly, miR146a did not correlate with TRAF6 showing an inverse trend compared to IRAK1 although both genes regulate the activity of nuclear factor- kB (NF-kB). CONCLUSION The results of this study indicate that downregulation of miR146a, inversely correlated with clinicopathological features of FTCs at diagnosis and suggest a possible involvement of miR146a in FTC development. IRAK1 over-expression in FTC may be related to tumour development/progression. In vitro experiments are needed to support this hypothesis.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Vighi
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Magnani
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elda Kara
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Roncati
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Antonino Maiorana
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Bruno Madeo
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Katia Cioni
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Cesare Carani
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Rochira
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy.
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy.
| | - Giulia Brigante
- Department of Biomedical, Metabolic and Neural Sciences, Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| |
Collapse
|
40
|
Zhang K, Li C, Liu J, Tang X, Li Z. DNA methylation alterations as therapeutic prospects in thyroid cancer. J Endocrinol Invest 2019; 42:363-370. [PMID: 29992502 DOI: 10.1007/s40618-018-0922-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Thyroid cancer is one of the most common endocrine malignancies. Although the 10-year survival rate of differentiated thyroid cancer (DTC) is about 90% after conventional treatments, a small proportion of patients still suffer from tumor recurrence or drug resistance. OBJECTIVE This review article summarizes recent researches and clinical trials related to target drugs that reduce mortality in thyroid cancer. METHODS This is a review of the recent literature and clinical trials on the three main aspects including methylation genes in thyroid cancers, the relationship between BRAF mutation and gene methylation, target and dehypermethylation drugs in clinical trials. RESULTS We propose new approaches to treating malignant thyroid cancer, based on advances in understanding the relationship between genetic and epigenetic changes in thyroid cancer. Although the effect of traditional treatment for thyroid cancer is relatively good, a small proportion of patients still suffer from tumor recurrence or drug resistance. Molecular targeted drugs and dehypermethylation drugs have more promising outcomes in aggressive thyroid cancer compared with conventional treatments. CONCLUSION Based on what was discussed in this review, we suggest that integration of epigenetic and targeted therapies into conventional treatments will reduce the occurrence of refractory radioiodine differentiated thyroid cancer and improve the outcomes in aggressive thyroid cancer patients.
Collapse
Affiliation(s)
- K Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China
| | - C Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China
- Department of Pharmacy, ZhuZhou Central Hospital, ZhuZhou, 410078, People's Republic of China
| | - J Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China
| | - X Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China
- Department of Center for ADR monitoring of Hubei, Wuhan, 430071, People's Republic of China
| | - Z Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China.
| |
Collapse
|
41
|
Abstract
Fine needle aspiration biopsy (FNAB) and ultrasonography are the most common modalities for the diagnosis and follow up of thyroid nodules. FNAB is able to distinguish benign from malignant nodules with high sensitivity and specificity; however, 20% to 30% of nodules are diagnosed as indeterminate with a risk of malignancy varying from 10% to 75% based on the 2017 revision of the Bethesda System for Reporting Thyroid Cytopathology. Molecular tests are being increasingly used to triage this group of nodules. Several molecular tests are commercially available and newer upgrades are being developed to either "rule in" or "rule out" malignancy with greater accuracy. The Afirma gene expression classifier and its recent upgrade (the Afirma gene sequencing classifier), Thryoseq v2, a next generation sequencing test and its recent upgrade (the v3), RosettaGX Reveal based on microRNA alterations, and ThyGenX/ThyraMIR, a combination test, are currently on the market. Familiarity with these tests, their performance, and postvalidation publications will enable appropriate test selection and improve triage of patients for appropriate therapy. The underlying rate of malignancy at different institutions and the interobserver variability in cytologic and histologic diagnosis of thyroid lesions are important factors that impact the performance of the various molecular tests.
Collapse
|
42
|
Castagna MG, Marzocchi C, Pilli T, Forleo R, Pacini F, Cantara S. MicroRNA expression profile of thyroid nodules in fine-needle aspiration cytology: a confirmatory series. J Endocrinol Invest 2019; 42:97-100. [PMID: 29574528 DOI: 10.1007/s40618-018-0880-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION MiRNAs are small endogenous non-coding RNAs implicated with gene expression regulation. Changes in miRNA levels have been reported in thyroid cancer. Fine-needle aspiration cytology (FNAC) is the most reliable tool for differential diagnosis of thyroid nodules. METHODS We have analyzed 174 FNAC from 168 patients with thyroid nodules for expression levels of 11 miRNAs (miRNA197; -187; -181b-3p; -181b-5p; -224; -181a; 146b; -221; -222; -155 and miRNA183) known to be up-regulated in cancer tissues compared to benign lesions. Expression of miRNAs was analyzed in FNA samples calculating the fold change of miRNA expression relative to normal thyroid tissue after normalization to an endogenous control. RESULTS In FNAC, miRNA expression was confirmed to be higher in malignant or suspicious for malignancy nodules compared to benign, only for miRNA146b, -222 and -221 (fold change expression ≥ 5). CONCLUSION In this study, we confirmed that a limited set of miRNAs can be used for the differential diagnosis of thyroid nodules.
Collapse
Affiliation(s)
- M G Castagna
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - C Marzocchi
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - T Pilli
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - R Forleo
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - F Pacini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - S Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
43
|
Huang Y, Ni R, Wang J, Liu Y. Knockdown of lncRNA DLX6-AS1 inhibits cell proliferation, migration and invasion while promotes apoptosis by downregulating PRR11 expression and upregulating miR-144 in non-small cell lung cancer. Biomed Pharmacother 2018; 109:1851-1859. [PMID: 30551440 DOI: 10.1016/j.biopha.2018.09.151] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) distal-less homeobox 6 antisense 1 (DLX6-AS1) was reported to be dysregulated in lung cancer. However, detailed roles of DLX6-AS1 in the pathogenesis of non-small cell lung cancer (NSCLC) were largely unknown. METHODS The expression of DLX6-AS1 was measured in NSCLC tissues and cells by quantitative real-time PCR (qRT-PCR). The abundance of proline rich 11 (PRR11) were detected by qRT-PCR and western blot, respectively. The effects of DLX6-AS1 and PRR11 on cell proliferation, migration, invasion and apoptosis were explored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), transwell and flow cytometry analysis, respectively. Luciferase reporter assay, qRT-PCR and western blot were performed to confirm the interaction between miR-144 and DLX6-AS1 or PRR11. Tumor xenograft assay was performed to verify the role of DLX6-AS1 in NSCLC in vivo. RESULTS DLX6-AS1 and PRR11 were elevated in NSCLC tissues and cells. DLX6-AS1 was positively correlated with PRR11 mRNA expression in NSCLC tissues. Knockdown of DLX6-AS1 and PRR11 significantly suppressed cell proliferation, migration and invasion and induced apoptosis in NSCLC cells, which was reversed by PRR11 overexpression. In addition, DLX6-AS1 and PRR11 were demonstrated to interact with microRNA-144 (miR-144) and DLX6-AS1 upregulated PRR11 expression by acting as a competing endogenous RNA (ceRNA) of miR-144 in NSCLC cells. Furthermore, DLX6-AS1 knockdown suppressed tumor growth in NSCLC in vivo by upregulating miR-144 and downregulating PRR11. CONCLUSION Knockdown of DLX6-AS1 inhibited cell proliferation, migration, invasion and promoted apoptosis by downregulating PRR11 expression and upregulating miR-144 in NSCLC.
Collapse
Affiliation(s)
- Yongjie Huang
- Department of Senile Respiratory and Sleep, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ran Ni
- Department Two of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Wang
- Department Two of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Ying Liu
- Department Five of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
44
|
Ren L, Xu Y, Qin G, Liu C, Yan Y, Zhang H. miR-199b-5p-Stonin 2 axis regulates metastases and epithelial-to-mesenchymal transition of papillary thyroid carcinoma. IUBMB Life 2018; 71:28-40. [PMID: 30325582 DOI: 10.1002/iub.1889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 01/06/2023]
Abstract
Papillary thyroid carcinoma is one of the most fatal malignant endocrine tumors, and the prognosis remains poor because of the lack of effective therapeutic targets. In this study, we demonstrated that the level of miR-199b-5p was markedly downregulated in papillary thyroid carcinoma. The ectopic expression level of miR-199b-5p in papillary thyroid carcinoma cell B-CPAP could inhibit growth, migration, and invasion as well as epithelial-mesenchymal transition (EMT) and decreased cell metastasis in vivo, but silencing miR-199b-5p caused a contradictory outcome. Additionally, Stonin 2 (STON2) was identified as a direct target gene of miR-199b-5p. Consistent with the downregulation of miR-199b-5p, the overexpression of STON2 induced the growth, migration and invasion of B-CPAP cells. It was also demonstrated that miR-199b-5p suppressed papillary thyroid carcinoma cell aggressiveness by targeting STON2. Furthermore, the overexpression of miR-199b-5p inhibited cell proliferation, promoted apoptosis, and increased the chemo-sensitivity of thyroid carcinoma B-CPAP cells toward the chemotherapy drug paclitaxel. Finally, in vivo experiments further demonstrated that miR-199b-5p suppressed tumor growth in nude mice. Thus, this study revealed that miR-199b-5p functions as antioncogene miRNA in papillary thyroid carcinoma cells and that the miR-199b-5p/STON2 axis might be a potential treatment option for papillary thyroid carcinoma. © 2018 IUBMB Life, 71(1):28-40, 2019.
Collapse
Affiliation(s)
- Lei Ren
- Department of Endocrinology, the First Affiliated Hospital of ZhengZhou University, Zhengzhou, Henan, 450002, China
| | - Yapei Xu
- Department of Nephrology, the Third People's hospital of ZhengZhou, Zhengzhou, Henan, 450000, China
| | - Guijun Qin
- Department of Endocrinology, the First Affiliated Hospital of ZhengZhou University, Zhengzhou, Henan, 450002, China
| | - Cong Liu
- Department of Endocrinology, ShengJing Hospital of China medical University, Shenyang, Liaoning, 110022, China
| | - Yushan Yan
- Department of Endocrinology, the First Affiliated Hospital of ZhengZhou University, Zhengzhou, Henan, 450002, China
| | - Huijuan Zhang
- Department of Endocrinology, the First Affiliated Hospital of ZhengZhou University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
45
|
Han M, Chen L, Wang Y. miR-218 overexpression suppresses tumorigenesis of papillary thyroid cancer via inactivation of PTEN/PI3K/AKT pathway by targeting Runx2. Onco Targets Ther 2018; 11:6305-6316. [PMID: 30319270 PMCID: PMC6167989 DOI: 10.2147/ott.s172152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background It was previously reported that downregulation of miR-218 promoted thyroid cancer cell invasion, migration, and proliferation. However, the biological functions of miR-218 and its possible regulatory mechanisms in papillary thyroid cancer (PTC) cells are still elusive. Materials and methods The expression levels of miR-218 and Runx2 in PTC tissues and cells were determined by quantitative real-time PCR (qRT-PCR) and Western blot. The effects of miR-218 overexpression on cell viability, invasion, apoptosis, and PTEN/PI3K/AKT pathway in PTC cells were evaluated by cell counting kit-8 assay, Transwell invasion assay, flow cytometry assay, and Western blot, respectively. Luciferase reporter assay and qRT-PCR were performed to identify the target of miR-218. Xenograft tumor experiment was performed to confirm the biological roles of miR-218 and its potential mechanisms in vivo. Results miR-218 expression was downregulated and Runx2 expression was upregulated in PTC tissues and cells. Overexpression of miR-218 suppressed viability and invasion, and induced apoptosis of PTC cells in vitro, while Runx2 overexpression greatly abolished these effects. miR-218 overexpression inactivated the PTEN/PI3K/AKT pathway, which was abated by Runx2 upregulation. Additionally, Runx2 was validated to be a direct target of miR-218. Moreover, enforced expression of miR-218 inhibited tumor growth and Runx2 expression, and blocked PTEN/PI3K/AKT pathway in vivo. Conclusion miR-218 overexpression suppresses the tumorigenesis of PTC via downregulating PTEN/PI3K/AKT pathway by targeting Runx2, which indicates that miR-218 may be a potential therapeutic target for human PTC.
Collapse
Affiliation(s)
- Mingkun Han
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China,
| | - Liwei Chen
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China,
| | - Yang Wang
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China,
| |
Collapse
|
46
|
Mazeh H, Deutch T, Karas A, Bogardus KA, Mizrahi I, Gur-Wahnon D, Ben-Dov IZ. Next-Generation Sequencing Identifies a Highly Accurate miRNA Panel That Distinguishes Well-Differentiated Thyroid Cancer from Benign Thyroid Nodules. Cancer Epidemiol Biomarkers Prev 2018; 27:858-863. [PMID: 30049841 DOI: 10.1158/1055-9965.epi-18-0055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/19/2018] [Accepted: 05/09/2018] [Indexed: 01/04/2023] Open
Abstract
Background: Fine needle aspiration biopsy (FNAB) is the gold-standard procedure for diagnosing malignant thyroid nodules. Indeterminate cytology is identified in 10% to 40% of cases, and molecular testing may guide management in this setting. Current commercial options are expensive, and are either sensitive or specific. The aim of this study was to utilize next-generation sequencing (NGS) technology to identify informative diversities in the miRNA expression profile of benign versus malignant thyroid nodules.Methods:Ex vivo FNAB samples were obtained from thyroid specimens of patients who underwent thyroidectomy at a referral center. miRNA levels were determined using NGS and multiplexing technologies. Statistical analyses identified differences between normal and malignant samples and miRNA expression profiles that associate with malignancy were established. The accuracy of the miRNA signature in predicting histologic malignancy was validated using a group of patient specimens with indeterminate cytology results.Results: A total of 274 samples were obtained from 102 patients undergoing thyroidectomy. Of these samples, 71% were benign and 29% were malignant. Nineteen miRNAs were identified as statistically different between benign and malignant samples and were used to classify 35 additional nodules with indeterminate cytology (validation). The miRNA panel's sensitivity, specificity, negative and positive predictive values, and overall accuracy were 91%, 100%, 87%, 100%, and 94%, respectively.Conclusions: Using NGS technology, we identified a panel of 19 miRNAs that may be utilized to distinguish benign from malignant thyroid nodules with indeterminate cytology.Impact: Our panel may classify indeterminate thyroid nodules at higher accuracy than commercially available molecular tests. Cancer Epidemiol Biomarkers Prev; 27(8); 858-63. ©2018 AACR.
Collapse
Affiliation(s)
- Haggi Mazeh
- Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tova Deutch
- Laboratory of Medical Transcriptomics, Department of Nephrology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Adi Karas
- Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kimberly A Bogardus
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York
| | - Ido Mizrahi
- Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Devorah Gur-Wahnon
- Laboratory of Medical Transcriptomics, Department of Nephrology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Iddo Z Ben-Dov
- Laboratory of Medical Transcriptomics, Department of Nephrology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
47
|
Evaluation of miRNAs expression in medullary thyroid carcinoma tissue samples: miR-34a and miR-144 as promising overexpressed markers in MTC. Hum Pathol 2018; 79:212-221. [PMID: 29885402 DOI: 10.1016/j.humpath.2018.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/09/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a rare neoplasia derived from neural parafollicular C cells. MicroRNAs (miRNAs) are small regulatory RNAs with essential roles in the biology of cancers such as MTC and can be applied as diagnostic markers. According to previous studies, miR-144 and miR-34 and their two oncogenes target, mammalian target of rapamycin (mTOR) and AXL receptor tyrosine kinase (AXL), were selected for further investigations in our study. Thirty MTC samples as well as thirty adjacent normal thyroid tissues were applied in this study including 28 formalin-fixed, paraffin-embedded (FFPE) and 2 fresh-frozen MTC samples. RNA extraction and complementary DNA (cDNA) synthesis were performed for all samples. After primer pairs and probes were designed, real-time polymerase chain reaction (real-time PCR) method was used, and the results were analyzed using 2-ΔΔCt method. Receiver operating characteristic (ROC) curve analysis was applied to assess the diagnostic value of the two miRNAs. AXL protein level was measured in all clinical samples using enzyme-linked immunosorbent assay (ELISA) method. Both miRNAs were up-regulated in all clinical samples compared to the normal tissues. AXL was up-regulated in most clinical samples while mTOR was down-regulated in most samples. Furthermore, the level of AXL protein increased. ROC curve analysis demonstrated that increased expression of miR-34a and miR-144 in MTC patients had significant predictive value. The results demonstrated that high expression of miR-144 and miR-34a can be considered as biomarkers of MTC. However, there was no statistically significant correlation between the expression of these miRNAs and target genes in MTC clinical samples.
Collapse
|
48
|
Yao Y, Zhang Y, Tang N, Pedrera M, Shen Z, Nair V. Inhibition of v- rel-Induced Oncogenesis through microRNA Targeting. Viruses 2018; 10:v10050242. [PMID: 29734737 PMCID: PMC5977235 DOI: 10.3390/v10050242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022] Open
Abstract
Several studies have shown that microRNA-targeting is an effective strategy for the selective control of tissue-tropism and pathogenesis of both DNA and RNA viruses. However, the exploitation of microRNA-targeting for the inhibition of transformation by oncogenic viruses has not been studied. The v-rel oncoprotein encoded by reticuloendotheliosis virus T strain (Rev-T) is a member of the rel/NF-κB family of transcription factors capable of transforming primary chicken spleen and bone marrow cells. Here, by engineering the target sequence of endogenous microRNA miR-142 downstream of the v-rel gene in a Replication-Competent ALV (avian leukosis virus) long terminal repeat (LTR) with a splice acceptor (RCAS) vector and using a v-rel-induced transformation model of chicken embryonic splenocyte cultures, we show that hematopoietic-specific miR-142 can inhibit the v-rel-induced transformation, and that this inhibition effect is due to the silencing of v-rel expression. The data supports the idea that microRNA-targeting can be used to inhibit viral oncogene-induced oncogenesis.
Collapse
Affiliation(s)
- Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Na Tang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, Shandong, China.
| | - Miriam Pedrera
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Zhiqiang Shen
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, Shandong, China.
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| |
Collapse
|
49
|
Wasserman JD, Sabbaghian N, Fahiminiya S, Chami R, Mete O, Acker M, Wu MK, Shlien A, de Kock L, Foulkes WD. DICER1 Mutations Are Frequent in Adolescent-Onset Papillary Thyroid Carcinoma. J Clin Endocrinol Metab 2018; 103:2009-2015. [PMID: 29474644 DOI: 10.1210/jc.2017-02698] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022]
Abstract
CONTEXT Papillary thyroid carcinoma (PTC) is a common malignancy in adolescence and is molecularly and clinically distinct from adult PTC. Mutations in the DICER1 gene are associated with thyroid abnormalities, including multinodular goiter and differentiated thyroid carcinoma. OBJECTIVE In this study, we sought to characterize the prevalence of DICER1 variants in pediatric PTC, specifically in tumors without conventional PTC oncogenic alterations. PATIENTS Patients (N = 40) who underwent partial or total thyroidectomy and who were <18 years of age at the time of surgery were selected. DESIGN The 40 consecutive thyroidectomy specimens (30 malignant, 10 benign) underwent genotyping for 17 PTC-associated variants, as well as full sequencing of the exons and exon-intron boundaries of DICER1. RESULTS Conventional alterations were found in 12 of 30 (40%) PTCs (five BRAFV600E, three RET/PTC1, four RET/PTC3). Pathogenic DICER1 variants were identified in 3 of 30 (10%) PTCs and in 2 of 10 (20%) benign nodules, all of which lacked conventional alterations and did not recur during follow-up. DICER1 alterations thus constituted 3 of 18 (16.7%) PTCs without conventional alterations. The three DICER1-mutated carcinomas each had two somatic DICER1 alterations, whereas two follicular-nodular lesions arose in those with germline DICER1 mutations and harbored characteristic second somatic RNase IIIb "hotspot" mutations. CONCLUSIONS DICER1 is a driver of pediatric thyroid nodules, and DICER1-mutated PTC may represent a distinct class of low-risk malignancies. Given the prevalence of variants in children, we advocate for inclusion of DICER1 sequencing and gene dosage determination in molecular analysis of pediatric thyroid specimens.
Collapse
Affiliation(s)
- Jonathan D Wasserman
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Nelly Sabbaghian
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Somayyeh Fahiminiya
- Department of Medical Genetics, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rose Chami
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ozgur Mete
- Department of Pathology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Meryl Acker
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mona K Wu
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Adam Shlien
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada
| | - Leanne de Kock
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - William D Foulkes
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medical Genetics, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Klinge CM. Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr Relat Cancer 2018; 25:R259-R282. [PMID: 29440232 DOI: 10.1530/erc-17-0548] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
The human genome is 'pervasively transcribed' leading to a complex array of non-coding RNAs (ncRNAs) that far outnumber coding mRNAs. ncRNAs have regulatory roles in transcription and post-transcriptional processes as well numerous cellular functions that remain to be fully described. Best characterized of the 'expanding universe' of ncRNAs are the ~22 nucleotide microRNAs (miRNAs) that base-pair to target mRNA's 3' untranslated region within the RNA-induced silencing complex (RISC) and block translation and may stimulate mRNA transcript degradation. Long non-coding RNAs (lncRNAs) are classified as >200 nucleotides in length, but range up to several kb and are heterogeneous in genomic origin and function. lncRNAs fold into structures that interact with DNA, RNA and proteins to regulate chromatin dynamics, protein complex assembly, transcription, telomere biology and splicing. Some lncRNAs act as sponges for miRNAs and decoys for proteins. Nuclear-encoded lncRNAs can be taken up by mitochondria and lncRNAs are transcribed from mtDNA. Both miRNAs and lncRNAs are dysregulated in endocrine cancers. This review provides an overview on the current understanding of the regulation and function of selected lncRNAs and miRNAs, and their interaction, in endocrine-related cancers: breast, prostate, endometrial and thyroid.
Collapse
|