1
|
Jia M, Liang J, Gao L, Wei N, Qin Y, Li Q, Wang X, Zheng J, Wang H, Wang J, Wang S, Lu X. Navigating thyroid cancer complexity: the emerging role of EV-derived non-coding RNAs. Cell Death Discov 2025; 11:142. [PMID: 40185719 PMCID: PMC11971377 DOI: 10.1038/s41420-025-02411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Thyroid cancer (TC), which arises from the epithelial cells of the thyroid gland, is experiencing a significant increase in incidence globally. TC encompasses various subtypes, including papillary, follicular, medullary, and anaplastic thyroid cancers, each with distinct pathological and clinical features. Extracellular vesicles (EVs), are naturally occurring and nanosized lipid bilayers, and can be secreted by almost all cell types. EVs, comprising microvesicles and exosomes, are pivotal in mediating intercellular communication within the tumor microenvironment. Notably, EVs possess unique properties such as stability in circulation and the ability to traverse biological barriers, enhancing their role as carriers of molecular information. EVs carry non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, which are crucial regulators of gene expression. Recent studies have highlighted the significant role of EV-derived ncRNAs in influencing thyroid cancer progression, metastasis, and immune modulation by mediating intercellular communication within the tumor microenvironment. The expression of EV-derived ncRNAs varies across different stages of thyroid cancer, reflecting potential as biomarkers for diagnosis and targets for therapy. This review delves into the multifaceted roles of EV-ncRNAs in thyroid cancer, emphasizing their impact on tumor growth, metastatic potential, and immune interactions, while also exploring their promising applications in early diagnosis and targeted treatment strategies. Understanding these dynamics is essential for developing innovative interventions to improve patient outcomes in thyroid cancer.
Collapse
Affiliation(s)
- Meng Jia
- Department of Thyroid surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jiawen Liang
- Department of Thyroid surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ye Qin
- Department of Thyroid surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qianqian Li
- Department of Thyroid surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xintao Wang
- Department of Thyroid surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jian Zheng
- Department of Thyroid surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hao Wang
- Department of Thyroid surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jie Wang
- Department of Thyroid surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuo Wang
- Department of Thyroid surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiubo Lu
- Department of Thyroid surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
2
|
Sun L, Ma Y, Geng C, Gao X, Li X, Ru Q, Zhu S, Zhang P. DPP4, a potential tumor biomarker, and tumor therapeutic target: review. Mol Biol Rep 2025; 52:126. [PMID: 39821530 DOI: 10.1007/s11033-025-10235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a serine protease widely distributed in membrane-bound and soluble forms in various tissues and organs throughout the body. DPP4 plays a role in inflammation, immune regulation, cell growth, migration and differentiation. The role of DPP4 in tumors has garnered increasing attention. Previous research has demonstrated that DPP4 contributes to the promotion of cancer in most cancers, and it may play a specific biological function through the variation in tumor cell types and expression forms. However, the expression of DDP4 in different tumor types and its specific mechanism remains unclear. In this review, we describe the structure of DPP4, summarize the recent research progress of its expression and potential mechanisms in common tumors, and discuss the development prospects of DPP4 inhibitors in tumor therapy. Although current research emphasizes the potential of DPP4 as a drug target, the incomplete understanding of its regulatory mechanisms impedes the discovery and development of new therapies against it. Further research on DPP4-related tumors is anticipated to promote its clinical application as a potential therapeutic target.
Collapse
Affiliation(s)
- Lu Sun
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Yuhui Ma
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Chenchen Geng
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Xiaoqian Gao
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Xinbing Li
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Qi Ru
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Shuzhen Zhu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, 266035, China.
| | - Ping Zhang
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China.
- Health Management Center, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China.
| |
Collapse
|
3
|
Zhang S, Yang Y, Wang D, Yang X, Cai Y, Shui C, Yang R, Tian W, Li C. Exploring exosomes: novel diagnostic and therapeutic frontiers in thyroid cancer. Front Pharmacol 2024; 15:1431581. [PMID: 39584141 PMCID: PMC11581896 DOI: 10.3389/fphar.2024.1431581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
In recent years, the incidence of thyroid cancer has surged globally, posing significant challenges in its diagnosis, treatment, and prognosis. Exosomes, as a class of extracellular vesicles, are secreted by nearly all cell types and encapsulate a variety of nucleic acids and proteins reflective of their cell of origin, thereby facilitating critical intercellular communication. Recent advancements in understanding these exosomes have catalyzed their application in oncology, particularly through uncovering their roles in the pathogenesis, diagnosis, and therapy of cancers. Notably, the latest literature highlights the integral role of exosomes in refining diagnostic techniques, enhancing targeted therapies, optimizing radiotherapy outcomes, and advancing immunotherapeutic approaches in thyroid cancer management. This review provides a current synthesis of the implications of exosomes in thyroid cancer tumorigenesis and progression, as well as their emerging applications in diagnosis and treatment strategies. Furthermore, we discuss the profound clinical potential of exosome-based interventions in managing thyroid cancer, serving as a foundational reference for future therapeutic developments.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Yang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Dianri Wang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xueting Yang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongcong Cai
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyan Shui
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ruoyi Yang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oral and Maxillofacial Surgery, Guizhou Medical University, Guiyang, China
| | - Wen Tian
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Chao Li
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Sun W, Jiang C, Liu Q, Wang N, Huang R, Jiang G, Yang Y. Exosomal noncoding RNAs: decoding their role in thyroid cancer progression. Front Endocrinol (Lausanne) 2024; 15:1337226. [PMID: 38933820 PMCID: PMC11199389 DOI: 10.3389/fendo.2024.1337226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Exosomes, as pivotal entities within the tumor microenvironment, orchestrate intercellular communication through the transfer of diverse molecules, among which non-coding RNAs (ncRNAs) such as miRNAs, lncRNAs, and circRNAs play a crucial role. These ncRNAs, endowed with regulatory functions, are selectively incorporated into exosomes. Emerging evidence underscores the significance of exosomal ncRNAs in modulating key oncogenic processes in thyroid cancer (TC), including proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and immunoediting. The unique composition of exosomes shields their cargo from enzymatic and chemical degradation, ensuring their integrity and facilitating their specific expression in plasma. This positions exosomal ncRNAs as promising candidates for novel diagnostic and prognostic biomarkers in TC. Moreover, the potential of exosomes in the therapeutic landscape of TC is increasingly recognized. This review aims to elucidate the intricate relationship between exosomal ncRNAs and TC, fostering a deeper comprehension of their mechanistic involvement. By doing so, it endeavors to propel forward the exploration of exosomal ncRNAs in TC, ultimately paving the way for innovative diagnostic and therapeutic strategies predicated on exosomes and their ncRNA content.
Collapse
Affiliation(s)
- Weiming Sun
- The First Hospital of Lanzhou University, Endocrinology Department, Lanzhou, China
| | - Chenjun Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Na Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Gengchen Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuxuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Vogt S, Handke D, Behre HM, Greither T. Decreased Serum Levels of the Insulin Resistance-Related microRNA miR-320a in Patients with Polycystic Ovary Syndrome. Curr Issues Mol Biol 2024; 46:3379-3393. [PMID: 38666942 PMCID: PMC11049427 DOI: 10.3390/cimb46040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is often associated with metabolic abnormalities in the affected patients such as obesity or a dysregulated glucose metabolism/insulin resistance (IR). IR affects the serum levels of several circulating microRNAs; however, studies on the association between IR-related microRNAs and PCOS are scarce. Therefore, we quantified the serum levels of the IR-associated microRNAs miR-93, miR-148a, miR-216a, miR-224 and miR-320a via qPCR in a cohort of 358 infertility patients, of whom 136 were diagnosed with PCOS. In bivariate correlation analyses, the serum levels of miR-93 and miR-216a were inversely associated with dipeptidyl peptidase 4 serum concentrations, and the miR-320a serum levels were significantly downregulated in PCOS patients (p = 0.02, Mann-Whitney U test). Interestingly, in all patients who achieved pregnancy after Assisted Reproductive Technology (ART) cycles, the serum levels of the five IR-associated microRNAs were significantly elevated compared to those of non-pregnant patients. In cell culture experiments, we detected a significant upregulation of miR-320a expression following testosterone stimulation over 24 and 48 h in KGN and COV434 granulosa carcinoma cells. In conclusion, we demonstrated a significantly reduced serum level of the IR-associated miR-320a in our patient cohort. This result once again demonstrates the close relationship between metabolic disorders and the dysregulation of microRNA expression patterns in PCOS.
Collapse
Affiliation(s)
| | | | | | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin-Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| |
Collapse
|
6
|
Song Y, Song Q, Hu D, Sun B, Gao M, Liang X, Qu B, Suo L, Yin Z, Wang L. The potential applications of artificially modified exosomes derived from mesenchymal stem cells in tumor therapy. Front Oncol 2024; 13:1299384. [PMID: 38250549 PMCID: PMC10798044 DOI: 10.3389/fonc.2023.1299384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tumor-homing ability and play critical roles in tumor treatment, but their dual influences on tumor progression limit their therapeutic applications. Exosomes derived from MSCs (MSC-exosomes) exhibit great potential in targeted tumor treatment due to their advantages of high stability, low immunogenicity, good biocompatibility, long circulation time and homing characteristics. Furthermore, the artificial modification of MSC-exosomes could amplify their advantages and their inhibitory effect on tumors and could overcome the limit of tumor-promoting effect. In this review, we summarize the latest therapeutic strategies involving artificially modified MSC-exosomes in tumor treatment, including employing these exosomes as nanomaterials to carry noncoding RNAs or their inhibitors and anticancer drugs, and genetic engineering modification of MSC-exosomes. We also discuss the feasibility of utilizing artificially modified MSC-exosomes as an emerging cell-free method for tumor treatment and related challenges.
Collapse
Affiliation(s)
- Yilin Song
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanlin Song
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Daosheng Hu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Binwen Sun
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingwei Gao
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangnan Liang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Boxin Qu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lida Suo
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Shao J, Wang W, Tao B, Cai Z, Li H, Chen J. Extracellular vesicle-carried GTF2I from mesenchymal stem cells promotes the expression of tumor-suppressive FAT1 and inhibits stemness maintenance in thyroid carcinoma. Front Med 2023; 17:1186-1203. [PMID: 37707678 DOI: 10.1007/s11684-023-0999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/01/2023] [Indexed: 09/15/2023]
Abstract
Through bioinformatics predictions, we identified that GTF2I and FAT1 were downregulated in thyroid carcinoma (TC). Further, Pearson's correlation coefficient revealed a positive correlation between GTF2I expression and FAT1 expression. Therefore, we selected them for this present study, where the effects of bone marrow mesenchymal stem cell-derived EVs (BMSDs-EVs) enriched with GTF2I were evaluated on the epithelial-to-mesenchymal transition (EMT) and stemness maintenance in TC. The under-expression of GTF2I and FAT1 was validated in TC cell lines. Ectopically expressed GTF2I and FAT1 were found to augment malignant phenotypes of TC cells, EMT, and stemness maintenance. Mechanistic studies revealed that GTF2I bound to the promoter region of FAT1 and consequently upregulated its expression. MSC-EVs could shuttle GTF2I into TPC-1 cells, where GTF2I inhibited TC malignant phenotypes, EMT, and stemness maintenance by increasing the expression of FAT1 and facilitating the FAT1-mediated CDK4/FOXM1 downregulation. In vivo experiments confirmed that silencing of GTF2I accelerated tumor growth in nude mice. Taken together, our work suggests that GTF2I transferred by MSC-EVs confer antioncogenic effects through the FAT1/CDK4/FOXM1 axis and may be used as a promising biomarker for TC treatment.
Collapse
Affiliation(s)
- Jie Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenjuan Wang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Baorui Tao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zihao Cai
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haixia Li
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
8
|
Latini A, Vancheri C, Amati F, Morini E, Grelli S, Claudia M, Vita P, Colona VL, Murdocca M, Andreoni M, Malagnino V, Raponi M, Cocciadiferro D, Novelli A, Borgiani P, Novelli G. Expression analysis of miRNA hsa-let7b-5p in naso-oropharyngeal swabs of COVID-19 patients supports its role in regulating ACE2 and DPP4 receptors. J Cell Mol Med 2022; 26:4940-4948. [PMID: 36073344 PMCID: PMC9538662 DOI: 10.1111/jcmm.17492] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the novel coronavirus responsible for worldwide coronavirus disease (COVID-19). We previously observed that Angiotensin-converting enzyme 2 (ACE2) and Dipeptidyl peptidase-4 (DPP4) are significantly overexpressed in naso-oropharyngeal swabs (NPS) of COVID-19 patients, suggesting their putative functional role in the disease progression. ACE2 and DPP4 overexpression in COVID-19 patients may be associated to epigenetic mechanism, such as miRNA differential expression. We investigated if hsa-let7b-5p, reported to target both ACE2 and DPP4 transcripts, could be involved in the regulation of these genes. We verified that the inhibition and overexpression of hsa-let7b-5p matched to a modulation of both ACE2 and DPP4 levels. Then, we observed a statistically significant downregulation (FC = -1.5; p < 0.05) of hsa-let7b-5p in the same COVID-19 and control samples of our previous study. This is the first study that shows hsa-let7b-5p low expression in naso-oropharyngeal swabs of COVID-19 patients and demonstrates a functional role of this miR in regulating ACE2 and DPP4 levels. These data suggest the involvement of hsa-let7b-5p in the regulation of genes necessary for SARS-CoV-2 infections and its putative role as a therapeutic target for COVID-19.
Collapse
Affiliation(s)
- Andrea Latini
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Vancheri
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Amati
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy
| | - Elena Morini
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Matteucci Claudia
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Petrone Vita
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Michela Murdocca
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy
| | - Massimo Andreoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Vincenzo Malagnino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy.,Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy.,Neuromed IRCCS Institute, Pozzilli, Italy.,School of Medicine, Reno University of Nevada, Reno, Nevada, USA
| |
Collapse
|
9
|
Stem cells therapy for thyroid diseases: progress and challenges. Curr Ther Res Clin Exp 2022; 96:100665. [PMID: 35371349 PMCID: PMC8968462 DOI: 10.1016/j.curtheres.2022.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background Thyroid hormones are indispensable for organ development and maintaining homeostasis. Thyroid diseases, including thyroiditis and thyroid cancer, affect the normal secretion of hormones and result in thyroid dysfunction. Objective This review focuses on therapeutic applications of stem cells for thyroid diseases. Methods A literature search of Medline and PubMed was conducted (January 2000–July 2021) to identify recent reports on stem cell therapy for thyroid diseases. Results Stem cells are partially developed cell types. They have the capacity to form specialized cells. Besides embryonic stem cells and mesenchymal stem cells, organ resident stem cells and cancer stem cells are recently reported to have important roles in forming organ specific cells and cancers. Stem cells, especially mesenchymal stem cells, have anti-inflammatory and anticancer functions as well. Conclusions This review outlines the therapeutic potency of embryonic stem cells, mesenchymal stem cells, thyroid resident stem cells, and thyroid cancer stem cells in thyroid cells’ regeneration, thyroid function modulation, thyroiditis suppression, and antithyroid cancers. Stem cells represent a promising form of treatment for thyroid disorders.
Collapse
|
10
|
Chen W, Li G, Li Z, Zhu J, Wei T, Lei J. Evaluation of plasma exosomal miRNAs as potential diagnostic biomarkers of lymph node metastasis in papillary thyroid carcinoma. Endocrine 2022; 75:846-855. [PMID: 34854020 DOI: 10.1007/s12020-021-02949-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE The early diagnosis of lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC) is clinically important, as it can aid in treatment decision-making and improve prognosis. In the present study, we aimed to identify whether plasma exosomal miRNAs could be potential diagnostic markers of LNM in PTC. METHODS Profiles of plasma exosomal miRNAs were screened using miRNA microarrays. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed in the validation and diagnostic sets to select candidate exosomal miRNAs. Finally, receiver operating characteristic (ROC) curves were generated to evaluate the efficiency of target exosomal miRNAs in distinguishing PTC-N1 patients from PTC-N0 patients. RESULTS In total, 197 miRNAs were found to be differentially expressed in the testing set. Based on the qRT-PCR results, the expression of miR-6774-3p (p < 0.001) and miR-6879-5p (p < 0.001) in the PTC-N1 patients was significantly higher than that in the controls. The AUC values of plasma exosomal miR-6774-3p (0.802; 95% CI, 0.724-0.879) and miR-6879-5p (0.787; 95% CI, 0.706-0.867) and their combination (0.914; 95% CI, 0.865-0.962) were higher than those of the total miRNAs directly isolated from plasma. Moreover, the expression of exosomal miRNAs was stable after treatment with RNase A, prolonged incubation, or repeated freezing and thawing. CONCLUSIONS The two plasma exosomal miRNAs (miR-6774-3p and miR-6879-5p) and their combination could serve as new promising biomarkers for the diagnosis of LNM in PTC patients.
Collapse
Affiliation(s)
- Wenjie Chen
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Genpeng Li
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zhihui Li
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jingqiang Zhu
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Tao Wei
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jianyong Lei
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Identification of DPP4/CTNNB1/MET as a Theranostic Signature of Thyroid Cancer and Evaluation of the Therapeutic Potential of Sitagliptin. BIOLOGY 2022; 11:biology11020324. [PMID: 35205190 PMCID: PMC8869712 DOI: 10.3390/biology11020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Simple Summary In recent years, the incidence of thyroid cancer has been increasing globally, with papillary thyroid cancer (PTCa) being the most prevalent pathological type. Although PTCa has been regarded to be slow growing and has a good prognosis, in some cases, PTCa can be aggressive and progress despite surgery and radioactive iodine treatment. Therefore, searching for new targets and therapies is required. We utilized bioinformatics analyses to identify critical theranostic markers for PTCa. We found that DPP4/CTNNB1/MET is an oncogenic signature that is overexpressed in PTCa and associated with disease progression, distant metastasis, treatment resistance, immuno-evasive phenotypes, and poor clinical outcomes. Interestingly, our in silico molecular docking results revealed that sitagliptin, an antidiabetic drug, has strong affinities and potential for targeting DPP4/CTNNB1/MET signatures, even higher than standard inhibitors of these genes. Collectively, our findings suggest that sitagliptin could be repurposed for treating PTCa. Abstract In recent years, the incidence of thyroid cancer has been increasing globally, with papillary thyroid cancer (PTCa) being the most prevalent pathological type, accounting for approximately 80% of all cases. Although PTCa has been regarded to be slow growing and has a good prognosis, in some cases, PTCa can be aggressive and progress despite surgery and radioactive iodine treatment. In addition, most cancer treatment drugs have been shown to be cytotoxic and nonspecific to cancer cells, as they also affect normal cells and consequently cause harm to the body. Therefore, searching for new targets and therapies is required. Herein, we explored a bioinformatics analysis to identify important theranostic markers for THCA. Interestingly, we identified that the DPP4/CTNNB1/MET gene signature was overexpressed in PTCa, which, according to our analysis, is associated with immuno-invasive phenotypes, cancer progression, metastasis, resistance, and unfavorable clinical outcomes of thyroid cancer cohorts. Since most cancer drugs were shown to exhibit cytotoxicity and to be nonspecific, herein, we evaluated the anticancer effects of the antidiabetic drug sitagliptin, which was recently shown to possess anticancer activities, and is well tolerated and effective. Interestingly, our in silico molecular docking results exhibited putative binding affinities of sitagliptin with DPP4/CTNNB1/MET signatures, even higher than standard inhibitors of these genes. This suggests that sitagliptin is a potential THCA therapeutic, worthy of further investigation both in vitro and in vivo and in clinical settings.
Collapse
|
12
|
Gao X, Le Y, Geng C, Jiang Z, Zhao G, Zhang P. DPP4 Is a Potential Prognostic Marker of Thyroid Carcinoma and a Target for Immunotherapy. Int J Endocrinol 2022; 2022:5181386. [PMID: 36467461 PMCID: PMC9715318 DOI: 10.1155/2022/5181386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/24/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
DPP4 (dipeptidyl peptidase 4) is expressed in many cancers, but the relationship between DPP4 and thyroid carcinoma (THCA) is incompletely understood. We aim to explore the expression of DPP4 in THCA and the correlation between DPP4 expression with the prognosis of THCA and antitumor immunity. We systematically analyzed data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases and explored DPP4 expression, its impact on prognosis, and its relationship with antitumor immunity in THCA. Next, we collected 18 pairs of fresh THCA and adjacent paracancerous tissues and performed RT-qPCR to validate the DPP4 mRNA level. Concurrently, immunohistochemistry (IHC) analysis was performed on 12 pairs of paraffin-embedded tissues of medullary thyroid carcinoma (MTC) and paracancerous tissues to validate the DPP4 protein level. Bioinformatics analysis showed that DPP4 mRNA expression in THCA was significantly higher than that in paracancerous tissues (p < 0.01). DPP4 was expressed at the highest levels in MTC than in other pathological types. The DPP4 expression level was different between groups with different clinical characteristics. The higher the DPP4 expressed in THCA, the lower the disease-free survival (DFS) was (HR = 1.8, p=0.048). DPP4 was significantly correlated with immune cell infiltration and immune response and was positively associated with 21 immune checkpoint genes (ICGs) in THCA (p < 0.05). The results of RT-qPCR showed that the relative mRNA expression of DPP4 was significantly upregulated in 18 THCA tissues compared to that in paracancerous tissues (p=0.011). IHC results showed that the DPP4 protein level was higher in 12 MTC tissues than in paracancerous tissues (p=0.011). In conclusion, DPP4 is a potential prognostic marker of THCA and may become an effective target for immunotherapy.
Collapse
Affiliation(s)
- Xiaoqian Gao
- Department of Ultrasound, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Yali Le
- Health Management Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Chenchen Geng
- Department of Ultrasound, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Zhen Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Guanghui Zhao
- Medical Laboratory Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Ping Zhang
- Department of Ultrasound, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
- Health Management Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
13
|
Zhu G, Chang X, Kang Y, Zhao X, Tang X, Ma C, Fu S. CircRNA: A novel potential strategy to treat thyroid cancer (Review). Int J Mol Med 2021; 48:201. [PMID: 34528697 PMCID: PMC8480381 DOI: 10.3892/ijmm.2021.5034] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) is the most common type of endocrine cancer. Over the last 50 years, the global incidence of TC has been increasing. The survival rate of TC is higher than that of most other types of cancer, but it depends on numerous factors, including the specific type of TC and stage of the disease. Circular RNAs (circRNAs) are a new class of long noncoding RNA with a closed loop structure that have a critical role in the complex gene regulatory network that controls the emergence of TC. The most important function of circRNAs is their ability to specifically bind to microRNAs. In addition, the biological functions of circRNAs also include interactions with proteins, regulation of the transcription of genes and acting as translation templates. Based on the characteristics of circRNAs, they have been identified as potential biomarkers for the diagnosis of tumors. In the present review, the function and significance of circRNAs and their potential clinical implications for TC were summarized. Furthermore, possible treatment approaches involving the use of mesenchymal stem cells (MSCs) and exosomes derived from MSCs as carriers to load and transport circRNAs were discussed.
Collapse
Affiliation(s)
- Guomao Zhu
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xingyu Chang
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yuchen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xinzhu Zhao
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xulei Tang
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Chengxu Ma
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Songbo Fu
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
14
|
Feng K, Ma R, Zhang L, Li H, Tang Y, Du G, Niu D, Yin D. The Role of Exosomes in Thyroid Cancer and Their Potential Clinical Application. Front Oncol 2020; 10:596132. [PMID: 33335859 PMCID: PMC7736410 DOI: 10.3389/fonc.2020.596132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of thyroid cancer (TC) is rapidly increasing worldwide. The diagnostic accuracy and dynamics of TC need to be improved, and traditional treatments are not effective enough for patients with poorly differentiated thyroid cancer. Exosomes are membrane vesicles secreted specifically by various cells and are involved in intercellular communication. Recent studies have shown that exosomes secreted by TC cells contribute to tumor progression, angiogenesis and metastasis. Exosomes in liquid biopsies can reflect the overall molecular information of tumors, and have natural advantages in diagnosing TC. Exosomes also play an important role in tumor therapy due to their special physicochemical properties. TC patients will benefit as more exosome patterns are discovered. In this review, we discuss the role of TC-derived exosomes in tumorigenesis and development, and describe the application of exosomes in the diagnosis and treatment of TC.
Collapse
Affiliation(s)
- Kaixiang Feng
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Runsheng Ma
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lele Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China
| | - Hongqiang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China
| | - Yifeng Tang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China
| | - Gongbo Du
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongpeng Niu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Thyroid Surgery, Key Discipline Laboratory of Clinical Medicine of Henan, Zhengzhou, China
| |
Collapse
|