1
|
Liu X, Liu T, Zhou Z, Bian K, Qiu C, Zhang F. Brusatol improves the efficacy of sorafenib in Huh7 cells via ferroptosis resistance dependent Nrf2 signaling pathway. Biochem Biophys Res Commun 2024; 734:150762. [PMID: 39353360 DOI: 10.1016/j.bbrc.2024.150762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis. The recommended treatment of unresectable HCC involves targeted therapy, for example sorafenib, combined with immunotherapy. A recent article reported that sorafenib could induce ferroptosis escape in HCC. Brusatol is a novel Nrf2 inhibitor that takes effects in various diseases. In our study, we aimed to identify whether the addition of Brusatol to sorafenib could reverse ferroptosis escape in Huh7 cells. METHODS The cultured Huh7 cells treated by sorafenib with or without Brusatol addition were harvested for ferroptotic phenotype experiments and ferroptosis-related markers such as GPX4 and SLC7A11 were detected. In vivo experiments were conducted to discover the effect of Brusatol in combination with sorafenib in liver tumor bearing mice. Mechanism signaling pathways were detected by RNA-sequencing. RESULTS Brusatol alone could induce Huh7 cell death and sorafenib could moderately mediate Huh7 cell ferroptosis by paradoxically inhibiting GPX4. However, sorafenib simultaneously upregulates Nrf2 signaling in Huh7 cells fighting against ferroptosis to result in sorafenib resistance. The addition of Brusatol could potentiate ferroptosis in Huh7 cells through downregulating Nrf2 and the downstream HO-1 and NQO1, thus enhancing the efficacy of sorafenib, which could be reversed by ferrostatin-1 treatment. CONCLUSION In conclusion, Brusatol improves the efficacy of sorafenib by inducing ferroptosis via hindering Nrf2 signaling activation in HCC.
Collapse
Affiliation(s)
- Xujin Liu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Tianyi Liu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Zhonghua Zhou
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Kai Bian
- Department of Burn and Plastic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China; Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, PR China
| | - Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, Shandong, PR China
| | - Fan Zhang
- Department of Burn and Plastic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
2
|
Gan L, Wang W, Jiang J, Tian K, Liu W, Cao Z. Dual role of Nrf2 signaling in hepatocellular carcinoma: promoting development, immune evasion, and therapeutic challenges. Front Immunol 2024; 15:1429836. [PMID: 39286246 PMCID: PMC11402828 DOI: 10.3389/fimmu.2024.1429836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and ranks as the third leading cause of cancer-related mortality globally. The liver performs a wide range of tasks and is the primary organ responsible for metabolizing harmful substances and foreign compounds. Oxidative stress has a crucial role in growth and improvement of hepatocellular carcinoma (HCC). Nuclear factor erythroid 2 (1)-related factor 2 (Nrf2) is an element that regulates transcription located in the cytoplasm. It controls the balance of redox reactions by stimulating the expression of many genes that depend on antioxidant response elements. Nrf2 has contrasting functions in the normal, healthy liver and HCC. In the normal liver, Nrf2 provides advantageous benefits, while in HCC it promotes harmful effects that support the growth and survival of HCC. Continuous activation of Nrf2 has been detected in HCC and promotes its advancement and aggressiveness. In addition, Activation of Nrf2 may lead to immune evasion, weakening the immune cells' ability to attack tumors and thereby promoting tumor development. Furthermore, chemoresistance in HCC, which is considered a form of stress response to chemotherapy medications, significantly impedes the effectiveness of HCC treatment. Stress management is typically accomplished by activating specific signal pathways and chemical variables. One important element in the creation of chemoresistance in HCC is nuclear factor-E2-related factor 2 (Nrf2). Nrf2 is a transcription factor that regulates the activation and production of a group of genes that encode proteins responsible for protecting cells from damage. This occurs through the Nrf2/ARE pathway, which is a crucial mechanism for combating oxidative stress within cells.
Collapse
Affiliation(s)
- Lin Gan
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Jinxiu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
3
|
Li H, Fan S, Gong Z, Chan JYK, Tong MCF, Chen GG. Role of hematological and neurological expressed 1 (HN1) in human cancers. Crit Rev Oncol Hematol 2024; 201:104446. [PMID: 38992849 DOI: 10.1016/j.critrevonc.2024.104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Hematological and neurological expressed 1 (HN1), also known as Jupiter microtubule associated homolog 1 (JPT1), is a highly conserved protein with widespread expression in various tissues. Ectopic elevation of HN1 has been observed in multiple cancers, highlighting its role in tumorigenesis and progression. Both proteomics and transcriptomics reveal that HN1 is closely associated with severe disease progression, poor prognostic and shorter overall survival. HN1's involvement in cancer cell proliferation and metastasis has been extensively investigated. Overexpression of HN1 is associated with increased tumor growth and disease progression, while its depletion leads to cell cycle arrest and apoptosis. The pivotal role of HN1 in cancer progression, particularly in proliferation, migration, and invasion, underscores its significance in cancer metastasis. Validation of the efficacy and safety of HN1 inhibition, along with the development of diagnostic methods to determine HN1 expression levels in patients, is essential for the translation of HN1-targeted therapies into clinical practice. Overall, HN1 emerges as a valuable prognostic marker and therapeutic target in cancer, and further investigations hold the potential to improve patient outcomes by impeding metastasis and enhancing treatment strategies.
Collapse
Affiliation(s)
- Huangcan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Simiao Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Jason Ying Kuen Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Michael Chi Fai Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - George Gong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Yu X, He Z, Wang Z, Ke S, Wang H, Wang Q, Li S. Brusatol hinders the progression of bladder cancer by Chac1/Nrf2/SLC7A11 pathway. Exp Cell Res 2024; 438:114053. [PMID: 38663476 DOI: 10.1016/j.yexcr.2024.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Bladder cancer is a common tumor that impacts the urinary system and marked by a significant fatality rate and an unfavorable prognosis. Promising antineoplastic properties are exhibited by brusatol, which is obtained from the dried ripe fruit of Brucea javanica. The present study aimed to evaluate the influence of brusatol on the progression of bladder cancer and uncover the molecular mechanism involved. We used Cell Counting Kit-8, colony formation and EdU assays to detect cell numbers, viability and proliferation. We used transwell migration assay to detect cell migration ability. The mechanism of brusatol inhibition of bladder cancer proliferation was studied by flow cytometry and western blotting. It was revealed that brusatol could reduce the viability and proliferation of T24 and 5637 cells. The transwell migration assay revealed that brusatol was able to attenuate the migration of T24 and 5637 cells. We found that treatment with brusatol increased the levels of reactive oxygen species, malondialdehyde and Fe2+, thereby further promoting ferroptosis in T24 and 5637 cells. In addition, treatment with RSL3 (an agonistor of ferroptosis) ferrostatin-1 (a selective inhibitor of ferroptosis) enhanced or reversed the brusatol-induced inhibition. In vivo, treatment with brusatol significantly suppressed the tumor growth in nude mice. Mechanistically, brusatol induced ferroptosis by upregulating the expression of ChaC glutathione-specific gamma-glutamylcyclotransferase (Chac1) and decreasing the expression of SLC7A11 and Nrf2 in T24 and 5637 cells. To summarize, the findings of this research demonstrated that brusatol hindered the growth of bladder cancer and triggered ferroptosis via the Chac1/Nrf2/SLC7A11 pathway.
Collapse
Affiliation(s)
- Xi Yu
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Ziqi He
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Departments of urology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhong Wang
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei 430060, PR China.
| | - Shuai Ke
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Departments of urology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Huaxin Wang
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qinghua Wang
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Department of Urology, Tongji Hospital, Tongji University School of Medicine, 200065 Shanghai, China
| | - Shenglan Li
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Department of Radiography, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
5
|
Iacobas DA, Iacobas S. Papillary Thyroid Cancer Remodels the Genetic Information Processing Pathways. Genes (Basel) 2024; 15:621. [PMID: 38790250 PMCID: PMC11120757 DOI: 10.3390/genes15050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The genetic causes of the differentiated, highly treatable, and mostly non-fatal papillary thyroid cancer (PTC) are not yet fully understood. The mostly accepted PTC etiology blames the altered sequence or/and expression level of certain biomarker genes. However, tumor heterogeneity and the patient's unique set of favoring factors question the fit-for-all gene biomarkers. Publicly accessible gene expression profiles of the cancer nodule and the surrounding normal tissue from a surgically removed PTC tumor were re-analyzed to determine the cancer-induced alterations of the genomic fabrics responsible for major functional pathways. Tumor data were compared with those of standard papillary and anaplastic thyroid cancer cell lines. We found that PTC regulated numerous genes associated with DNA replication, repair, and transcription. Results further indicated that changes of the gene networking in functional pathways and the homeostatic control of transcript abundances also had major contributions to the PTC phenotype occurrence. The purpose to proliferate and invade the entire gland may explain the substantial transcriptomic differences we detected between the cells of the cancer nodule and those spread in homo-cellular cultures (where they need only to survive). In conclusion, the PTC etiology should include the complex molecular mechanisms involved in the remodeling of the genetic information processing pathways.
Collapse
Affiliation(s)
- Dumitru Andrei Iacobas
- Personalized Genomics Laboratory, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
6
|
Gong Z, Xue L, Li H, Fan S, van Hasselt CA, Li D, Zeng X, Tong MCF, Chen GG. Targeting Nrf2 to treat thyroid cancer. Biomed Pharmacother 2024; 173:116324. [PMID: 38422655 DOI: 10.1016/j.biopha.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Oxidative stress (OS) is recognized as a contributing factor in the development and progression of thyroid cancer. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor involved in against OS generated by excessive reactive oxygen species (ROS). It governs the expression of a wide array of genes implicated in detoxification and antioxidant pathways. However, studies have demonstrated that the sustained activation of Nrf2 can contribute to tumor progression and drug resistance in cancers. The expression of Nrf2 was notably elevated in papillary thyroid cancer tissues compared to normal tissues, indicating that Nrf2 may play an oncogenic role in the development of papillary thyroid cancer. Nrf2 and its downstream targets are involved in the progression of thyroid cancer by impacting the prognosis and ferroptosis. Furthermore, the inhibition of Nrf2 can increase the sensitivity of target therapy in thyroid cancer. Therefore, Nrf2 appears to be a potential therapeutic target for the treatment of thyroid cancer. This review summarized current data on Nrf2 expression in thyroid cancer, discussed the function of Nrf2 in thyroid cancer, and analyzed various strategies to inhibit Nrf2.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Lingbin Xue
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Huangcan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Simiao Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Charles Andrew van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Dongcai Li
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Xianhai Zeng
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Michael Chi Fai Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China.
| | - George Gong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China.
| |
Collapse
|