1
|
Seghers F, Tintillier M, Morelle J. Recent advances in the understanding of the peritoneal membrane. Curr Opin Nephrol Hypertens 2025; 34:77-84. [PMID: 39291741 DOI: 10.1097/mnh.0000000000001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
PURPOSE OF REVIEW The efficiency of peritoneal dialysis (PD) as a life-sustaining replacement therapy for patients with kidney failure relies on the integrity and function of the peritoneal membrane. Here, we review the most recent advances in the understanding of the peritoneal membrane and its role in PD. RECENT FINDINGS A recent update of the ISPD guidelines proposed a revised definition of membrane dysfunction, emphasizing the importance of fluid balance in patients treated with PD and identified three main mechanisms leading to insufficient peritoneal ultrafiltration (UF). The Bio-PD study, the first genomewide association study in PD, demonstrated that 20% of the interindividual variability in the peritoneal solute transfer rate is genetically determined, and identified several loci of potential relevance for peritoneal transport. A candidate-gene approach identified and characterized a common and functional variant in the promoter of the AQP1 gene associated with water transport and clinical outcomes in PD. Innovative strategies to preserve the integrity of the peritoneal membrane and to enhance UF are also discussed, including the use of gliflozins; steady glucose concentration PD; modulation of GLUT proteins; and cytoprotective additives. SUMMARY A comprehensive understanding of the peritoneal membrane and of the mechanisms driving UF may help individualizing PD prescription and improving outcomes in patients treated with PD.
Collapse
Affiliation(s)
- François Seghers
- Division of Nephrology, University Hospitals Namur (CHU UCL Namur), Namur
| | - Michel Tintillier
- Division of Nephrology, University Hospitals Namur (CHU UCL Namur), Namur
| | - Johann Morelle
- Division of Nephrology, University Hospitals Namur (CHU UCL Namur), Namur
- de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
2
|
Basso A, Cacciapuoti M, Stefanelli LF, Nalesso F, Calò LA. Glucose-Free Solutions Mediated Inhibition of Oxidative Stress and Oxidative Stress-Related Damages in Peritoneal Dialysis: A Promising Solution. Life (Basel) 2024; 14:1173. [PMID: 39337956 PMCID: PMC11433185 DOI: 10.3390/life14091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OxSt) and inflammation are common in end-stage renal disease and dialysis patients; they are known risk factors for cardiovascular disease and mortality. In peritoneal dialysis (PD), OxSt and inflammation are even further increased compared to the already increased oxidative stress of their pre-dialysis phase. This is due to the high glucose-based solutions currently used, whose continuous contact with the peritoneal membrane can induce significant long-term morphological and functional changes (mesothelial to mesenchymal transition, thickening, neo-angiogenesis and fibrosis) of the peritoneal membrane. Oxidative stress plays a very important role in these processes, which may compromise the peritoneal dialysis procedure. There is, therefore, the need for more biocompatible dialysis fluids with polymers other than glucose to prevent and treat OxSt and inflammation. The most known and used of such glucose-free and more biocompatible peritoneal dialysis solutions is icodextrin, which has shown a protective effect from oxidative stress. This has supported the consideration of the use of glucose-free-based peritoneal dialysis fluids in order to reduce oxidative stress and improve peritoneal membrane survival. Studies investigating peritoneal dialysis with the use of osmo-metabolic agents (L-carnitine, xylitol and their combination) in peritoneal fluids replacing glucose-based fluids are, in fact, ongoing. They represent a promising strategy to reduce OxSt, preserve the peritoneal membrane's integrity and improve patients' outcome.
Collapse
Affiliation(s)
- Anna Basso
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Martina Cacciapuoti
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Lucia Federica Stefanelli
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Federico Nalesso
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| |
Collapse
|
3
|
Bonomini M, Davies S, Kleophas W, Lambie M, Reboldi G, Liberato LD, Divino-Filho JC, Heimburger O, Ortiz A, Povlsen J, Iacobelli M, Prosdocimi T, Arduini A. Rationale and design of ELIXIR, a randomized, controlled trial to evaluate efficacy and safety of XyloCore, a glucose-sparing solution for peritoneal dialysis. Perit Dial Int 2024:8968608241274106. [PMID: 39205396 DOI: 10.1177/08968608241274106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Peritoneal dialysis adoption and technique survival is affected by limitations related to peritoneal membrane longevity and metabolic alterations. Indeed, almost all peritoneal dialysis fluids exploit glucose as an osmotic agent that rapidly diffuses across the peritoneal membrane, potentially resulting in metabolic abnormalities such as hyperglycemia, hyperinsulinemia, obesity, and hyperlipidemia. Moreover, glucose-degradation products generated during heat sterilization, other than glucose itself, induce significant morphological and functional changes in the peritoneum leading to ultrafiltration failure. The partial substitution of glucose with osmotic agents characterized by a better local and systemic biocompatibility has been suggested as a potential strategy to innovate peritoneal dialysis fluids. The approach aims to minimize glucose-associated toxicity, preserving the peritoneal membrane welfare and counteracting common comorbidities. In this work, we report the clinical trial design of ELIXIR, a phase III randomized, controlled, blinded outcome assessment study comparing Xylocore®, an innovative formulation based on Xylitol and l-carnitine, to standard glucose-based regimens, in end-stage kidney disease patients treated with continuous ambulatory peritoneal dialysis; 170 patients will be randomized (1:1) to receive XyloCore® or to continue their pre-randomization peritoneal dialysis (PD) therapy with glucose-only PD solutions, for 6 months. The primary study's objective is to demonstrate the noninferiority of XyloCore® in terms of Kt/V urea, for which a clinically acceptable noninferiority margin of -0.25 has been determined, assuming that all patients will be treated aiming to a minimum target of 1.7 and an optimal target of 2.0.
Collapse
Affiliation(s)
- Mario Bonomini
- Department of Medicine and Aging Sciences, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | - Simon Davies
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Staffordshire, UK
| | | | - Mark Lambie
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Staffordshire, UK
| | - Gianpaolo Reboldi
- Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Lorenzo Di Liberato
- Department of Medicine and Aging Sciences, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | | | - Olof Heimburger
- Medical Unit Renal Medicine, Karolinska University Hospital, and CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Johan Povlsen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Arduino Arduini
- Research and Development, Iperboreal Pharma, Pescara, Italy
- Research and Development, CoreQuest Sagl, Lugano, Switzerland
| |
Collapse
|
4
|
Gronda E, Gallieni M, Pacileo G, Capasso G, Wei LJ, Trepiccione F, Heidempergher M, Bonomini M, Zimarino M, Divino-Filho JC, Di Liberato L, Caracciolo MM, Masola V, Prosdocimi T, Iacobelli M, Vitagliano C, Arduini A. Rationale and Design of PURE: A Randomized Controlled Trial to Evaluate Peritoneal Ultrafiltration with PolyCore™ in Refractory Congestive Heart Failure. Kidney Blood Press Res 2024; 49:852-862. [PMID: 39197425 DOI: 10.1159/000541127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
INTRODUCTION Peritoneal ultrafiltration (PUF) has been proposed as an additional therapeutic option for refractory congestive heart failure (RCHF) patients. Despite promising observational studies and/or case report results, limited clinical trial data exist, and so far, PUF solutions remain only indicated for chronic kidney diseases. In this article, we described a multicenter, randomized, controlled, unblinded, adaptive design clinical trial, about to start, investigating the effects of PolyCore™, an innovative PUF solution, in the treatment of RCHF patients. METHODS The Peritoneal Ultrafiltration in Cardiorenal Syndrome (PURE) study is a phase II, multicenter, randomized, controlled, unblinded, adaptive design clinical trial that aims to evaluate the safety and efficacy of PUF, using PolyCore™ as the investigational solution, in the treatment of RCHF patients who present with prominent right ventricular failure due to afterload mismatch, functional tricuspid regurgitation and enlarged cava vein consequent to intravascular fluid overload. Approximately 84 patients will be randomized 1:1 either to continue with their prescribed guideline-directed medical therapy or to add the PUF treatment on top of it. The primary objective is to evaluate if PUF treatment has an impact on the composite endpoint of the patient's mortality or worsening of the patient's condition such as hospitalization for cardiovascular causes, increasing the initial daily dose of loop diuretic or worsening of renal function. Statistical analysis for the primary endpoint will be standard survival analysis to estimate the failure rate at month 7 for each group via Kaplan-Meier curves. Sensitivity analysis and various secondary analyses, including a multiple events analysis, will be conducted to evaluate the robustness of the primary endpoint results. Safety will be evaluated for up to 12 months. CONCLUSION The PURE study was designed to evaluate the safety and efficacy of peritoneal ultrafiltration with PolyCore™ on top of guideline-directed medical therapy in patients with RCHF, assuming a combined clinical endpoint of mortality or worsening patients' condition. If successful, the treatment should allow for an improvement of the RCHF symptoms, decreasing hospitalization rate of patients.
Collapse
Affiliation(s)
- Edoardo Gronda
- Medicine and Medicine Sub-Specialities Department, Cardio Renal Program, U.O.C. Nephrology, Dialysis and Adult Renal Transplant Program, IRCCS Cà Granda Foundation, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Gallieni
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università Di Milano, Milan, Italy
| | - Giuseppe Pacileo
- UOSD "Scompenso Cardiaco", Ospedale Monaldi AOS Dei Colli, Naples, Italy
| | | | - Lee-Jen Wei
- Department of Biostatistics, Harvard University, Boston, Massachusetts, USA
| | - Francesco Trepiccione
- Department of Translational Medical Science, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Heidempergher
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università Di Milano, Milan, Italy
| | - Mario Bonomini
- Department of Medicine and Aging Sciences, University G. D'Annunzio, Chieti, Italy
| | - Marco Zimarino
- Department of Neuroscience, Imaging and Clinical Sciences, University G. D'Annunzio, Chieti, Italy
- Department of Cardiology, ASL 2 Abruzzo, Chieti, Italy
| | | | - Lorenzo Di Liberato
- Department of Medicine and Aging Sciences, University G. D'Annunzio, Chieti, Italy
| | - Maria Michela Caracciolo
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università Di Milano, Milan, Italy
| | - Valentina Masola
- Department of Biomedical Sciences, University of Padova, Padova, Italy,
| | | | | | - Caterina Vitagliano
- Department of Translational Medical Science, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Arduino Arduini
- Research and Development, Iperboreal Pharma, Pescara, Italy
- Research and Development, CoreQuest Sagl, Lugano, Switzerland
| |
Collapse
|
5
|
Francisco D, Carnevale A, Ávila G, Calça AR, Matias P, Branco P. Transitioning to peritoneal dialysis: it does not matter where you come from. J Bras Nefrol 2024; 46:e20230139. [PMID: 38717919 PMCID: PMC11287956 DOI: 10.1590/2175-8239-jbn-2023-0139en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/01/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Patients with end-stage renal disease (ESRD) frequently change renal replacement (RRT) therapy modality due to medical or social reasons. We aimed to evaluate the outcomes of patients under peritoneal dialysis (PD) according to the preceding RRT modality. METHODS We conducted a retrospective observational single-center study in prevalent PD patients from January 1, 2010, to December 31, 2017, who were followed for 60 months or until they dropped out of PD. Patients were divided into three groups according to the preceding RRT: prior hemodialysis (HD), failed kidney transplant (KT), and PD-first. RESULTS Among 152 patients, 115 were PD-first, 22 transitioned from HD, and 15 from a failing KT. There was a tendency for ultrafiltration failure to occur more in patients transitioning from HD (27.3% vs. 9.6% vs. 6.7%, p = 0.07). Residual renal function was better preserved in the group with no prior RRT (p < 0.001). A tendency towards a higher annual rate of peritonitis was observed in the prior KT group (0.70 peritonitis/year per patient vs. 0.10 vs. 0.21, p = 0.065). Thirteen patients (8.6%) had a major cardiovascular event, 5 of those had been transferred from a failing KT (p = 0.004). There were no differences between PD-first, prior KT, and prior HD in terms of death and technique survival (p = 0.195 and p = 0.917, respectively) and PD efficacy was adequate in all groups. CONCLUSIONS PD is a suitable option for ESRD patients regardless of the previous RRT and should be offered to patients according to their clinical and social status and preferences.
Collapse
Affiliation(s)
- Diogo Francisco
- Centro Hospitalar Lisboa Ocidental, Serviço de Nefrologia, Lisboa,
Portugal
| | - Andreia Carnevale
- Centro Hospitalar Lisboa Ocidental, Serviço de Nefrologia, Lisboa,
Portugal
| | - Gonçalo Ávila
- Centro Hospitalar Lisboa Ocidental, Serviço de Nefrologia, Lisboa,
Portugal
| | - Ana Rita Calça
- Centro Hospitalar Lisboa Ocidental, Serviço de Nefrologia, Lisboa,
Portugal
| | - Patrícia Matias
- Centro Hospitalar Lisboa Ocidental, Serviço de Nefrologia, Lisboa,
Portugal
| | - Patrícia Branco
- Centro Hospitalar Lisboa Ocidental, Serviço de Nefrologia, Lisboa,
Portugal
| |
Collapse
|
6
|
Basso A, Baldini P, Bertoldi G, Driussi G, Caputo I, Bettin E, Cacciapuoti M, Calò LA. Oxidative stress reduction by icodextrin-based glucose-free solutions in peritoneal dialysis: Support for new promising approaches. Artif Organs 2024. [PMID: 38822597 DOI: 10.1111/aor.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Oxidative stress (OxSt) and inflammation are common in CKD and are known CV and mortality risk factors. In peritoneal dialysis (PD) OxSt and Inflammation even increase due to the use of glucose-based solutions. PATIENTS AND METHODS This study analyzed in 15 PD patients the effect of 3 and 6 months of treatment with icodextrin-based glucose-free solutions on OxSt and inflammation, evaluating p22phox protein expression (Western blot), NADPH oxidase subunit, essential for OxSt activation, MYPT-1 phosphorylation state, marker of RhoA/Rho kinase pathway (ROCK) activity, involved in the induction of OxSt (Western blot) and Malondialdehyde (MDA) production (fluorimetric assay). Interleukin (IL)-6 blood level (chemiluminescence assay) has been measured and used as a marker of inflammation. RESULTS p22phox protein expression, MYPT 1 phosphorylation, and MDA were reduced after 3 months from the start of icodextrin (1.28 ± 0.18 d.u. vs. 1.50 ± 0.19, p = 0.049; 0.89 ± 0.03 vs. 0.98 ± 0.03, p = 0.004; 4.20 ± 0.18 nmol/mL vs. 4.84 ± 0.32 nmol/mL, p = 0.045, respectively). In a subgroup of 9 patients who continued the treatment up to 6 months, MYPT-1 phosphorylation was further reduced at 6 months compared to baseline (0.84 ± 0.06 vs. 0.99 ± 0.04, p = 0.043), while p22phox protein expression was reduced only at 6 months versus baseline (1.03 ± 0.05 vs. 1.68 ± 0.22, p = 0.021). In this subgroup, MDA was reduced at 6 months versus baseline (4.03 ± 0.24 nmol/mL vs. 4.68 ± 0,32, p = 0.024) and also versus 3 months (4.03 ± 0.24 vs. 4.35 ± 0.21, p = 0.008). IL-6 level although reduced both at 3 and 6 months, did not reach statistical significance. CONCLUSIONS The reduction of OxSt with icodextrin-based PD solutions, although obtained in a small patients cohort and in a limited time duration study, strongly supports the rationale of using osmo-metabolic agents-based fluids replacing glucose-based fluids. Ongoing studies with these agents will provide information regarding preservation of peritoneal membrane integrity, residual renal function, and reduction of CVD risk factors such as OxSt and inflammation.
Collapse
Affiliation(s)
- Anna Basso
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, Padova, Italy
| | - Paola Baldini
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, Padova, Italy
| | - Giovanni Bertoldi
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, Padova, Italy
| | - Giulia Driussi
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, Padova, Italy
| | - Ilaria Caputo
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, Padova, Italy
| | - Elisabetta Bettin
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, Padova, Italy
| | - Martina Cacciapuoti
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, Padova, Italy
| | - Lorenzo A Calò
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Morelle J, Lambie M, Öberg CM, Davies S. The Peritoneal Membrane and Its Role in Peritoneal Dialysis. Clin J Am Soc Nephrol 2024; 19:244-253. [PMID: 37616463 PMCID: PMC10861113 DOI: 10.2215/cjn.0000000000000282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
A healthy and functional peritoneal membrane is key to achieving sufficient ultrafiltration and restoring fluid balance, a major component of high-quality prescription in patients treated with peritoneal dialysis (PD). Variability in membrane function at the start of PD or changes over time on treatment influence dialysis prescription and outcomes, and dysfunction of the peritoneal membrane contributes to fluid overload and associated complications. In this review, we summarize the current knowledge about the structure, function, and pathophysiology of the peritoneal membrane with a focus on clinical implications for patient-centered care. We also discuss the molecular and genetic mechanisms of solute and water transport across the peritoneal membrane, including the role of aquaporin water channels in crystalloid versus colloid osmosis; why and how to assess membrane function using peritoneal equilibration tests; the etiologies of membrane dysfunction and their specific management; and the effect of genetic variation on membrane function and outcomes in patients treated with PD. This review also identifies the gaps in current knowledge and perspectives for future research to improve our understanding of the peritoneal membrane and, ultimately, the care of patients treated with PD.
Collapse
Affiliation(s)
- Johann Morelle
- Division of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium
- UCLouvain School of Medicine, UCLouvain, Brussels, Belgium
| | - Mark Lambie
- Faculty of Medicine and Health Sciences, Keele University, Keele, United Kingdom
| | - Carl M. Öberg
- Division of Nephrology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Simon Davies
- Faculty of Medicine and Health Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
8
|
Cheng M, Ding Y, Kim E, Geng X. Exploring the Therapeutic Potential of Peritoneal Dialysis (PD) in the Treatment of Neurological Disorders. Cell Transplant 2024; 33:9636897241236576. [PMID: 38506429 PMCID: PMC10956140 DOI: 10.1177/09636897241236576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 03/21/2024] Open
Abstract
Peritoneal dialysis (PD) is a well-established renal replacement therapy commonly employed in clinical practice. While its primary application is in the treatment of kidney disease, its potential in addressing other systemic disorders, including neurological diseases, has garnered increasing interest. This study provides a comprehensive overview of the related technologies, unique advantages, and clinical applications of PD in the context of neurological disorders. By exploring the mechanism underlying PD, its application in neurological diseases, and associated complications, we addressed the feasibility and benefits of PD as an adjunct therapy for various neurological conditions. Our study aims to highlight its role in detoxification and symptom management, as well as its advantages over other universally accepted methods of renal replacement therapy. Our goal is to bring to the spotlight the therapeutic potential of PD in neurological diseases, such as stroke, stimulate further research, and broaden the scope of its application in the clinical setting.
Collapse
Affiliation(s)
- Muyuan Cheng
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Enoch Kim
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
9
|
Maliha G, Burke RE, Reddy YN. Peritoneal Dialysis: Are We Approaching a Modern Renaissance? KIDNEY360 2023; 4:e1314-e1317. [PMID: 37364586 PMCID: PMC10550002 DOI: 10.34067/kid.0000000000000196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Affiliation(s)
- George Maliha
- Department of Internal Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert E. Burke
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Division of General Internal Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yuvaram N.V. Reddy
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Health Equity Research and Promotion, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Wijewickrama P, Williams J, Bain S, Dasgupta I, Chowdhury TA, Wahba M, Frankel AH, Lambie M, Karalliedde J. Narrative Review of glycaemic management in people with diabetes on peritoneal dialysis. Kidney Int Rep 2023; 8:700-714. [PMID: 37069983 PMCID: PMC10105084 DOI: 10.1016/j.ekir.2023.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
There is an increasing number of people with diabetes on peritoneal dialysis (PD) worldwide. However, there is a lack of guidelines and clinical recommendations for managing glucose control in people with diabetes on PD. The aim of this review is to provide a summary of the relevant literature and highlight key clinical considerations with practical aspects in the management of diabetes in people undergoing PD. A formal systematic review was not conducted because of the lack of sufficient and suitable clinical studies. A literature search was performed using PubMed, MEDLINE, Central, Google Scholar and ClinicalTrials.gov., from 1980 through February 2022. The search was limited to publications in English. This narrative review and related guidance have been developed jointly by diabetologists and nephrologists, who reviewed all available current global evidence regarding the management of diabetes in people on PD.We focus on the importance of individualized care for people with diabetes on PD, the burden of hypoglycemia, glycemic variability in the context of PD and treatment choices for optimizing glucose control. In this review, we have summarized the clinical considerations to guide and inform clinicians providing care for people with diabetes on PD.
Collapse
Affiliation(s)
- Piyumi Wijewickrama
- Department of Diabetes and Endocrinology, University College London Hospital, London, UK
| | - Jennifer Williams
- Department of Renal Medicine, Royal Devon and Exeter Hospital, Exeter, UK
| | - Steve Bain
- Diabetes Research Unit, Swansea University, Swansea, UK
| | - Indranil Dasgupta
- Department of Renal Medicine, Heartlands Hospital Birmingham, Brimingham, UK
| | | | - Mona Wahba
- Department of Renal Medicine, St. Helier Hospital, Carshalton, UK
| | - Andrew H. Frankel
- Department of Renal Medicine, Imperial College Healthcare, London, UK
| | - Mark Lambie
- Department of Renal Medicine, Keele University, Keele, UK
| | - Janaka Karalliedde
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
- Correspondence: Janaka Karalliedde, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London SE1 9NH, UK.
| | | |
Collapse
|
11
|
Abstract
The practice and clinical outcomes of peritoneal dialysis (PD) have demonstrated significant improvement over the past 20 years. The aim of this review is to increase awareness and update healthcare professionals on current PD practice, especially with respect to patient and technique survival, patient modality selection, pathways onto PD, understanding patient experience of care and use prior to kidney transplantation. These improvements have been impacted, at least in part, by greater emphasis on shared decision-making in dialysis modality selection, the use of advanced laparoscopic techniques for PD catheter implantation, developments in PD connecting systems, glucose-sparing strategies, and modernising technology in managing automated PD patients remotely. Evidence-based clinical guidelines such as those prepared by national and international societies such as the International Society of PD have contributed to improved PD practice underpinned by a recognition of the place of continuous quality improvement processes.
Collapse
Affiliation(s)
- Ayman Karkar
- Medical Affairs - Renal Care, Scientific Office, Baxter A.G., Dubai, United Arab Emirates
| | - Martin Wilkie
- Sheffield Teaching Hospitals NHS Foundation Trust, Herries Road, Sheffield, UK
| |
Collapse
|
12
|
Bartosova M, Zarogiannis SG, Schmitt CP. How peritoneal dialysis transforms the peritoneum and vasculature in children with chronic kidney disease-what can we learn for future treatment? Mol Cell Pediatr 2022; 9:9. [PMID: 35513740 PMCID: PMC9072612 DOI: 10.1186/s40348-022-00141-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
Children with chronic kidney disease (CKD) suffer from inflammation and reactive metabolite-induced stress, which massively accelerates tissue and vascular aging. Peritoneal dialysis (PD) is the preferred dialysis mode in children, but currently used PD fluids contain far supraphysiological glucose concentrations for fluid and toxin removal and glucose degradation products (GDP). While the peritoneal membrane of children with CKD G5 exhibits only minor alterations, PD fluids trigger numerous molecular cascades resulting in major peritoneal membrane inflammation, hypervascularization, and fibrosis, with distinct molecular and morphological patterns depending on the GDP content of the PD fluid used. PD further aggravates systemic vascular disease. The systemic vascular aging process is particularly pronounced when PD fluids with high GDP concentrations are used. GDP induce endothelial junction disintegration, apoptosis, fibrosis, and intima thickening. This review gives an overview on the molecular mechanisms of peritoneal and vascular transformation and strategies to improve peritoneal and vascular health in patients on PD.
Collapse
Affiliation(s)
- Maria Bartosova
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Sotirios G Zarogiannis
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany.,Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Claus Peter Schmitt
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
13
|
Fibrosis of Peritoneal Membrane as Target of New Therapies in Peritoneal Dialysis. Int J Mol Sci 2022; 23:ijms23094831. [PMID: 35563220 PMCID: PMC9102299 DOI: 10.3390/ijms23094831] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Peritoneal dialysis (PD) is an efficient renal replacement therapy for patients with end-stage renal disease. Even if it ensures an outcome equivalent to hemodialysis and a better quality of life, in the long-term, PD is associated with the development of peritoneal fibrosis and the consequents patient morbidity and PD technique failure. This unfavorable effect is mostly due to the bio-incompatibility of PD solution (mainly based on high glucose concentration). In the present review, we described the mechanisms and the signaling pathway that governs peritoneal fibrosis, epithelial to mesenchymal transition of mesothelial cells, and angiogenesis. Lastly, we summarize the present and future strategies for developing more biocompatible PD solutions.
Collapse
|
14
|
Martus G, Bergling K, Öberg CM. Dual SGLT1/SGLT2 inhibitor phlorizin reduces glucose transport in experimental peritoneal dialysis. ARCH ESP UROL 2022; 43:145-150. [PMID: 35188009 DOI: 10.1177/08968608221080170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Glucose absorption during peritoneal dialysis (PD) is commonly assumed to occur via paracellular pathways. We recently showed that SGLT2 inhibition did not reduce glucose absorption in experimental PD, but the potential role of glucose transport into cells is still unclear. Here we sought to elucidate the effects of phlorizin, a non-selective competitive inhibitor of sodium glucose co-transporters 1 and 2 (SGLT1 and SGLT2), in an experimental rat model of PD. METHODS A 120-min PD dwell was performed in 12 anesthetised Sprague-Dawley rats using 1.5% glucose fluid with a fill volume of 20 mL with (n = 6) or without (n = 6) intraperitoneal phlorizin (50 mg/L). Several parameters for peritoneal water and solute transport were monitored during the treatment. RESULTS Phlorizin markedly increased the urinary excretion of glucose, lowered plasma glucose and increased plasma creatinine after PD. Median glucose diffusion capacity at 60 min was significantly lower (p < 0.05) being 196 µL/min (IQR 178-213) for phlorizin-treated animals compared to 238 µL/min (IQR 233-268) in controls. Median fractional dialysate glucose concentration at 60 min (D/D 0) was significantly higher (p < 0.05) in phlorizin-treated animals being 0.65 (IQR 0.63-0.67) compared to 0.61 (IQR 0.60-0.62) in controls. At 120 min, there was no difference in solute or water transport across the peritoneal membrane. CONCLUSION Our findings indicate that a part of glucose absorption during the initial part of the dwell occurs via transport into peritoneal cells.
Collapse
Affiliation(s)
- Giedre Martus
- Department of Nephrology, Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| | - Karin Bergling
- Department of Nephrology, Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| | - Carl M Öberg
- Department of Nephrology, Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Piccapane F, Gerbino A, Carmosino M, Milano S, Arduini A, Debellis L, Svelto M, Caroppo R, Procino G. Aquaporin-1 Facilitates Transmesothelial Water Permeability: In Vitro and Ex Vivo Evidence and Possible Implications in Peritoneal Dialysis. Int J Mol Sci 2021; 22:12535. [PMID: 34830416 PMCID: PMC8622642 DOI: 10.3390/ijms222212535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
We previously showed that mesothelial cells in human peritoneum express the water channel aquaporin 1 (AQP1) at the plasma membrane, suggesting that, although in a non-physiological context, it may facilitate osmotic water exchange during peritoneal dialysis (PD). According to the three-pore model that predicts the transport of water during PD, the endothelium of peritoneal capillaries is the major limiting barrier to water transport across peritoneum, assuming the functional role of the mesothelium, as a semipermeable barrier, to be negligible. We hypothesized that an intact mesothelial layer is poorly permeable to water unless AQP1 is expressed at the plasma membrane. To demonstrate that, we characterized an immortalized cell line of human mesothelium (HMC) and measured the osmotically-driven transmesothelial water flux in the absence or in the presence of AQP1. The presence of tight junctions between HMC was investigated by immunofluorescence. Bioelectrical parameters of HMC monolayers were studied by Ussing Chambers and transepithelial water transport was investigated by an electrophysiological approach based on measurements of TEA+ dilution in the apical bathing solution, through TEA+-sensitive microelectrodes. HMCs express Zo-1 and occludin at the tight junctions and a transepithelial vectorial Na+ transport. Real-time transmesothelial water flux, in response to an increase of osmolarity in the apical solution, indicated that, in the presence of AQP1, the rate of TEA+ dilution was up to four-fold higher than in its absence. Of note, we confirmed our data in isolated mouse mesentery patches, where we measured an AQP1-dependent transmesothelial osmotic water transport. These results suggest that the mesothelium may represent an additional selective barrier regulating water transport in PD through functional expression of the water channel AQP1.
Collapse
Affiliation(s)
- Francesca Piccapane
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (F.P.); (A.G.); (S.M.); (L.D.); (M.S.); (R.C.)
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (F.P.); (A.G.); (S.M.); (L.D.); (M.S.); (R.C.)
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy;
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (F.P.); (A.G.); (S.M.); (L.D.); (M.S.); (R.C.)
| | - Arduino Arduini
- Department of Research and Development, CoreQuest Sagl, 6900 Lugano, Switzerland;
| | - Lucantonio Debellis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (F.P.); (A.G.); (S.M.); (L.D.); (M.S.); (R.C.)
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (F.P.); (A.G.); (S.M.); (L.D.); (M.S.); (R.C.)
| | - Rosa Caroppo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (F.P.); (A.G.); (S.M.); (L.D.); (M.S.); (R.C.)
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (F.P.); (A.G.); (S.M.); (L.D.); (M.S.); (R.C.)
| |
Collapse
|
16
|
How to Improve the Biocompatibility of Peritoneal Dialysis Solutions (without Jeopardizing the Patient's Health). Int J Mol Sci 2021; 22:ijms22157955. [PMID: 34360717 PMCID: PMC8347640 DOI: 10.3390/ijms22157955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022] Open
Abstract
Peritoneal dialysis (PD) is an important, if underprescribed, modality for the treatment of patients with end-stage kidney disease. Among the barriers to its wider use are the deleterious effects of currently commercially available glucose-based PD solutions on the morphological integrity and function of the peritoneal membrane due to fibrosis. This is primarily driven by hyperglycaemia due to its effects, through multiple cytokine and transcription factor signalling-and their metabolic sequelae-on the synthesis of collagen and other extracellular membrane components. In this review, we outline these interactions and explore how novel PD solution formulations are aimed at utilizing this knowledge to minimise the complications associated with fibrosis, while maintaining adequate rates of ultrafiltration across the peritoneal membrane and preservation of patient urinary volumes. We discuss the development of a new generation of reduced-glucose PD solutions that employ a variety of osmotically active constituents and highlight the biochemical rationale underlying optimization of oxidative metabolism within the peritoneal membrane. They are aimed at achieving optimal clinical outcomes and improving the whole-body metabolic profile of patients, particularly those who are glucose-intolerant, insulin-resistant, or diabetic, and for whom daily exposure to high doses of glucose is contraindicated.
Collapse
|
17
|
Masola V, Bonomini M, Onisto M, Ferraro PM, Arduini A, Gambaro G. Biological Effects of XyloCore, a Glucose Sparing PD Solution, on Mesothelial Cells: Focus on Mesothelial-Mesenchymal Transition, Inflammation and Angiogenesis. Nutrients 2021; 13:2282. [PMID: 34209455 PMCID: PMC8308380 DOI: 10.3390/nu13072282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Glucose-based solutions remain the most used osmotic agents in peritoneal dialysis (PD), but unavoidably they contribute to the loss of peritoneal filtration capacity. Here, we evaluated at a molecular level the effects of XyloCore, a new PD solution with a low glucose content, in mesothelial and endothelial cells. Cell viability, integrity of mesothelial and endothelial cell membrane, activation of mesothelial and endothelial to mesenchymal transition programs, inflammation, and angiogenesis were evaluated by several techniques. Results showed that XyloCore preserves mesothelial and endothelial cell viability and membrane integrity. Moreover XyloCore, unlike glucose-based solutions, does not exert pro-fibrotic, -inflammatory, and -angiogenic effects. Overall, the in vitro evidence suggests that XyloCore could represent a potential biocompatible solution promising better outcomes in clinical practice.
Collapse
Affiliation(s)
- Valentina Masola
- Division of Nephrology and Dialysis, Department of Medicine, Piazzale A. Stefani 1, 37126 Verona, Italy;
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy;
| | - Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS.Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy;
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy;
| | - Pietro Manuel Ferraro
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, U.O.C. Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00178 Rome, Italy;
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00178 Rome, Italy
| | - Arduino Arduini
- R&D Department, Iperboreal Pharma Srl, 65122 Pescara, Italy;
| | - Giovanni Gambaro
- Division of Nephrology and Dialysis, Department of Medicine, Piazzale A. Stefani 1, 37126 Verona, Italy;
| |
Collapse
|
18
|
Vecchi L, Bonomini M, Palumbo R, Arduini A, Borrelli S. Mild sodium reduction in peritoneal dialysis solution improves hypertension in end stage kidney disease: a case-report study. BMC Nephrol 2021; 22:170. [PMID: 33964894 PMCID: PMC8105985 DOI: 10.1186/s12882-021-02380-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 02/02/2023] Open
Abstract
Introduction Blood Pressure (BP) control is largely unsatisfied in End Stage Kidney Disease (ESKD) principally due to sodium retention. Peritoneal Dialysis (PD) is the most common type of home dialysis, using a peritoneal membrane to remove sodium, though sodium removal remains challenging. Methods This is a case-study reporting two consecutive ESKD patients treated by a novel peritoneal PD solution with a mildly reduced sodium content (130 mmol/L) to treat hypertension. Results In the first case, a 78-year-old woman treated by Continuous Ambulatory PD (CAPD) with standard solution (three 4 h-dwells per day 1.36% glucose 132 mmol/L) showed resistant hypertension confirmed by ambulatory blood pressure monitoring (ABPM), reporting 24 h-BP: 152/81 mmHg, day-BP:151/83 mmHg and night-ABP: 153/75 mmHg, with inversion of the circadian systolic BP rhythm (1.01), despite use of three anti-hypertensives and a diuretic at adequate doses. No sign of hypervolemia was evident. We then switched from standard PD to low-sodium solution in all daily dwells. A six-months low-sodium CAPD enabled us to reduce diurnal (134/75 mmHg) and nocturnal BP (122/67 mmHg), restoring the circadian BP rhythm, with no change in ultrafiltration or residual diuresis. Diet and drug prescription were unmodified too. The second case was a 61-year-old woman in standard CAPD (three 5 h-dwells per day) suffering from hypertension confirmed by ABPM (mean 24 h-ABP: 139/84 mmHg; mean day-ABP:144/88 mmHg and mean night-ABP:124/70 mmHg). She was switched from 132-Na CAPD to 130-Na CAPD, not changing dialysis schedule. No fluid expansion was evident. During low-sodium CAPD, antihypertensive therapy (amlodipine 10 mg and Olmesartan 20 mg) has been reduced until complete suspension. After 6 months, we repeated ABPM showing a substantial reduction in mean 24 h-ABP (117/69 mmHg), mean diurnal ABP (119/75 mmHg) and mean nocturnal ABP (111/70 mmHg). Ultrafiltration and residual diuresis remained unmodified. No side effects were reported in either cases. Conclusions This case-report study suggests that mild low-sodium CAPD might reduce BP in hypertensive ESKD patients.
Collapse
Affiliation(s)
- Luigi Vecchi
- Unit of Nephrology, Santa Maria Hospital, Terni, Italy
| | - Mario Bonomini
- Department of Medicine, Section of Nephrology and Dialysis, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | | | | | - Silvio Borrelli
- Department of Advanced Medical and Surgical Sciences, Nephrology Unit of University of Campania "Luigi Vanvitelli", Piazza Miraglia, 80138, Naples, Italy.
| |
Collapse
|
19
|
Rago C, Lombardi T, Di Fulvio G, Di Liberato L, Arduini A, Divino-Filho JC, Bonomini M. A New Peritoneal Dialysis Solution Containing L-Carnitine and Xylitol for Patients on Continuous Ambulatory Peritoneal Dialysis: First Clinical Experience. Toxins (Basel) 2021; 13:174. [PMID: 33668249 PMCID: PMC7996173 DOI: 10.3390/toxins13030174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Peritoneal dialysis (PD) is a feasible and effective renal replacement therapy (RRT) thanks to the dialytic properties of the peritoneal membrane (PM). Preservation of PM integrity and transport function is the key to the success of PD therapy, particularly in the long term, since the prolonged exposure to unphysiological hypertonic glucose-based PD solutions in current use is detrimental to the PM, with progressive loss of peritoneal ultrafiltration capacity causing technique failure. Moreover, absorbing too much glucose intraperitoneally from the dialysate may give rise to a number of systemic metabolic effects. Here we report the preliminary results of the first clinical experience based on the use in continuous ambulatory PD (CAPD) patients of novel PD solutions obtained through partly replacing the glucose load with other osmotically active metabolites, such as L-carnitine and xylitol. Ten CAPD patients were treated for four weeks with the new solutions. There was good tolerance to the experimental PD solutions, and no adverse safety signals were observed. Parameters of dialysis efficiency including creatinine clearance and urea Kt/V proved to be stable as well as fluid status, diuresis, and total peritoneal ultrafiltration. The promising tolerance and local/systemic advantages of using L-carnitine and xylitol in the PD solution merit further research.
Collapse
Affiliation(s)
- Carmela Rago
- Nephrology and Dialysis Unit, Department of Medicine, G. D’Annunzio University of Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (C.R.); (T.L.); (G.D.F.); (L.D.L.)
| | - Teresa Lombardi
- Nephrology and Dialysis Unit, Department of Medicine, G. D’Annunzio University of Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (C.R.); (T.L.); (G.D.F.); (L.D.L.)
| | - Giorgia Di Fulvio
- Nephrology and Dialysis Unit, Department of Medicine, G. D’Annunzio University of Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (C.R.); (T.L.); (G.D.F.); (L.D.L.)
| | - Lorenzo Di Liberato
- Nephrology and Dialysis Unit, Department of Medicine, G. D’Annunzio University of Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (C.R.); (T.L.); (G.D.F.); (L.D.L.)
| | - Arduino Arduini
- Department of Research and Development, Iperboreal Pharma, 65100 Pescara, Italy;
| | - José C. Divino-Filho
- Division of Renal Medicine, CLINTEC, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, G. D’Annunzio University of Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (C.R.); (T.L.); (G.D.F.); (L.D.L.)
| |
Collapse
|
20
|
Piccapane F, Bonomini M, Castellano G, Gerbino A, Carmosino M, Svelto M, Arduini A, Procino G. A Novel Formulation of Glucose-Sparing Peritoneal Dialysis Solutions with l-Carnitine Improves Biocompatibility on Human Mesothelial Cells. Int J Mol Sci 2020; 22:ijms22010123. [PMID: 33374405 PMCID: PMC7795315 DOI: 10.3390/ijms22010123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The main reason why peritoneal dialysis (PD) still has limited use in the management of patients with end-stage renal disease (ESRD) lies in the fact that the currently used glucose-based PD solutions are not completely biocompatible and determine, over time, the degeneration of the peritoneal membrane (PM) and consequent loss of ultrafiltration (UF). Here we evaluated the biocompatibility of a novel formulation of dialytic solutions, in which a substantial amount of glucose is replaced by two osmometabolic agents, xylitol and l-carnitine. The effect of this novel formulation on cell viability, the integrity of the mesothelial barrier and secretion of pro-inflammatory cytokines was evaluated on human mesothelial cells grown on cell culture inserts and exposed to the PD solution only at the apical side, mimicking the condition of a PD dwell. The results were compared to those obtained after exposure to a panel of dialytic solutions commonly used in clinical practice. We report here compelling evidence that this novel formulation shows better performance in terms of higher cell viability, better preservation of the integrity of the mesothelial layer and reduced release of pro-inflammatory cytokines. This new formulation could represent a step forward towards obtaining PD solutions with high biocompatibility.
Collapse
Affiliation(s)
- Francesca Piccapane
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (F.P.); (A.G.); (M.S.)
| | - Mario Bonomini
- Department of Medicine, G. d’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy;
| | - Giuseppe Castellano
- Department of Emergency and Organ Transplantation, University of Bari, 70125 Bari, Italy;
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (F.P.); (A.G.); (M.S.)
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy;
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (F.P.); (A.G.); (M.S.)
| | - Arduino Arduini
- Department of Research and Development, CoreQuest Sagl, Technopole, 6928 Manno, Switzerland;
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (F.P.); (A.G.); (M.S.)
- Correspondence:
| |
Collapse
|
21
|
Bonomini M, Borras FE, Troya-Saborido M, Carreras-Planella L, Di Liberato L, Arduini A. Proteomic Research in Peritoneal Dialysis. Int J Mol Sci 2020; 21:ijms21155489. [PMID: 32752018 PMCID: PMC7432538 DOI: 10.3390/ijms21155489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Peritoneal dialysis (PD) is an established home care, cost-effective renal replacement therapy (RRT), which offers several advantages over the most used dialysis modality, hemodialysis. Despite its potential benefits, however, PD is an under-prescribed method of treating uremic patients. Infectious complications (primarily peritonitis) and bio-incompatibility of PD solutions are the main contributors to PD drop-out, due to their potential for altering the functional and anatomical integrity of the peritoneal membrane. To improve the clinical outcome of PD, there is a need for biomarkers to identify patients at risk of PD-related complications and to guide personalized interventions. Several recent studies have shown that proteomic investigation may be a powerful tool in the prediction, early diagnosis, prognostic assessment, and therapeutic monitoring of patients on PD. Indeed, analysis of the proteome present in PD effluent has uncovered several proteins involved in inflammation and pro-fibrotic insult, in encapsulating peritoneal sclerosis, or even in detecting early changes before any measurable modifications occur in the traditional clinical parameters used to evaluate PD efficacy. We here review the proteomic studies conducted thus far, addressing the potential use of such omics methodology in identifying potential new biomarkers of the peritoneal membrane welfare in relation to dialytic prescription and adequacy.
Collapse
Affiliation(s)
- Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy;
- Correspondence:
| | - Francesc E. Borras
- Nephrology Department, Campus Can Ruti, Germans Trias i Pujol Research Institute (IGTP), REMAR-IGTP Group, Germans Trias i Pujol University Hospital, Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Barcelona, Spain; (F.E.B.); (M.T.-S.); (L.C.-P.)
| | - Maribel Troya-Saborido
- Nephrology Department, Campus Can Ruti, Germans Trias i Pujol Research Institute (IGTP), REMAR-IGTP Group, Germans Trias i Pujol University Hospital, Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Barcelona, Spain; (F.E.B.); (M.T.-S.); (L.C.-P.)
| | - Laura Carreras-Planella
- Nephrology Department, Campus Can Ruti, Germans Trias i Pujol Research Institute (IGTP), REMAR-IGTP Group, Germans Trias i Pujol University Hospital, Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Barcelona, Spain; (F.E.B.); (M.T.-S.); (L.C.-P.)
| | - Lorenzo Di Liberato
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS. Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy;
| | - Arduino Arduini
- Department of Research and Development, CoreQuest Sagl, Tecnopolo, 6934 Bioggio, Switzerland;
| |
Collapse
|