1
|
Rama T. The historical transformation of individual concepts into populational ones: an explanatory shift in the gestation of the modern synthesis. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2024; 46:35. [PMID: 39485612 DOI: 10.1007/s40656-024-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024]
Abstract
In this paper, I will conduct three interrelated analyses. First, I will develop an analysis of various concepts in the history of biology that used to refer to individual-level phenomena but were then reinterpreted by the Modern Synthesis in terms of populations. Second, a similar situation can be found in contemporary evolutionary theory. While different approaches reflect on the causal role of developing organisms in evolution, proponents of the Modern Synthesis refrain from any substantial change by reinterpreting and explaining individual-level phenomena from a population perspective. Finally, I will approach these historical and contemporary debates by arguing for the statistical reading of natural selection, which holds that explanations by natural selection are statistical. My main conclusion is that the historical conceptual reinterpretations belong to a new explanatory strategy developed by the Modern Synthesis based on population thinking. Adopting the statistical point of view has three advantages for the issues discussed in this paper. First, understanding historical conceptual change as part of an explanatory shift fits with the emergence of population biology as a discipline that employs statistical methods. Second, concerning current debates in evolutionary biology, the statisticalist reading can validate the goal of both sides of the dispute. It ascribes an invaluable role to the population statistical explanation of the MS and also commends the study of developmental and organismal causes of adaptive evolution. Finally, the division of explanatory roles in evolutionary biology, embarrassed by statisticalism, can be related to the different interpretations that important biological concepts have undergone throughout history and contemporary biology, i.e., that the division of explanatory roles allows for a division of conceptual interpretations.
Collapse
Affiliation(s)
- Tiago Rama
- Department of Philosophy, University of the Republic, Montevideo, Uruguay.
| |
Collapse
|
2
|
Chiapperino L. Enacting biosocial complexity: Stress, epigenetic biomarkers and the tools of postgenomics. SOCIAL STUDIES OF SCIENCE 2024; 54:598-625. [PMID: 38214449 PMCID: PMC11409560 DOI: 10.1177/03063127231222613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This article analyses attempts to enact complexity in postgenomic experimentations using the case of epigenetic research on biomarkers of psychosocial stress. Enacting complexity in this research means dissecting multiple so-called biosocial processes of health differentiation in the face of stressful experiences. To characterize enactments of biosocial complexity, the article develops the concepts of complexity work and complexification. The former emphasizes the social, technical, and material work that goes into the production of mixed biological and social representations of stress in epigenetics. The latter underlines how complexity can be assembled differently across distinct configurations of experimental work. Specifically, complexification can be defined as producing, stabilizing, and normalizing novel experimental systems that are supposed to improve techno-scientific enactments of complexity. In the case of epigenetics, complexification entails a reconfiguration of postgenomic experimental systems in ways that some actors deem 'better' at enacting health as a biosocial process. This study of complexity work and complexification shows that biosocial complexity is hardly a univocal enterprise in epigenetics. Consequently, the article calls for abandoning analysis of these research practices using clear-cut dichotomies of reductionism vs. holism, as well as simplicity vs. complexity. More broadly, the article suggests the relevance of a sociology of complexification for STS approaches to complexity in scientific practices. Complementing the existing focus on complexity as instrumental rhetoric in contemporary sciences, complexification directs analytical attention to the pragmatic opportunities that alternative (biosocial) complexities offer to collective, societal, and political thinking about science in society.
Collapse
|
3
|
Jiménez-Ortega RF, Ortega-Meléndez AI, Patiño N, Rivera-Paredez B, Hidalgo-Bravo A, Velázquez-Cruz R. The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis. BIOLOGY 2024; 13:505. [PMID: 39056698 PMCID: PMC11273958 DOI: 10.3390/biology13070505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Bone remodeling, crucial for maintaining the balance between bone resorption and formation, relies on the coordinated activity of osteoclasts and osteoblasts. During osteoclastogenesis, hematopoietic stem cells (HSCs) differentiate into the osteoclast lineage through the signaling pathways OPG/RANK/RANKL. On the other hand, during osteoblastogenesis, mesenchymal stem cells (MSCs) differentiate into the osteoblast lineage through activation of the signaling pathways TGF-β/BMP/Wnt. Recent studies have shown that bone remodeling is regulated by post-transcriptional mechanisms including microRNAs (miRNAs). miRNAs are small, single-stranded, noncoding RNAs approximately 22 nucleotides in length. miRNAs can regulate virtually all cellular processes through binding to miRNA-response elements (MRE) at the 3' untranslated region (3'UTR) of the target mRNA. miRNAs are involved in controlling gene expression during osteogenic differentiation through the regulation of key signaling cascades during bone formation and resorption. Alterations of miRNA expression could favor the development of bone disorders, including osteoporosis. This review provides a general description of the miRNAs involved in bone remodeling and their significance in osteoporosis development.
Collapse
Affiliation(s)
- Rogelio F. Jiménez-Ortega
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Unidad de Acupuntura Humana Rehabilitatoria, Universidad Estatal del Valle de Ecatepec (UNEVE), Ecatepec de Morelos 55210, Mexico
| | - Alejandra I. Ortega-Meléndez
- Unidad Académica de Ciencias de la Salud, Universidad ETAC Campus Coacalco, Coacalco de Berriozábal 55700, Mexico;
| | - Nelly Patiño
- Unidad de Citometría de Flujo (UCiF), Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Berenice Rivera-Paredez
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alberto Hidalgo-Bravo
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Mexico City 14389, Mexico;
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| |
Collapse
|
4
|
Chiapperino L, Panese F. Engram Studies: A Call for Historical, Philosophical, and Sociological Approaches. ADVANCES IN NEUROBIOLOGY 2024; 38:259-272. [PMID: 39008020 DOI: 10.1007/978-3-031-62983-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In this chapter, we identify three distinct avenues of research on the philosophical, historical, and sociopolitical dimensions of engram research. First, we single out the need to refine philosophical understandings of memory within neuroscientific research on the engram. Specifically, we question the place of constructivist and preservationist philosophical claims on memory in the formulation of the engram concept and its operationalization in contemporary neuroscience research. Second, we delve into the received historiography of the engram claiming its disappearance after Richard Semon's (1859-1918) coinage of the concept. Differently from this view, we underline that Semon's legacy is still largely undocumented: Unknown are the ways the engram circulated within studies of organic memory as well as the role Semon's ideas had in specific national contexts of research in neurosciences. Finally, another research gap on the engram concerns a socio-anthropological documentation of the factual and normative resources this research offers to think about memory in healthcare and society. Representations of memory in this research, experimental strategies of intervention into the engram, as well as their translational potential for neurodegenerative (e.g., Alzheimer's disease) and psychiatric (e.g., post-traumatic stress disorder) conditions have not yet received scrutiny notwithstanding their obvious social and political relevance.All these knowledge gaps combined call for a strong commitment towards interdisciplinarity to align the ambitions of a foundational neuroscience of the engram with a socially responsible circulation of this knowledge. What role can the facts, metaphors, and interventional strategies of engram research play in the wider society? With what implications for philosophical questions at the foundation of memory, which have accompanied its study from antiquity? And what can neuro- and social scientists do jointly to shape the social and political framings of engram research?
Collapse
Affiliation(s)
- Luca Chiapperino
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Francesco Panese
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Chiapperino L, Paneni F. In medio stat virtus? A reply to Dupras. EPIGENETICS COMMUNICATIONS 2023; 3:5. [PMID: 38799084 PMCID: PMC11116170 DOI: 10.1186/s43682-023-00017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/29/2024]
Affiliation(s)
- Luca Chiapperino
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, Quartier UNIL-Mouline, Bâtiment Géopolis, Bureau 5556, Lausanne, CH-1015 Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), University Hospital Zurich and University of Zurich, Zurich, CH-8091 Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
6
|
Chiapperino L, Paneni F. Walk on the wild side: a response to Zaina. EPIGENETICS COMMUNICATIONS 2023; 3:3. [PMID: 38799083 PMCID: PMC11116241 DOI: 10.1186/s43682-023-00019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/29/2024]
Affiliation(s)
- Luca Chiapperino
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, Quartier UNIL-Mouline, Bâtiment Géopolis, Bureau 5556, CH-1015 Lausanne, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Lloyd S, Larivée A, Lutz PE. Homeorhesis: envisaging the logic of life trajectories in molecular research on trauma and its effects. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:65. [PMID: 36417009 DOI: 10.1007/s40656-022-00542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
What sets someone on a life trajectory? This question is at the heart of studies of 21st-century neurosciences that build on scientific models developed over the last 150 years that attempt to link psychopathology risk and human development. Historically, this research has documented persistent effects of singular, negative life experiences on people's subsequent development. More recently, studies have documented neuromolecular effects of early life adversity on life trajectories, resulting in models that frame lives as disproportionately affected by early negative experiences. This view is dominant, despite little evidence of the stability of the presumably early-developed molecular traits and their potential effects on phenotypes. We argue that in the context of gaps in knowledge and the need for scientists to reason across molecular and phenotypic scales, as well as time spans that can extend beyond an individual's life, specific interpretative frameworks shape the ways in which individual scientific findings are assessed. In the process, scientific reasoning oscillates between understandings of cellular homeostasis and organisms' homeorhesis, or life trajectory. Biologist and historian François Jacob described this framework as the "attitude" that researchers bring to bear on their "objects" of study. Through an analysis of, first, historical and contemporary scientific literature and then ethnographic research with neuroscientists, we consider how early life trauma came to be associated with specific psychological and neurobiological effects grounded in understandings of life trajectories. We conclude with a consideration of the conceptual, ontological, and ethical implications of interpreting life trajectories as the result of the persistence of long-embodied biological traits, persistent life environments, or both.
Collapse
Affiliation(s)
- Stephanie Lloyd
- Department of Anthropology, Université Laval, Québec, Québec, Canada.
| | - Alexandre Larivée
- Department of Anthropology, Université Laval, Québec, Québec, Canada
| | - Pierre-Eric Lutz
- Douglas Mental Health University Institute, McGill University, Montréal, Canada
- Centre National de la Recherche Scientifique, Fédération de Médecine Translationnelle de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Université de Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
8
|
Legüe M. Relevancia de los mecanismos epigenéticos en el neurodesarrollo normal y consecuencias de sus perturbaciones. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
9
|
Weiner AKM, Cerón-Romero MA, Yan Y, Katz LA. Phylogenomics of the Epigenetic Toolkit Reveals Punctate Retention of Genes across Eukaryotes. Genome Biol Evol 2021; 12:2196-2210. [PMID: 33049043 DOI: 10.1093/gbe/evaa198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Epigenetic processes in eukaryotes play important roles through regulation of gene expression, chromatin structure, and genome rearrangements. The roles of chromatin modification (e.g., DNA methylation and histone modification) and non-protein-coding RNAs have been well studied in animals and plants. With the exception of a few model organisms (e.g., Saccharomyces and Plasmodium), much less is known about epigenetic toolkits across the remainder of the eukaryotic tree of life. Even with limited data, previous work suggested the existence of an ancient epigenetic toolkit in the last eukaryotic common ancestor. We use PhyloToL, our taxon-rich phylogenomic pipeline, to detect homologs of epigenetic genes and evaluate their macroevolutionary patterns among eukaryotes. In addition to data from GenBank, we increase taxon sampling from understudied clades of SAR (Stramenopila, Alveolata, and Rhizaria) and Amoebozoa by adding new single-cell transcriptomes from ciliates, foraminifera, and testate amoebae. We focus on 118 gene families, 94 involved in chromatin modification and 24 involved in non-protein-coding RNA processes based on the epigenetics literature. Our results indicate 1) the presence of a large number of epigenetic gene families in the last eukaryotic common ancestor; 2) differential conservation among major eukaryotic clades, with a notable paucity of genes within Excavata; and 3) punctate distribution of epigenetic gene families between species consistent with rapid evolution leading to gene loss. Together these data demonstrate the power of taxon-rich phylogenomic studies for illuminating evolutionary patterns at scales of >1 billion years of evolution and suggest that macroevolutionary phenomena, such as genome conflict, have shaped the evolution of the eukaryotic epigenetic toolkit.
Collapse
Affiliation(s)
- Agnes K M Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst
| |
Collapse
|
10
|
Le Goff A, Allard P, Landecker H. Heritable changeability: Epimutation and the legacy of negative definition in epigenetic concepts. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2021; 86:35-46. [PMID: 33965662 DOI: 10.1016/j.shpsa.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Epigenetic concepts are fundamentally shaped by a legacy of negative definition, often understood by what they are not. Yet the function and implication of negative definition for scientific discourse has thus far received scant attention. Using the term epimutation as exemplar, we analyze the paradoxical like-but-unlike structure of a term that must simultaneously connect with but depart from genetic concepts. We assess the historical forces structuring the use of epimutation and like terms such as paramutation. This analysis highlights the positive characteristics defining epimutation: the regularity, oxymoronic temporality, and materiality of stable processes. Integrating historical work, ethnographic observation, and insights from philosophical practice-oriented conceptual analysis, we detail the distinctive epistemic goals the epimutation concept fulfils in medicine, plant biology and toxicology. Epimutation and allied epigenetic terms have succeeded by being mutation-like and recognizable, yet have failed to consolidate for exactly the same reason: they are tied simultaneously by likeness and opposition to nouns that describe things that are assumed to persist unchanged over space and time. Moreover, negative definition casts the genetic-epigenetic relationship as an either/or binary, overshadowing continuities and connections. This analysis is intended to assist practitioners and observers of genetics and epigenetics in recognizing and moving beyond the conceptual legacies of negative definition.
Collapse
Affiliation(s)
- Anne Le Goff
- The Institute for Society and Genetics & the EpiCenter, University of California, UCLA Institute for Society and Genetics, 621 Charles E. Young Dr., South Box 957221, 3360 LSB, Los Angeles, USA.
| | - Patrick Allard
- The Institute for Society and Genetics & the EpiCenter, University of California, UCLA Institute for Society and Genetics, 621 Charles E. Young Dr., South Box 957221, 3360 LSB, Los Angeles, USA.
| | - Hannah Landecker
- Department of Sociology, The Institute for Society and Genetics & the EpiCenter, University of California, UCLA Institute for Society and Genetics, 621 Charles E. Young Dr, South Box 957221, 3360 LSB, Los Angeles, USA.
| |
Collapse
|
11
|
Portera M, Mandrioli M. Who's afraid of epigenetics? Habits, instincts, and Charles Darwin's evolutionary theory. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:20. [PMID: 33569656 PMCID: PMC7875938 DOI: 10.1007/s40656-021-00376-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Our paper aims at bringing to the fore the crucial role that habits play in Charles Darwin's theory of evolution by means of natural selection. We have organized the paper in two steps: first, we analyse value and functions of the concept of habit in Darwin's early works, notably in his Notebooks, and compare these views to his mature understanding of the concept in the Origin of Species and later works; second, we discuss Darwin's ideas on habits in the light of today's theories of epigenetic inheritance, which describe the way in which the functioning and expression of genes is modified by the environment, and how these modifications are transmitted over generations. We argue that Darwin's lasting and multifaceted interest in the notion of habit, throughout his intellectual life, is both conceptually and methodologically relevant. From a conceptual point of view, intriguing similarities can be found between Darwin's (early) conception of habit and contemporary views on epigenetic inheritance. From a methodological point of view, we suggest that Darwin's plastic approach to habits, from his early writings up to the mature works, can provide today's evolutionary scientists with a viable methodological model to address the challenging task of extending and expanding evolutionary theory, with particular reference to the integration of epigenetic mechanisms into existing models of evolutionary change. Over his entire life Darwin has modified and reassessed his views on habits as many times as required by evidence: his work on this notion may represent the paradigm of a habit of good scientific research methodology.
Collapse
Affiliation(s)
- Mariagrazia Portera
- Dipartimento di Lettere e Filosofia, University of Florence, Firenze, Italy.
| | - Mauro Mandrioli
- Dipartimento di Scienze della Vita, University of Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Kamrani A, Alipourfard I, Ahmadi-Khiavi H, Yousefi M, Rostamzadeh D, Izadi M, Ahmadi M. The role of epigenetic changes in preeclampsia. Biofactors 2019; 45:712-724. [PMID: 31343798 DOI: 10.1002/biof.1542] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) is a disorder affecting 2-10% of pregnancies and has a major role for perinatal and maternal mortality and morbidity. PE can be occurred by initiation of new hypertension combined with proteinuria after 20 weeks gestation, as well as various reasons such as inflammatory cytokines, poor trophoblast invasion can be related with PE disease. Environmental factors can cause epigenetic changes including DNA methylation, microRNAs (miRNAs), and histone modification that may be related to different diseases such as PE. Abnormal DNA methylation during placentation is the most important epigenetic factor correlated with PE. Moreover, changes in histone modification like acetylation and also the effect of overregulation or low regulation of miRNAs or long noncoding RNAs on variety signaling pathways can be resulted in PE. The aim of this review is to describe of studies about epigenetic changes in PE and its therapeutic strategies.
Collapse
Affiliation(s)
- Amin Kamrani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Center of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Rostamzadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Reproductive Biology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Nehme Z, Pasquereau S, Herbein G. Control of viral infections by epigenetic-targeted therapy. Clin Epigenetics 2019; 11:55. [PMID: 30917875 PMCID: PMC6437953 DOI: 10.1186/s13148-019-0654-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
Epigenetics is defined as the science that studies the modifications of gene expression that are not owed to mutations or changes in the genetic sequence. Recently, strong evidences are pinpointing toward a solid interplay between such epigenetic alterations and the outcome of human cytomegalovirus (HCMV) infection. Guided by the previous possibly promising experimental trials of human immunodeficiency virus (HIV) epigenetic reprogramming, the latter is paving the road toward two major approaches to control viral gene expression or latency. Reactivating HCMV from the latent phase ("shock and kill" paradigm) or alternatively repressing the virus lytic and reactivation phases ("block and lock" paradigm) by epigenetic-targeted therapy represent encouraging options to overcome latency and viral shedding or otherwise replication and infectivity, which could lead eventually to control the infection and its complications. Not limited to HIV and HCMV, this concept is similarly studied in the context of hepatitis B and C virus, herpes simplex virus, and Epstein-Barr virus. Therefore, epigenetic manipulations stand as a pioneering research area in modern biology and could constitute a curative methodology by potentially consenting the development of broad-spectrum antivirals to control viral infections in vivo.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
- Université Libanaise, Beirut, Lebanon
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
- Department of Virology, CHRU Besancon, F-25030 Besançon, France
| |
Collapse
|
15
|
Vendrell X, Escribà MJ. The model of "genetic compartments": a new insight into reproductive genetics. J Assist Reprod Genet 2019; 36:363-369. [PMID: 30421342 PMCID: PMC6439105 DOI: 10.1007/s10815-018-1366-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, we are witnessing revolutionary advances in the analytical power of genetic tools. An enormous quantity of data can now be obtained from samples; however, the translation of genetic findings to the general status of individuals, or their offspring, should be done with caution. This is especially relevant in the reproductive context, where the concepts of "transmission" and "inheritability" of a trait are crucial. Against this background, we offer new insight based on a systemic view of genetic constitution in the compartmentalized organism, that is, the human body. This model considers the coexistence of "different" genomes in the same individual and the repercussion of this on reproductive efficacy and offspring. Herein, we review the major differences between somatic, germinal, embryonic, and fetal/placental genomes and their contribution to the next generation and its reproductive efficacy. The major novelty of our approach is the holistic interaction between microsystems within a macrosystem (i.e., the reproductive system). This panoramic model allows us to sketch the future implications of genetic results in function of the origin (compartment) of the sample: peripheral blood or other somatic tissues, gametes, zygotes, preimplantation embryos, fetus, or placenta. We believe this perspective can be of great use in the context of reproductive genetic counseling.
Collapse
Affiliation(s)
- X Vendrell
- Reproductive Genetics Unit, Sistemas Genómicos, Parc Tecnològic de Paterna, G. Marconi 6, 46980, València, Spain.
| | - M J Escribà
- IVF Laboratory, IVIRMA-Valencia, Plaça de la Policia Local, 3, 46015, València, Spain
| |
Collapse
|
16
|
Fathollahi A, Aslani S, Jamshidi A, Mahmoudi M. Epigenetics in osteoarthritis: Novel spotlight. J Cell Physiol 2019; 234:12309-12324. [DOI: 10.1002/jcp.28020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Anwar Fathollahi
- Department of Immunology School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- Rheumatology Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
17
|
Nicoglou A, Wolfe CT. Introduction: sketches of a conceptual history of epigenesis. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2018; 40:64. [PMID: 30353475 DOI: 10.1007/s40656-018-0230-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
This is an introduction to a collection of articles on the conceptual history of epigenesis, from Aristotle to Harvey, Cavendish, Kant and Erasmus Darwin, moving into nineteenth-century biology with Wolff, Blumenbach and His, and onto the twentieth century and current issues, with Waddington and epigenetics. The purpose of the topical collection is to emphasize how epigenesis marks the point of intersection of a theory of biological development and a (philosophical) theory of active matter. We also wish to show that the concept of epigenesis existed prior to biological theorization and that it continues to permeate thinking about development in recent biological debates.
Collapse
|