1
|
Höhn C, Hahn MA, Gruber G, Pletzer B, Cajochen C, Hoedlmoser K. Effects of evening smartphone use on sleep and declarative memory consolidation in male adolescents and young adults. Brain Commun 2024; 6:fcae173. [PMID: 38846535 PMCID: PMC11154150 DOI: 10.1093/braincomms/fcae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Exposure to short-wavelength light before bedtime is known to disrupt nocturnal melatonin secretion and can impair subsequent sleep. However, while it has been demonstrated that older adults are less affected by short-wavelength light, there is limited research exploring differences between adolescents and young adults. Furthermore, it remains unclear whether the effects of evening short-wavelength light on sleep architecture extend to sleep-related processes, such as declarative memory consolidation. Here, we recorded polysomnography from 33 male adolescents (15.42 ± 0.97 years) and 35 male young adults (21.51 ± 2.06 years) in a within-subject design during three different nights to investigate the impact of reading for 90 min either on a smartphone with or without a blue-light filter or from a printed book. We measured subjective sleepiness, melatonin secretion, sleep physiology and sleep-dependent memory consolidation. While subjective sleepiness remained unaffected, we observed a significant melatonin attenuation effect in both age groups immediately after reading on the smartphone without a blue-light filter. Interestingly, adolescents fully recovered from the melatonin attenuation in the following 50 min before bedtime, whereas adults still, at bedtime, exhibited significantly reduced melatonin levels. Sleep-dependent memory consolidation and the coupling between sleep spindles and slow oscillations were not affected by short-wavelength light in both age groups. Nevertheless, adults showed a reduction in N3 sleep during the first night quarter. In summary, avoiding smartphone use in the last hour before bedtime is advisable for adolescents and young adults to prevent sleep disturbances. Our research empirically supports general sleep hygiene advice and can inform future recommendations regarding the use of smartphones and other screen-based devices before bedtime.
Collapse
Affiliation(s)
- Christopher Höhn
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Michael A Hahn
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, 72076 Tübingen, Germany
| | - Georg Gruber
- The Siesta Group Schlafanalyse GmbH, 1210 Vienna, Austria
| | - Belinda Pletzer
- Centre for Cognitive Neuroscience Salzburg (CCNS), Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland
- Research Cluster Molecular and Cognitive Neuroscience (MCN), University of Basel, 4055 Basel, Switzerland
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
2
|
Höhn C, Hahn MA, Lendner JD, Hoedlmoser K. Spectral Slope and Lempel-Ziv Complexity as Robust Markers of Brain States during Sleep and Wakefulness. eNeuro 2024; 11:ENEURO.0259-23.2024. [PMID: 38471778 PMCID: PMC10978822 DOI: 10.1523/eneuro.0259-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Nonoscillatory measures of brain activity such as the spectral slope and Lempel-Ziv complexity are affected by many neurological disorders and modulated by sleep. A multitude of frequency ranges, particularly a broadband (encompassing the full spectrum) and a narrowband approach, have been used especially for estimating the spectral slope. However, the effects of choosing different frequency ranges have not yet been explored in detail. Here, we evaluated the impact of sleep stage and task engagement (resting, attention, and memory) on slope and complexity in a narrowband (30-45 Hz) and broadband (1-45 Hz) frequency range in 28 healthy male human subjects (21.54 ± 1.90 years) using a within-subject design over 2 weeks with three recording nights and days per subject. We strived to determine how different brain states and frequency ranges affect slope and complexity and how the two measures perform in comparison. In the broadband range, the slope steepened, and complexity decreased continuously from wakefulness to N3 sleep. REM sleep, however, was best discriminated by the narrowband slope. Importantly, slope and complexity also differed between tasks during wakefulness. While narrowband complexity decreased with task engagement, the slope flattened in both frequency ranges. Interestingly, only the narrowband slope was positively correlated with task performance. Our results show that slope and complexity are sensitive indices of brain state variations during wakefulness and sleep. However, the spectral slope yields more information and could be used for a greater variety of research questions than Lempel-Ziv complexity, especially when a narrowband frequency range is used.
Collapse
Affiliation(s)
- Christopher Höhn
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria
| | - Michael A Hahn
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, 72076 Tübingen, Germany
| | - Janna D Lendner
- Hertie-Institute for Clinical Brain Research, University Medical Center Tübingen, 72076 Tübingen, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen, 72076 Tübingen, Germany
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
3
|
Yuan RK, Kim YA, Cain SW, Münch MY, Ronda JM, Wang W, Czeisler CA, Duffy JF. Circadian- and wake-dependent influences on face-name memory in healthy men and women over 3weeks of chronic sleep restriction. Sleep Health 2024; 10:S84-S88. [PMID: 37783575 PMCID: PMC10980596 DOI: 10.1016/j.sleh.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVES Facial recognition is one of the key functions of the human brain, and linking a face to a name is critical in many social and occupational settings. This study assessed circadian- and wake-dependent effects on face-name recognition in healthy adults. METHODS Thirteen healthy adults (20-70years; 7 F) were studied in a 39-day inpatient protocol that included 3weeks of 28 hours forced desynchrony with sleep restriction (6.5:21.5 hours sleep:wake). Starting 3 hours after scheduled wake, 6 novel face-name pairs were presented every 4 waking hours; recognition was tested 2 hours later. Performance data were averaged across ∼4 hours circadian phase or time-awake bins. RESULTS Face-name recognition deteriorated with increased time awake (p < .0001) and exhibited significant circadian variation (p < .0001), with worst performance shortly after the core temperature nadir. There was a significant interaction between sex and circadian phase (p = .0177), with women performing significantly better than men at all circadian phases except 60° and 120°. Women exhibited a significantly higher amplitude than men during the third week of forced desynchrony (p < .01). CONCLUSIONS Like many other aspects of neurobehavioral performance, recalling face-name associations is impacted by both duration of time awake and circadian phase. These results have implications for face recognition testing in medical contexts, such as in testing for dementia, because performance may be impacted by sleep deficiency and the time of testing.
Collapse
Affiliation(s)
- Robin K Yuan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | | | - Sean W Cain
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Mirjam Y Münch
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph M Ronda
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Schreiner T, Petzka M, Staudigl T, Staresina BP. Respiration modulates sleep oscillations and memory reactivation in humans. Nat Commun 2023; 14:8351. [PMID: 38110418 PMCID: PMC10728072 DOI: 10.1038/s41467-023-43450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
The beneficial effect of sleep on memory consolidation relies on the precise interplay of slow oscillations and spindles. However, whether these rhythms are orchestrated by an underlying pacemaker has remained elusive. Here, we tested the relationship between respiration, which has been shown to impact brain rhythms and cognition during wake, sleep-related oscillations and memory reactivation in humans. We re-analysed an existing dataset, where scalp electroencephalography and respiration were recorded throughout an experiment in which participants (N = 20) acquired associative memories before taking a nap. Our results reveal that respiration modulates the emergence of sleep oscillations. Specifically, slow oscillations, spindles as well as their interplay (i.e., slow-oscillation_spindle complexes) systematically increase towards inhalation peaks. Moreover, the strength of respiration - slow-oscillation_spindle coupling is linked to the extent of memory reactivation (i.e., classifier evidence in favour of the previously learned stimulus category) during slow-oscillation_spindles. Our results identify a clear association between respiration and memory consolidation in humans and highlight the role of brain-body interactions during sleep.
Collapse
Affiliation(s)
- Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany.
| | - Marit Petzka
- Max Planck Institute for Human Development, Berlin, Germany
- Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Teece AR, Beaven M, Argus CK, Gill N, Driller MW. Comparing Perceived Sleep Quality, Practices, and Behaviors of Male and Female Elite Rugby Union Athletes with the Use of Sleep Questionnaires. Sleep Sci 2023; 16:e271-e277. [PMID: 38196769 PMCID: PMC10773513 DOI: 10.1055/s-0043-1772788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 10/10/2022] [Indexed: 01/11/2024] Open
Abstract
Objective To evaluate the differences in subjective sleep quality, quantity, and behaviors among male and female elite rugby union athletes through two common sleep questionnaires. Materials and Methods A sample of 38 male and 27 female elite rugby union athletes filled out the Athlete Sleep Behavior Questionnaire (ASBQ) and the Pittsburgh Sleep Quality Index (PSQI). Global scores and individual items for each questionnaire were compared to assess differences between sexes. Results Male athletes reported significantly longer sleep duration (7 h 50 m ± 50 m versus 7h 12 m ± 58 m respectively; p ≤ 0.01; d = 0.70) and higher habitual sleep efficiency (88% versus 83% respectively; p < 0.05; d = 0.54) when compared with female athletes. Individual items of the ASBQ revealed significant differences between male and female athletes for five questions. Male athletes displayed higher instances of taking stimulants before training or competition and consuming alcohol within 4 hours of going to bed. Conversely, female athletes expressed greater thought or worry while in bed and a higher instance of training late at night. Discussion Male athletes displayed better self-reported sleep quality and quantity than female athletes; however, the present study highlighted that male and female elite rugby union athletes face specific challenges that differ. It appears that the differences observed between male and female elite rugby union athletes may be due to differing levels of professionalism or differences in training or competition schedules.
Collapse
Affiliation(s)
- Angus R. Teece
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, Waikato, New Zealand
| | - Martyn Beaven
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, Waikato, New Zealand
| | | | | | - Matthew W. Driller
- Department of Sport, Exercise and Nutrition Science, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Stee W, Peigneux P. Does Motor Memory Reactivation through Practice and Post-Learning Sleep Modulate Consolidation? Clocks Sleep 2023; 5:72-84. [PMID: 36810845 PMCID: PMC9944088 DOI: 10.3390/clockssleep5010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Retrieving previously stored information makes memory traces labile again and can trigger restabilization in a strengthened or weakened form depending on the reactivation condition. Available evidence for long-term performance changes upon reactivation of motor memories and the effect of post-learning sleep on their consolidation remains scarce, and so does the data on the ways in which subsequent reactivation of motor memories interacts with sleep-related consolidation. Eighty young volunteers learned (Day 1) a 12-element Serial Reaction Time Task (SRTT) before a post-training Regular Sleep (RS) or Sleep Deprivation (SD) night, either followed (Day 2) by morning motor reactivation through a short SRTT testing or no motor activity. Consolidation was assessed after three recovery nights (Day 5). A 2 × 2 ANOVA carried on proportional offline gains did not evidence significant Reactivation (Morning Reactivation/No Morning Reactivation; p = 0.098), post-training Sleep (RS/SD; p = 0.301) or Sleep*Reactivation interaction (p = 0.257) effect. Our results are in line with prior studies suggesting a lack of supplementary performance gains upon reactivation, and other studies that failed to disclose post-learning sleep-related effects on performance improvement. However, lack of overt behavioural effects does not detract from the possibility of sleep- or reconsolidation-related covert neurophysiological changes underlying similar behavioural performance levels.
Collapse
Affiliation(s)
- Whitney Stee
- UR2NF—Neuropsychology and Functional Neuroimaging Research Unit Affiliated at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
- GIGA—Cyclotron Research Centre—In Vivo Imaging, University of Liège (ULiège), 4000 Liège, Belgium
| | - Philippe Peigneux
- UR2NF—Neuropsychology and Functional Neuroimaging Research Unit Affiliated at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
- GIGA—Cyclotron Research Centre—In Vivo Imaging, University of Liège (ULiège), 4000 Liège, Belgium
| |
Collapse
|
7
|
Vidafar P, Spitschan M. Light on Shedding: A Review of Sex and Menstrual Cycle Differences in the Physiological Effects of Light in Humans. J Biol Rhythms 2023; 38:15-33. [PMID: 36367137 PMCID: PMC9902977 DOI: 10.1177/07487304221126785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human circadian system responds to light as low as 30 photopic lux. Furthermore, recent evidence shows that there are huge individual differences in light sensitivity, which may help to explain why some people are more susceptible to sleep and circadian disruption than others. The biological mechanisms underlying the differences in light sensitivity remain largely unknown. A key variable of interest in understanding these individual differences in light sensitivity is biological sex. It is possible that in humans, males and females differ in their sensitivity to light, but the evidence is inconclusive. This is in part due to the historic exclusion of women in biomedical research. Hormonal fluctuations across the menstrual cycle in women has often been cited as a confound by researchers. Attitudes, however, are changing with funding and publication agencies advocating for more inclusive research frameworks and mandating that women and minorities participate in scientific research studies. In this article, we distill the existing knowledge regarding the relationship between light and the menstrual cycle. There is some evidence of a relationship between light and the menstrual cycle, but the nature of this relationship seems dependent on the timing of the light source (sunlight, moonlight, and electric light at night). Light sensitivity may be influenced by biological sex and menstrual phase but there might not be any effect at all. To better understand the relationship between light, the circadian system, and the menstrual cycle, future research needs to be designed thoughtfully, conducted rigorously, and reported transparently.
Collapse
Affiliation(s)
- Parisa Vidafar
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Manuel Spitschan
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
8
|
Sleep targets highly connected global and local nodes to aid consolidation of learned graph networks. Sci Rep 2022; 12:15086. [PMID: 36064730 PMCID: PMC9445065 DOI: 10.1038/s41598-022-17747-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/30/2022] [Indexed: 11/30/2022] Open
Abstract
Much of our long-term knowledge is organised in complex networks. Sleep is thought to be critical for abstracting knowledge and enhancing important item memory for long-term retention. Thus, sleep should aid the development of memory for networks and the abstraction of their structure for efficient storage. However, this remains unknown because past sleep studies have focused on discrete items. Here we explored the impact of sleep (night-sleep/day-wake within-subject paradigm with 25 male participants) on memory for graph-networks where some items were important due to dense local connections (degree centrality) or, independently, important due to greater global connections (closeness/betweenness centrality). A network of 27 planets (nodes) sparsely interconnected by 36 teleporters (edges) was learned via discrete associations without explicit indication of any network structure. Despite equivalent exposure to all connections in the network, we found that memory for the links between items with high local connectivity or high global connectivity were better retained after sleep. These results highlight that sleep has the capacity for strengthening both global and local structure from the world and abstracting over multiple experiences to efficiently form internal networks of knowledge.
Collapse
|
9
|
Health-Promoting Behavior and Lifestyle Characteristics of Students as a Function of Sex and Academic Level. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127539. [PMID: 35742787 PMCID: PMC9224493 DOI: 10.3390/ijerph19127539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023]
Abstract
University students frequently engage in unhealthy behaviors. However, there is a lack of studies examining a wide range of their lifestyle characteristics by sex and academic level of study. This cross-sectional survey of students enrolled in BSc, MSc, or PhD programs at one university in Germany (N = 3389) assessed physical activity (PA), sedentary behavior (SB), nutrition, sleep quality, and alcohol, tobacco, and other drug (ATOD) use by sex and academic level and was conducted with EvaSys version 8.0. Chi-squared tests compared categorical variables by sex, and binary logistic regression analyses adjusted for sex with Bonferroni adjustments evaluated differences across academic level. Although 91% of students achieved the aerobic PA guidelines, only 30% achieved the muscle strengthening exercises (MSE) guidelines, and 44% had high SB. Likewise, <10% met the fruit and vegetable consumption (FVC) recommendations, >40% of students experienced impaired sleep, and >30% had hazardous alcohol consumption. Less than 20% of the sample achieved the guideline/recommendation of all three PA, MSE and SB. Some behaviors exhibited significant sex and academic level differences. The identified at-risk groups included males (lower FVC), females (eating more during stress), and BSc students (poorer nutrition/sleep quality, more ATOD use). Given the above findings, multipronged strategies are needed with an overarching focus highlighting the health−academic achievement links. Behavioral interventions and environmental policies are required to raise awareness and promote student health.
Collapse
|