1
|
Thakur A, Dagdag O, Berisha A, Ebenso E, Kumar A, Sharma S, Ganjoo R, Assad H. Experimental accompanied with computational (atomic/electronic)-level simulation investigations of Polygonum cuspidatum root extract as sustainable corrosion inhibitor for mild steel in aggressive corrosive media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34141-9. [PMID: 38961020 DOI: 10.1007/s11356-024-34141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
This study investigates the corrosion inhibition potential of Polygonum cuspidatum root extract (PCRE) on mild steel in a 0.5 M HCl acidic environment. Herein, various techniques including electrochemical and gravimetric measurements were employed, along with scanning electron microscopy (SEM) and contact angle (CA) measurements for surface morphology analysis. The impedance study revealed a concentration-dependent enhancement in corrosion resistance, classifying PCRE as a mixed-type inhibitor (i.e., inhibits both anodic and cathodic reactions). The highest efficiency, 96.71% at 298 K, was observed at a 1000-ppm PCRE concentration. Langmuir model computations suggested chemisorption and physisorption of PCRE on the electrode substrate. Increased Rp (from 28.648 to 174.01 Ω) and Rct (185.74 Ω cm2) at 1000 ppm demonstrated improved corrosion resistance. Additionally, SEM analysis displayed a uniform, protective surface, reducing metal degradation. Theoretical calculations highlighted strong interactions between PCRE and mild steel, with a low energy gap (ΔE), as follows: 1-O-methylemodin (2.267 eV) < emodin (2.288 eV) < emodin-1-O-glucoside (2.343 eV) < piceid (2.931 eV) < resveratrol (2.952 eV), confirming PCRE's excellent micro-level anti-corrosion capabilities. This eco-benign corrosion inhibitor offers sustainable, low-toxicity protection, cost-effectiveness, and versatile performance, surpassing commercial counterparts while aligning with sustainability goals.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Omar Dagdag
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, South Africa
- Department of Mechanical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Avni Berisha
- Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, 10000, Prishtina, Kosovo
| | - Eno Ebenso
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, South Africa
| | - Ashish Kumar
- Nalanda College of Engineering, Science, Technology and Technical Education Department, Government of Bihar, Bihar Engineering University, 803108, Patna, India.
| | - Shveta Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Richika Ganjoo
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Humira Assad
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Yalazan H, Koç D, Aydın Kose F, Fandaklı S, Tüzün B, Akgül Mİ, Sadeghian N, Taslimi P, Kantekin H. Design, syntheses, theoretical calculations, MM-GBSA, potential anti-cancer and enzyme activities of novel Schiff base compounds. J Biomol Struct Dyn 2023:1-14. [PMID: 37921706 DOI: 10.1080/07391102.2023.2274972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
In this study, new Schiff base compounds (SB-F-OH, SB-Cl-OH and SB-Br-OH) were derived from chalcone-derived amine compounds containing halogen groups and 4-hydroxybenzaldehyde. Also, their phthalonitrile compounds (SB-F-CN, SB-Cl-CN and SB-Br-CN) have been synthesized. The structures of these compounds were elucidated by NMR, FT-IR and Mass spectroscopic methods. The quantum chemical parameters were calculated at B3LYP/6-31++g(d,p), HF/6-31++g(d,p) and M062X/6-31++g(d,p) levels. As the biological application of the synthesized compounds, (i) their inhibition properties of the synthesized compounds on Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) metabolic enzymes were investigated, and their potential anticancer activities against neuroblastoma (NB; SH-SY5Y) and healthy fibroblast (NIH-3T3) cell lines were determined by in vitro assays. All compounds showed inhibition at nanomolar level with the Ki values in the range of 97.86 ± 30.51-516.82 ± 31.42 nM for AChE, 33.21 ± 4.45-78.50 ± 8.91 nM for BChE, respectively. It has been determined that all tested compounds have a remarkable cytotoxic effect against SH-SY5Y, and IC50 values were significantly lower than NIH-3T3 cells. The lowest IC50 value was observed in SB-Cl-OH (7.48 ± 0.86 µM) and SB-Cl-CN (7.31 ± 0.69 µM). The molecular docking of the molecules was also investigated using crystal structure of AChE enzyme protein (PDB ID: 4M0E), crystal structure of BChE protein (PDB ID: 6R6V) and SH-SY5Y cancer protein (PDB ID: 2F3F, 3PBL and 5WIV). The ADME properties of the compounds were investigated. MM/GBSA method is calculated binding free energy. Afterwards, ADME/T analysis was performed to examine the some properties of the molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Halise Yalazan
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Damla Koç
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Türkiye
| | - Fadime Aydın Kose
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Seda Fandaklı
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Muhammed İsmail Akgül
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Halit Kantekin
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
3
|
Belhadi M, Oubahou M, Hammoudan I, Chraka A, Chafi M, Tighadouini S. A comprehensive assessment of carbon steel corrosion inhibition by 1,10-phenanthroline in the acidic environment: insights from experimental and computational studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27582-1. [PMID: 37195616 DOI: 10.1007/s11356-023-27582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
1,10-Phenanthroline (PHN) is a nitrogen-containing heterocyclic organic compound that is widely used in a variety of applications, including chemosensors, biological studies, and pharmaceuticals, which promotes its use as an organic inhibitor to reduce corrosion of steel in acidic solution. In this regard, the inhibition ability of PHN was examined for carbon steel (C48) in a 1.0 M HCl environment by performing electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), mass loss, and thermometric/kinetic. Additionally, scanning electron microscopy (SEM) was used to examine the surface morphology of C48 immersed in 1.0 M HCl protected with our inhibitor. According to the PDP tests, increasing the PHN concentration resulted in an improvement in corrosion inhibition efficiency. Besides, the maximum corrosion inhibition efficiency is about 90% at 328 K. Furthermore, the PDP assessments demonstrated that PHN functions as a mixed-type inhibitor. The adsorption analysis reveals that our title molecule mechanism is due to physical-chemical adsorption, as predicted by the Frumkin, Temkin, Freundlich, and Langmuir isotherms. The SEM technique exhibited that the corrosion barrier occurs due to the adsorption of the PHN compound through the metal/1.0 M HCl interface. In addition, the computational investigations based on a quantum calculation using density functional theory (DFT), reactivity (QTAIM, ELF, and LOL), and molecular-scale by Monte Carlo (MC) simulations confirmed the experimental results by providing further insight into the mode of adsorption of PHN on the metal surface, thus forming a protective film against corrosion on the C48 surface.
Collapse
Affiliation(s)
- Mimoun Belhadi
- Laboratory of Engineering, Higher School of Technology, University Hassan II of Casablanca, Processes, and Environment, B.P. 8012, Oasis, Casablanca, Morocco.
| | - Mohammed Oubahou
- Laboratory of Physical Chemistry of Materials, Faculty of Science Ben M'Sik, University Hassan II of Casablanca, B.P. 7955, Casablanca, Morocco
| | - Imad Hammoudan
- Laboratory of Engineering, Higher School of Technology, University Hassan II of Casablanca, Processes, and Environment, B.P. 8012, Oasis, Casablanca, Morocco
| | - Anas Chraka
- Materials and Interfacial Systems Laboratory, Department of Chemistry, Faculty of Sciences, ERESI Team, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Mohammed Chafi
- Laboratory of Engineering, Higher School of Technology, University Hassan II of Casablanca, Processes, and Environment, B.P. 8012, Oasis, Casablanca, Morocco
| | - Said Tighadouini
- Laboratory of Organic Synthesis, Extraction, and Valorization, Faculty of Sciences Ain Chock, University Hassan II of Casablanca, B.P. 5366, Casablanca, Morocco
| |
Collapse
|
4
|
Liu T, Cao L, Zhang T, Fu H. Molecular docking studies, anti-Alzheimer's disease, antidiabetic, and anti-acute myeloid leukemia potentials of narcissoside. Arch Physiol Biochem 2023; 129:405-415. [PMID: 33075241 DOI: 10.1080/13813455.2020.1828483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this research, we explored their capacity for Narcissoside antioxidant and anticholinergic, antidiabetic, and anti-acute myeloid leukaemia. Narcissoside's antioxidant activities were elucidated by the use of various bioanalytical assays. Narcissoside's radical scavenging activities were evaluated by DPPH• and ABTS•+ scavenging activities. On the other hand, IC50 values were calculated for DPPH•, and ABTS•+ scavenging, acetylcholinesterase, and α-glucosidase inhibition effects of narcissoside. IC50 values narcissoside, as 11.54 nM for AChE and 65.58 nM for α-glucosidase were calculated with % Activity-[Inhibitory] graphs. Then, ADME/T analysis of narcissoside molecule was performed to calculate the drug becoming parameters.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Hematology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi, China
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province, Nanchang, Jiangxi, China
| | - Lixia Cao
- Department of Hematology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi, China
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province, Nanchang, Jiangxi, China
| | - Tingting Zhang
- Department of Hematology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi, China
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province, Nanchang, Jiangxi, China
| | - Huan Fu
- Department of Hematology, People's Hospital of Jiangxi Province, Nanchang, Jiangxi, China
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Ech-chebab A, Dahmani K, Hsissou R, Khouja OE, Verma DK, Berdimurodov E, Erdoğan Ş, Tüzün B, Lachhab R, Ejbouh A, Galai M, Touhami ME. Anticorrosion properties of the epoxy polymer TGETBAU for mild steel in a solution of HCl (1.0M): Experimental and computational approaches. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Synthesis, Spectroscopic Characterization, Antibacterial Activity, and Computational Studies of Novel Pyridazinone Derivatives. Molecules 2023; 28:molecules28020678. [PMID: 36677736 PMCID: PMC9861222 DOI: 10.3390/molecules28020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In this work, a novel series of pyridazinone derivatives (3-17) were synthesized and characterized by NMR (1H and 13C), FT-IR spectroscopies, and ESI-MS methods. All synthesized compounds were screened for their antibacterial activities against Staphylococcus aureus (Methicillin-resistant), Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Acinetobacter baumannii. Among the series, compounds 7 and 13 were found to be active against S. aureus (MRSA), P. aeruginosa, and A. baumannii with the lowest MIC value range of 3.74-8.92 µM. Afterwards, DFT calculations of B3LYP/6-31++G(d,p) level were carried out to investigate geometry structures, frontier molecular orbital, molecular electrostatic potential maps, and gap energies of the synthesized compounds. In addition, the activities of these compounds against various bacterial proteins were compared with molecular-docking calculations. Finally, ADMET studies were performed to investigate the possibility of using of the target compounds as drugs.
Collapse
|
7
|
Al-Janabi IAS, Yavuz SÇ, Köprü S, Tapera M, Kekeçmuhammed H, Akkoç S, Tüzün B, Patat Ş, Sarıpınar E. Antiproliferative activity and molecular docking studies of new 4-oxothiazolidin-5-ylidene acetate derivatives containing guanylhydrazone moiety. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Khalilov AN, Tüzün B, Taslimi P, Tas A, Tuncbilek Z, Cakmak NK. Cytotoxic effect, spectroscopy, DFT, enzyme inhibition, and moleculer docking studies of some novel mesitylaminopropanols: Antidiabetic and anticholinergics and anticancer potentials. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Synthesis, bioinformatics and biological evaluation of novel pyridine based on 8-hydroxyquinoline derivatives as antibacterial agents: DFT, molecular docking and ADME/T studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Riaz MT, Yaqub M, Shafiq Z, Ashraf A, Khalid M, Taslimi P, Tas R, Tuzun B, Gulçin İ. Synthesis, biological activity and docking calculations of bis-naphthoquinone derivatives from Lawsone. Bioorg Chem 2021; 114:105069. [PMID: 34134033 DOI: 10.1016/j.bioorg.2021.105069] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/14/2022]
Abstract
Some metabolic enzyme inhibitors can be used as Multi-target-Directed-Ligands (MTDL) in Medicinal chemistry therefore, synthesis and determination of alternative inhibitors are essential. In this study, novel bis-napthoquinone derivatives (5a-o) were synthesized through a multi-component cascade reaction of two molecules of 2-hydroxy-1,4-naphthoquinone with an aromatic aldehyde in basic media using triethylamine as a catalyst. This novel heterocyclic derivatives (5a-o) are applied to inhibit the carbonic anhydrase (hCA I and hCA II) isoform in low levels of nano molecules with Ki values exist between 4.62 ± 1.01 to 70.45 ± 9.03 nM for hCA I and for hCA II which is physiologically dominant Kis values are in the range of 5.61 ± 1.04 to 73.26 ± 10.25 nM. Further these novel derivatives (5a-o) efficiently inhibit AChE with Ki values in the range of 0.13 ± 0.02 to 3.16 ± 0.56 nM. The compounds are also applied for BChE with Ki values varying between 0.50 ± 0.10 to 9.23 ± 1.15 nM. For α-glycosidase, the most efficient Ki values of 5e and 5f are 76.14 ± 9.60 and 95.27 ± 12.55 nM respectively. Finally, molecular docking calculations against enzymes (acetylcholinesterase, butyrylcholinesterase, and the human carbonic anhydrase I and II) are compared using biological activities of heterocyclic derivatives. After these calculations, an ADME/T analysis is performed to study the future medicinal use of heterocyclic derivatives from lawsone.
Collapse
Affiliation(s)
- Muhammad Tariq Riaz
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Abida Ashraf
- Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey; Department of Chemistry, Faculty of Science, Istinye University, Istanbul, Turkey
| | - Recep Tas
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Burak Tuzun
- Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas, Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
11
|
Yavuz SÇ, Akkoç S, Tüzün B, Şahin O, Saripinar E. Efficient synthesis and molecular docking studies of new pyrimidine-chromeno hybrid derivatives as potential antiproliferative agents. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1922920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sevtap Çağlar Yavuz
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Turkey
- Department of Veterinary Science, Şefaatli Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - Senem Akkoç
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| | - Burak Tüzün
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Onur Şahin
- Scientific and Technological Research Application and Research Center, Sinop University, Sinop, Turkey
| | - Emin Saripinar
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Turkey
| |
Collapse
|
12
|
ADME properties, bioactivity and molecular docking studies of 4-amino-chalcone derivatives: new analogues for the treatment of Alzheimer, glaucoma and epileptic diseases. In Silico Pharmacol 2021; 9:34. [PMID: 33968600 DOI: 10.1007/s40203-021-00094-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022] Open
Abstract
In this study, in vitro inhibition effects of (E)-1-(4-aminophenyl)-3-(aryl) prop-2-en-1-one (4-amino-chalcones) derivatives (3a-o) on acetylcholinesterase (AChE) enzyme and human erythrocyte carbonic anhydrase I and II isoenzymes (hCA I- II) were investigated. And also, the biological activities of 4-amino-chalcone derivatives against enzymes which names are acetylcholinesterase (PDB ID: 1OCE), human Carbonic Anhydrase I (PDB ID: 2CAB), human carbonic anhydrase II (PDB ID: 3DC3), were compared. After the results obtained, ADME/T analysis was performed in order to use 4-amino-chalcone derivatives as a drug in the future. Effective inhibitors of carbonic anhydrase I and II isozymes (hCAI and II) and acetylcholinesterase (AChE) enzymes with Ki values in the range of 2.55 ± 0.35-11.75 ± 3.57 nM for hCA I, 4.31 ± 0.78-17.55 ± 5.86 nM for hCA II and 96.01 ± 25.34-1411.41 ± 32.88 nM for AChE, respectively, were the 4-amino-chalcone derivatives (3a-o) molecules. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-021-00094-x.
Collapse
|
13
|
TÜZÜN B. Examination of anti-oxidant properties and molecular docking parameters of some compounds in human body. ACTA ACUST UNITED AC 2020. [DOI: 10.33435/tcandtc.781008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Taslimi P, Kocyigit UM, Tüzün B, Kirici M. Biological effects and molecular docking studies of Catechin 5-O-gallate: antioxidant, anticholinergics, antiepileptic and antidiabetic potentials. J Biomol Struct Dyn 2020; 40:2489-2497. [PMID: 33146092 DOI: 10.1080/07391102.2020.1840440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Umit M. Kocyigit
- Department of Basic Pharmaceutical Sciences, Division of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Burak Tüzün
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mahinur Kirici
- Department of Chemistry, Faculty of Arts and Sciences, Bingol University, Turkey
| |
Collapse
|
15
|
Dehghani A, Mostafatabar AH, Bahlakeh G, Ramezanzadeh B, Ramezanzadeh M. Detailed-level computer modeling explorations complemented with comprehensive experimental studies of Quercetin as a highly effective inhibitor for acid-induced steel corrosion. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113035] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|