1
|
Feng C, Tie R, Xin S, Chen Y, Li S, Chen Y, Hu X, Zhou Y, Liu Y, Hu Y, Hu Y, Pan H, Wu Z, Chao H, Zhang S, Ni Q, Huang J, Luo W, Huang H, Chen M. Systematic single-cell analysis reveals dynamic control of transposable element activity orchestrating the endothelial-to-hematopoietic transition. BMC Biol 2024; 22:143. [PMID: 38937802 PMCID: PMC11209969 DOI: 10.1186/s12915-024-01939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The endothelial-to-hematopoietic transition (EHT) process during definitive hematopoiesis is highly conserved in vertebrates. Stage-specific expression of transposable elements (TEs) has been detected during zebrafish EHT and may promote hematopoietic stem cell (HSC) formation by activating inflammatory signaling. However, little is known about how TEs contribute to the EHT process in human and mouse. RESULTS We reconstructed the single-cell EHT trajectories of human and mouse and resolved the dynamic expression patterns of TEs during EHT. Most TEs presented a transient co-upregulation pattern along the conserved EHT trajectories, coinciding with the temporal relaxation of epigenetic silencing systems. TE products can be sensed by multiple pattern recognition receptors, triggering inflammatory signaling to facilitate HSC emergence. Interestingly, we observed that hypoxia-related signals were enriched in cells with higher TE expression. Furthermore, we constructed the hematopoietic cis-regulatory network of accessible TEs and identified potential TE-derived enhancers that may boost the expression of specific EHT marker genes. CONCLUSIONS Our study provides a systematic vision of how TEs are dynamically controlled to promote the hematopoietic fate decisions through transcriptional and cis-regulatory networks, and pre-train the immunity of nascent HSCs.
Collapse
Affiliation(s)
- Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
- Department of Hematology, The Second Clinical Medical College of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030000, China
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, China
| | - Saige Xin
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhao Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sida Li
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaotian Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yincong Zhou
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongjing Liu
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanshi Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hang Pan
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
| | - Zexu Wu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shilong Zhang
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingyang Ni
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinyan Huang
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenda Luo
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Faisal M, Hassan M, Kumar A, Zubair M, Jamal M, Menghwar H, Saad M, Kloczkowski A. Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. Int J Mol Sci 2022; 23:7285. [PMID: 35806290 PMCID: PMC9266955 DOI: 10.3390/ijms23137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized microenvironment in a peculiar anatomic location which regulates the maintenance of stem cells and controls its functions. Recent scientific progress in experimental technologies have enabled the specific detection of epigenetic factors responsible for the maintenance and quiescence of the hematopoietic niche, which has improved our knowledge of regulatory mechanisms. The aberrant role of RNA-binding proteins and their impact on the disruption of stem cell biology have been reported by a number of recent studies. Despite recent modernization in hematopoietic microenvironment research avenues, our comprehension of the signaling mechanisms and interactive pathways responsible for integration of the hematopoietic niche is still limited. In the past few decades, zebrafish usage with regards to exploratory studies of the hematopoietic niche has expanded our knowledge for deeper understanding of novel cellular interactions. This review provides an update on the functional roles of different genetic and epigenetic factors and molecular signaling events at different sections of the hematopoietic microenvironment. The explorations of different molecular approaches and interventions of latest web-based tools being used are also outlined. This will help us to get more mechanistic insights and develop therapeutic options for the malignancies.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Aman Kumar
- Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Muhammad Zubair
- Department of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan 430072, China;
| | - Harish Menghwar
- Axe Molecular Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), Laval University, Quebec City, QC G1V 4G2, Canada;
| | - Muhammad Saad
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43205, USA;
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
4
|
Kasper DM, Hintzen J, Wu Y, Ghersi JJ, Mandl HK, Salinas KE, Armero W, He Z, Sheng Y, Xie Y, Heindel DW, Joo Park E, Sessa WC, Mahal LK, Lebrilla C, Hirschi KK, Nicoli S. The N-glycome regulates the endothelial-to-hematopoietic transition. Science 2020; 370:1186-1191. [PMID: 33273096 PMCID: PMC8312266 DOI: 10.1126/science.aaz2121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/20/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022]
Abstract
Definitive hematopoietic stem and progenitor cells (HSPCs) arise from the transdifferentiation of hemogenic endothelial cells (hemECs). The mechanisms of this endothelial-to-hematopoietic transition (EHT) are poorly understood. We show that microRNA-223 (miR-223)-mediated regulation of N-glycan biosynthesis in endothelial cells (ECs) regulates EHT. miR-223 is enriched in hemECs and in oligopotent nascent HSPCs. miR-223 restricts the EHT of lymphoid-myeloid lineages by suppressing the mannosyltransferase alg2 and sialyltransferase st3gal2, two enzymes involved in protein N-glycosylation. ECs that lack miR-223 showed a decrease of high mannose versus sialylated sugars on N-glycoproteins such as the metalloprotease Adam10. EC-specific expression of an N-glycan Adam10 mutant or of the N-glycoenzymes phenocopied miR-223 mutant defects. Thus, the N-glycome is an intrinsic regulator of EHT, serving as a key determinant of the hematopoietic fate.
Collapse
Affiliation(s)
- Dionna M. Kasper
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yinyu Wu
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joey J. Ghersi
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hanna K. Mandl
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kevin E. Salinas
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - William Armero
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhiheng He
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ying Sheng
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Daniel W. Heindel
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, NY 10003, USA
| | - Eon Joo Park
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William C. Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lara K. Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, NY 10003, USA.,Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Carlito Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Karen K. Hirschi
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Developmental Genomics Center, Cell Biology Department, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Zhu Q, Gao P, Tober J, Bennett L, Chen C, Uzun Y, Li Y, Howell ED, Mumau M, Yu W, He B, Speck NA, Tan K. Developmental trajectory of prehematopoietic stem cell formation from endothelium. Blood 2020; 136:845-856. [PMID: 32392346 PMCID: PMC7426642 DOI: 10.1182/blood.2020004801] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) in the bone marrow are derived from a small population of hemogenic endothelial (HE) cells located in the major arteries of the mammalian embryo. HE cells undergo an endothelial to hematopoietic cell transition, giving rise to HSPCs that accumulate in intra-arterial clusters (IAC) before colonizing the fetal liver. To examine the cell and molecular transitions between endothelial (E), HE, and IAC cells, and the heterogeneity of HSPCs within IACs, we profiled ∼40 000 cells from the caudal arteries (dorsal aorta, umbilical, vitelline) of 9.5 days post coitus (dpc) to 11.5 dpc mouse embryos by single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing. We identified a continuous developmental trajectory from E to HE to IAC cells, with identifiable intermediate stages. The intermediate stage most proximal to HE, which we term pre-HE, is characterized by increased accessibility of chromatin enriched for SOX, FOX, GATA, and SMAD motifs. A developmental bottleneck separates pre-HE from HE, with RUNX1 dosage regulating the efficiency of the pre-HE to HE transition. A distal candidate Runx1 enhancer exhibits high chromatin accessibility specifically in pre-HE cells at the bottleneck, but loses accessibility thereafter. Distinct developmental trajectories within IAC cells result in 2 populations of CD45+ HSPCs; an initial wave of lymphomyeloid-biased progenitors, followed by precursors of hematopoietic stem cells (pre-HSCs). This multiomics single-cell atlas significantly expands our understanding of pre-HSC ontogeny.
Collapse
Affiliation(s)
- Qin Zhu
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - Peng Gao
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Joanna Tober
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Laura Bennett
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Changya Chen
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Yasin Uzun
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Yan Li
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Elizabeth D Howell
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Melanie Mumau
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Wenbao Yu
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Bing He
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Kai Tan
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|