1
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LC, Lucas D, Deepe GS, Jankowski MP. Macrophage memories of early-life injury drive neonatal nociceptive priming. Cell Rep 2024; 43:114129. [PMID: 38640063 PMCID: PMC11197107 DOI: 10.1016/j.celrep.2024.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
The developing peripheral nervous and immune systems are functionally distinct from those of adults. These systems are vulnerable to early-life injury, which influences outcomes related to nociception following subsequent injury later in life (i.e., "neonatal nociceptive priming"). The underpinnings of this phenomenon are unclear, although previous work indicates that macrophages are trained by inflammation and injury. Our findings show that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming, possibly due to a long-lasting remodeling in chromatin structure. The p75 neurotrophic factor receptor is an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This "pain memory" is long lasting in females and can be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
Affiliation(s)
- Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adewale O Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna M Warshak
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin Weinhaus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Megan C Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Heather M Evans
- Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - George S Deepe
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
3
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LT, Lucas D, Deepe GS, Jankowski MP. Macrophage epigenetic memories of early life injury drive neonatal nociceptive priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528015. [PMID: 36824978 PMCID: PMC9948986 DOI: 10.1101/2023.02.13.528015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The developing peripheral nervous and immune systems are functionally distinct from adults. These systems are vulnerable to early life injury, which influences outcomes related to nociception following subsequent injury later in life (neonatal nociceptive priming). The underpinnings of this phenomenon are largely unknown, although previous work indicates that macrophages are epigenetically trained by inflammation and injury. We found that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming possibly due to a long-lasting epigenetic remodeling. The p75 neurotrophic factor receptor (NTR) was an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This pain memory was long lasting in females and could be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a novel mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
|
4
|
Dourson AJ, Jankowski MP. Developmental impact of peripheral injury on neuroimmune signaling. Brain Behav Immun 2023; 113:156-165. [PMID: 37442302 PMCID: PMC10530254 DOI: 10.1016/j.bbi.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
A peripheral injury drives neuroimmune interactions at the level of the injury and throughout the neuraxis. Understanding these systems will be beneficial in the pursuit to target persistent pain that involves both neural and immune components. In this review, we discuss the impact of injury on the development of neuroimmune signaling, along with data that suggest a possible cellular immune memory. We also discuss the parallel effects of injury in the nervous system and immune related areas including bone marrow, lymph node and central nervous system-related cells. Finally, we relate these findings to patient populations and current research that evaluates human tissue.
Collapse
Affiliation(s)
- Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
5
|
Kain BN, Tran BT, Luna PN, Cao R, Le DT, Florez MA, Maneix L, Toups JD, Morales-Mantilla DE, Koh S, Han H, Jaksik R, Huang Y, Catic A, Shaw CA, King KY. Hematopoietic stem and progenitor cells confer cross-protective trained immunity in mouse models. iScience 2023; 26:107596. [PMID: 37664586 PMCID: PMC10470378 DOI: 10.1016/j.isci.2023.107596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Recent studies suggest that infection reprograms hematopoietic stem and progenitor cells (HSPCs) to enhance innate immune responses upon secondary infectious challenge, a process called "trained immunity." However, the specificity and cell types responsible for this response remain poorly defined. We established a model of trained immunity in mice in response to Mycobacterium avium infection. scRNA-seq analysis revealed that HSPCs activate interferon gamma-response genes heterogeneously upon primary challenge, while rare cell populations expand. Macrophages derived from trained HSPCs demonstrated enhanced bacterial killing and metabolism, and a single dose of recombinant interferon gamma exposure was sufficient to induce similar training. Mice transplanted with influenza-trained HSPCs displayed enhanced immunity against M. avium challenge and vice versa, demonstrating cross protection against antigenically distinct pathogens. Together, these results indicate that heterogeneous responses to infection by HSPCs can lead to long-term production of bone marrow derived macrophages with enhanced function and confer cross-protection against alternative pathogens.
Collapse
Affiliation(s)
- Bailee N. Kain
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Brandon T. Tran
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Pamela N. Luna
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ruoqiong Cao
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Duy T. Le
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Marcus A. Florez
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Laure Maneix
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jack D. Toups
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Daniel E. Morales-Mantilla
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Scott Koh
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Hyojeong Han
- Department of Pediatrics – Division of Hematology Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, USA
| | - Andre Catic
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Y. King
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics – Division of Infectious Disease, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Sibony-Benyamini H, Aamar E, Enshell-Seijffers D. Hdac1 and Hdac2 regulate the quiescent state and survival of hair-follicle mesenchymal niche. Nat Commun 2023; 14:4820. [PMID: 37563109 PMCID: PMC10415406 DOI: 10.1038/s41467-023-40573-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
While cell division is essential for self-renewal and differentiation of stem cells and progenitors, dormancy is required to maintain the structure and function of the stem-cell niche. Here we use the hair follicle to show that during growth, the mesenchymal niche of the hair follicle, the dermal papilla (DP), is maintained quiescent by the activity of Hdac1 and Hdac2 in the DP that suppresses the expression of cell-cycle genes. Furthermore, Hdac1 and Hdac2 in the DP promote the survival of DP cells throughout the hair cycle. While during growth and regression this includes downregulation of p53 activity and the control of p53-independent programs, during quiescence, this predominantly involves p53-independent mechanisms. Remarkably, Hdac1 and Hdac2 in the DP during the growth phase also participate in orchestrating the hair cycle clock by maintaining physiological levels of Wnt signaling in the vicinity of the DP. Our findings not only provide insight into the molecular mechanism that sustains the function of the stem-cell niche in a persistently changing microenvironment, but also unveil that the same mechanism provides a molecular toolbox allowing the DP to affect and fine tune the microenvironment.
Collapse
Affiliation(s)
- Hadas Sibony-Benyamini
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, Israel
| | - Emil Aamar
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, Israel
| | - David Enshell-Seijffers
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, Israel.
| |
Collapse
|
7
|
Dausinas Ni P, Hartman M, Slack J, Basile C, Liu S, Wan J, O'Leary HA. Novel differential calcium regulation of hematopoietic stem and progenitor cells under physiological low oxygen conditions. J Cell Physiol 2023. [PMID: 37051890 DOI: 10.1002/jcp.30942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 04/14/2023]
Abstract
Low oxygen bone marrow (BM) niches (~1%-4% low O2 ) provide critical signals for hematopoietic stem/progenitor cells (HSC/HSPCs). Our presented data are the first to investigate live, sorted HSC/HSPCs in their native low O2 conditions. Transcriptional and proteomic analysis uncovered differential Ca2+ regulation that correlated with overlapping phenotypic populations consisting of robust increases of cytosolic and mitochondrial Ca2+ , ABC transporter (ABCG2) expression and sodium/hydrogen exchanger (NHE1) expression in live, HSC/HSPCs remaining in constant low O2. We identified a novel Ca2+ high population in HSPCs predominantly detected in low O2 that displayed enhanced frequency of phenotypic LSK/LSKCD150 in low O2 replating assays compared to Ca2+ low populations. Inhibition of the Ca2+ regulator NHE1 (Cariporide) resulted in attenuation of both the low O2 induced Ca2+ high population and subsequent enhanced maintenance of phenotypic LSK and LSKCD150 during low O2 replating. These data reveal multiple levels of differential Ca2+ regulation in low O2 resulting in phenotypic, signaling, and functional consequences in HSC/HSPCs.
Collapse
Affiliation(s)
- Paige Dausinas Ni
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Melissa Hartman
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jacob Slack
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christopher Basile
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Center of Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Center of Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Heather A O'Leary
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
8
|
Simulated microgravity affects stroma-dependent ex vivo myelopoiesis. Tissue Cell 2023; 80:101987. [PMID: 36481580 DOI: 10.1016/j.tice.2022.101987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Microgravity is known negatively affect physiology of living beings, including hematopoiesis. Dysregulation of hematopoietic cells and supporting stroma relationships in bone marrow niche may be in charge. We compared the efficacy of ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) in presence of native or osteocommitted MSCs under simulated microgravity (Smg) using Random Positioning Machine (RPM). In comparison with 1 g, a decrease of MSC-associated HSPCs and an increase of floating HSPCs was observed after 7 days of Smg exposure. Among floating HSPCs, primitive progenitors were presented by late CD34+/133-. Total CFUs as well as erythroid (BFU-E) and granulocytic (CFU-G) numbers were lower. MSC-associated primitive HSPCs demonstrated increased proportion of late CD34+/133- in expense of early CD34-/133+. Osteo-MSCs preferentially supported late primitive CD34+ and more committed HSPCs as followed from increase of CFUs, and CD235a+ erythroid progenitors. Under Smg, an increased VEGF, eotaxin, and GRO-a levels, and a decrease in RANTES were found in the osteo-MSC-HSPC co-cultures. IL-6,-8, -13, G-CSF, GRO-a, MCP-3, MIP-1b, VEGF increased in co-culture with osteo-MSCs vs intact MSCs. Based on the findings, the misbalance between primitive/committed HSPCs and a decrease in hematopoiesis-supportive activity of osteocommitted cells are supposed to underline hematopoietic disorders during space flights.
Collapse
|
9
|
Gilchrist AE, Harley BA. Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Adv Healthc Mater 2022; 11:e2102130. [PMID: 34936239 PMCID: PMC8986554 DOI: 10.1002/adhm.202102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells are the progenitors of the blood and immune system and represent the most widely used regenerative therapy. However, their rarity and limited donor base necessitate the design of ex vivo systems that support HSC expansion without the loss of long-term stem cell activity. This review describes recent advances in biomaterials systems to replicate features of the hematopoietic niche. Inspired by the native bone marrow, these instructive biomaterials provide stimuli and cues from cocultured niche-associated cells to support HSC encapsulation and expansion. Engineered systems increasingly enable study of the dynamic nature of the matrix and biomolecular environment as well as the role of cell-cell signaling (e.g., autocrine feedback vs paracrine signaling between dissimilar cells). The inherent coupling of material properties, biotransport of cell-secreted factors, and cell-mediated remodeling motivate dynamic biomaterial systems as well as characterization and modeling tools capable of evaluating a temporally evolving tissue microenvironment. Recent advances in HSC identification and tracking, model-based experimental design, and single-cell culture platforms facilitate the study of the effect of constellations of matrix, cell, and soluble factor signals on HSC fate. While inspired by the HSC niche, these tools are amenable to the broader stem cell engineering community.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
10
|
Dausinas Ni P, Basile C, Junge C, Hartman M, O’Leary HA. Hypoxia and Hematopoiesis. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-021-00203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Vascular Regulation of Hematopoietic Stem Cell Homeostasis, Regeneration, and Aging. CURRENT STEM CELL REPORTS 2021; 7:194-203. [PMID: 34868826 PMCID: PMC8639543 DOI: 10.1007/s40778-021-00198-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 12/26/2022]
Abstract
Purpose of Review Hematopoietic stem cells (HSCs) sit at the top of the hierarchy that meets the daily burden of blood production. HSC maintenance relies on extrinsic cues from the bone marrow (BM) microenvironment to balance stem cell self-renewal and cell fate decisions. In this brief review, we will highlight the studies and model systems that define the centralized role of BM vascular endothelium in modulating HSC activity in health and stress. Recent Findings The BM microenvironment is composed of a diverse array of intimately associated vascular and perivascular cell types. Recent dynamic imaging studies, coupled with single-cell RNA sequencing (scRNA-seq) and functional readouts, have advanced our understanding of the HSC-supportive cell types and their cooperative mechanisms that govern stem cell fate during homeostasis, regeneration, and aging. These findings have established complex and discrete vascular microenvironments within the BM that express overlapping and unique paracrine signals that modulate HSC fate. Summary Understanding the spatial and reciprocal HSC-niche interactions and the molecular mechanisms that govern HSC activity in the BM vascular microenvironment will be integral in developing therapies aimed at ameliorating hematological disease and supporting healthy hematopoietic output.
Collapse
|
12
|
Wu Q, Zhang J, Lucas D. Anatomy of Hematopoiesis and Local Microenvironments in the Bone Marrow. Where to? Front Immunol 2021; 12:768439. [PMID: 34858426 PMCID: PMC8632041 DOI: 10.3389/fimmu.2021.768439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022] Open
Abstract
The shape and spatial organization -the anatomy- of a tissue profoundly influences its function. Knowledge of the anatomical relationships between parent and daughter cells is necessary to understand differentiation and how the crosstalk between the different cells in the tissue leads to physiological maintenance and pathological perturbations. Blood cell production takes place in the bone marrow through the progressive differentiation of stem cells and progenitors. These are maintained and regulated by a heterogeneous microenvironment composed of stromal and hematopoietic cells. While hematopoiesis has been studied in extraordinary detail through functional and multiomics approaches, much less is known about the spatial organization of blood production and how local cues from the microenvironment influence this anatomy. Here, we discuss some of the studies that revealed a complex anatomy of hematopoiesis where discrete local microenvironments spatially organize and regulate specific subsets of hematopoietic stem cells and/or progenitors. We focus on the open questions in the field and discuss how new tools and technological advances are poised to transform our understanding of the anatomy of hematopoiesis.
Collapse
Affiliation(s)
- Qingqing Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Jizhou Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
13
|
Skirecki T, Drechsler S, Jeznach A, Hoser G, Jafarmadar M, Kawiak J, Osuchowski MF. An Early Myelosuppression in the Acute Mouse Sepsis Is Partly Outcome-Dependent. Front Immunol 2021; 12:708670. [PMID: 34367170 PMCID: PMC8339578 DOI: 10.3389/fimmu.2021.708670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 01/18/2023] Open
Abstract
Adult hematopoietic stem and progenitor cells (HSPCs) respond to bacterial infections by expansion to myeloid cells. Sepsis impairs this process by suppressing differentiation of stem cells subsequently contributing to an ineffective immune response. Whether the magnitude of HSPCs impairment in sepsis is severity-dependent remains unknown. This study investigated dynamics of the HSPC immune-inflammatory response in the bone marrow, splenic, and blood compartments in moribund and surviving septic mice. The 12-week-old outbred CD-1 female mice (n=65) were subjected to a cecal ligation and puncture (CLP) sepsis, treated with antibiotics and fluid resuscitation, and stratified into predicted-to-die (P-DIE) and predicted-to-survive (P-SUR) cohorts for analysis. CLP strongly reduced the common myeloid and multipotent progenitors, short- and long-term hematopoietic stem cell (HSC) counts in the bone marrow; lineage−ckit+Sca-1+ and short-term HSC suppression was greater in P-DIE versus P-SUR mice. A profound depletion of the common myeloid progenitors occurred in the blood (by 75%) and spleen (by 77%) of P-DIE. In P-SUR, most common circulating HSPCs subpopulations recovered to baseline by 72 h post-CLP. Analysis of activated caspase-1/-3/-7 revealed an increased apoptotic (by 30%) but not pyroptotic signaling in the bone marrow HSCs of P-DIE mice. The bone marrow from P-DIE mice revealed spikes of IL-6 (by 5-fold), CXCL1/KC (15-fold), CCL3/MIP-1α (1.7-fold), and CCL2/MCP-1 (2.8-fold) versus P-SUR and control (TNF, IFN-γ, IL-1β, -5, -10 remained unaltered). Summarizing, our findings demonstrate that an early sepsis-induced impairment of myelopoiesis is strongly outcome-dependent but varies among compartments. It is suggestive that the HSCPC loss is at least partly due to an increased apoptosis but not pyroptosis.
Collapse
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the Allgemeine Unfallversicherungsanstalt (AUVA) Research Center, Vienna, Austria
| | - Aldona Jeznach
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Grażyna Hoser
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Mohammad Jafarmadar
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the Allgemeine Unfallversicherungsanstalt (AUVA) Research Center, Vienna, Austria
| | - Jerzy Kawiak
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the Allgemeine Unfallversicherungsanstalt (AUVA) Research Center, Vienna, Austria
| |
Collapse
|
14
|
Prolonged maintenance of hematopoietic stem cells that escape from thrombopoietin deprivation. Blood 2021; 137:2609-2620. [PMID: 33657206 DOI: 10.1182/blood.2020005517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cells (HSC) rarely divide, rest in quiescence, and proliferate only upon stress hematopoiesis. The cytokine thrombopoietin (Thpo) has been perplexingly described to induce quiescence and promote self-renewal divisions in HSCs. To clarify the contradictory effect of Thpo, we conducted a detailed analysis on conventional (Thpo-/-) and liver-specific (Thpofl/fl;AlbCre+/-) Thpo-deletion models. Thpo-/- HSCs exhibited profound loss of quiescence, impaired cell cycle progression, and increased apoptosis. Thpo-/- HSCs also exhibited diminished mitochondrial mass and impaired mitochondrial bioenergetics. Abnormal HSC phenotypes in Thpo-/- mice were reversible after HSC transplantation into wild-type recipients. Moreover, Thpo-/- HSCs acquired quiescence with extended administration of a Thpo receptor agonist, romiplostim, and were prone to subsequent stem cell exhaustion during competitive bone marrow transplantation. Thpofl/fl;AlbCre+/- HSCs exhibited similar stem cell phenotypes but to a lesser degree compared with Thpo-/- HSCs. HSCs that survive Thpo deficiency acquire quiescence in a dose-dependent manner through the modification of their metabolic state.
Collapse
|
15
|
Bonaud A, Lemos JP, Espéli M, Balabanian K. Hematopoietic Multipotent Progenitors and Plasma Cells: Neighbors or Roommates in the Mouse Bone Marrow Ecosystem? Front Immunol 2021; 12:658535. [PMID: 33936091 PMCID: PMC8083056 DOI: 10.3389/fimmu.2021.658535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
The bone marrow is a complex ecosystem in which hematopoietic and non-hematopoietic cells reside. In this review, we discuss the bone marrow niches in mice that facilitate the survival, maintenance, and differentiation of cells of hematopoietic origin based on the recent literature. Our review places a special focus on the hematopoietic multipotent progenitors and on plasma cells, corresponding to the last stage of the B-cell lineage, that play a key role in the humoral memory response. We highlight the similarities between the microenvironments necessary for the establishment and the maintenance of these two immune cell subsets, and how the chemokine CXCL12/CXCR4 signaling axis contributes to these processes. Finally, we bring elements to address the following question: are multipotent progenitors and plasma cells neighbors or roommates within the bone marrow?
Collapse
Affiliation(s)
- Amélie Bonaud
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Julia P Lemos
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The bone marrow is the main site for hematopoiesis. It contains a unique microenvironment that provides niches that support self-renewal and differentiation of hematopoietic stem cells (HSC), multipotent progenitors (MPP), and lineage committed progenitors to produce the large number of blood cells required to sustain life. The bone marrow is notoriously difficult to image; because of this the anatomy of blood cell production -- and how local signals spatially organize hematopoiesis -- are not well defined. Here we review our current understanding of the spatial organization of the mouse bone marrow with a special focus in recent advances that are transforming our understanding of this tissue. RECENT FINDINGS Imaging studies of HSC and their interaction with candidate niches have relied on ex-vivo imaging of fixed tissue. Two recent manuscripts demonstrating live imaging of subsets of HSC in unperturbed bone marrow have revealed unexpected HSC behavior and open the door to examine HSC regulation, in situ, over time. We also discuss recent findings showing that the bone marrow contains distinct microenvironments, spatially organized, that regulate unique aspects of hematopoiesis. SUMMARY Defining the spatial architecture of hematopoiesis in the bone marrow is indispensable to understand how this tissue ensures stepwise, balanced, differentiation to meet organism demand; for deciphering alterations to hematopoiesis during disease; and for designing organ systems for blood cell production ex vivo.
Collapse
Affiliation(s)
- Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical center
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Vinci MC, Gambini E, Bassetti B, Genovese S, Pompilio G. When Good Guys Turn Bad: Bone Marrow's and Hematopoietic Stem Cells' Role in the Pathobiology of Diabetic Complications. Int J Mol Sci 2020; 21:ijms21113864. [PMID: 32485847 PMCID: PMC7312629 DOI: 10.3390/ijms21113864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes strongly contributes to the development of cardiovascular disease, the leading cause of mortality and morbidity in these patients. It is widely accepted that hyperglycemia impairs hematopoietic stem/progenitor cell (HSPC) mobilization from the bone marrow (BM) by inducing stem cell niche dysfunction. Moreover, a recent study demonstrated that type 2 diabetic patients are characterized by significant depletion of circulating provascular progenitor cells and increased frequency of inflammatory cells. This unbalance, potentially responsible for the reduction of intrinsic vascular homeostatic capacity and for the establishment of a low-grade inflammatory status, suggests that bone BM-derived HSPCs are not only victims but also active perpetrators in diabetic complications. In this review, we will discuss the most recent literature on the molecular mechanisms underpinning hyperglycemia-mediated BM dysfunction and differentiation abnormality of HSPCs. Moreover, a section will be dedicated to the new glucose-lowering therapies that by specifically targeting the culprits may prevent or treat diabetic complications.
Collapse
Affiliation(s)
- Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy; (E.G.); (B.B.); (G.P.)
- Correspondence: ; Tel.: +39-02-5800-2028
| | - Elisa Gambini
- Unit of Vascular Biology and Regenerative Medicine, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy; (E.G.); (B.B.); (G.P.)
| | - Beatrice Bassetti
- Unit of Vascular Biology and Regenerative Medicine, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy; (E.G.); (B.B.); (G.P.)
| | - Stefano Genovese
- Unit of Diabetes, Endocrine and Metabolic Diseases, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy;
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy; (E.G.); (B.B.); (G.P.)
| |
Collapse
|