1
|
Gao N, Li C, Xue Y, Wang Y, Ma H. Design and optimization of pore structure in three-dimensional micro-nano hierarchical SnO x supercapacitor electrodes for enhanced ion diffusion. J Colloid Interface Sci 2025; 678:693-703. [PMID: 39265340 DOI: 10.1016/j.jcis.2024.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
This paper introduced a novel continuous electrochemical synthesis strategy to address the challenges of slow ion/electron transport rates and low electrode reaction efficiency in Sn-based electrode materials. This approach leveraged the induction and confinement of bubble templates to assist atoms deposition, generating micron-sized tin skeletons. Subsequently, these skeletons were transformed into a secondary nanoporous structure through dissolution-deposition etching effects. From liquid-phase ions to metal skeletons to porous oxides, the sequential material transformations realized the innovative design of three-dimensional (3D) hierarchical structures. This strategy ingeniously exploited the diffusion advantages of the electrolyte in the micro-nano hierarchical structure to achieve the diffusion enhancement of ions, thus solving the "dead surface" problem in the energy storage process. This study revealed the thermodynamic and kinetic feasibility of the constructed 3D micro-nano hierarchical structure through electrochemical evaluations and theoretical calculations, and elucidated the constitutive relationship in which the electrochemical performance of the electrode materials was enhanced with decreasing pore size. In addition, design optimization of pore structures and modelling exploration of pore size limit values were conducted based on density functional theory (DFT) simulations. These simulations demonstrated the advantages of hierarchical structures with controllable pore sizes in facilitating electrolyte ion diffusion, predicting an optimal pore size of 55 μm for 3D hierarchical porous SnOx electrodes. The integration of this innovative structural design with simulation insights offered significant implications for enhancing the sluggish electrode reaction kinetics of metal oxide electrode materials, advancing the controllable fabrication of high-performance energy storage devices.
Collapse
Affiliation(s)
- Nan Gao
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chenyu Li
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yanjie Xue
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yunpeng Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Haitao Ma
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Cheon S, Cho WJ, Yi GR, Kang B, Oh SS. Ultrafast and Reversible Superwettability Switching of 3D Graphene Foams via Solvent-Exclusive Plasma Treatments. ACS NANO 2024; 18:24012-24023. [PMID: 39033415 DOI: 10.1021/acsnano.4c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
For highly active electron transfer and ion diffusion, controlling the surface wettability of electrically and thermally conductive 3D graphene foams (3D GFs) is required. Here, we present ultrasimple and rapid superwettability switching of 3D GFs in a reversible and reproducible manner, mediated by solvent-exclusive microwave arcs. As the 3D GFs are prepared with vapors of nonpolar acetone or polar water exclusively, short microwave radiation (≤10 s) leads to plasma hotspot-mediated production of methyl and hydroxyl radicals, respectively. Upon immediate radical chemisorption, the 3D surfaces become either superhydrophobic (water contact angle = ∼170°) or superhydrophilic (∼0°), and interestingly, the wettability transition can be repeated many times due to the facile exchange between previously chemisorbed and newly introduced radicals via the formation of methanol-like intermediates. When 3D GFs of different surficial polarities are incorporated into electric double-layer capacitors with nonpolar ionic liquids or polar aqueous electrolytes, the polarity matching between graphene surfaces and electrolytes results in ≥548.0 times higher capacitance compared to its mismatching at ≥0.5 A g-1, demonstrating the significance of wettability-controlled 3D GFs.
Collapse
Affiliation(s)
- Soomin Cheon
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Won-Jang Cho
- Department of Chemical Engineering, POSTECH, Pohang 37673, South Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, POSTECH, Pohang 37673, South Korea
| | - Byoungwoo Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Department of Chemical Engineering, POSTECH, Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| |
Collapse
|
3
|
Zheng C, Sun X, Zhao X, Zhang X, Wang J, Yuan Z, Gong Z. Ammonium Ion-Pre-Intercalated MnO 2 on Carbon Cloth for High-Energy Density Asymmetric Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1858. [PMID: 38673215 PMCID: PMC11052521 DOI: 10.3390/ma17081858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
With the continuous development of green energy, society is increasingly demanding advanced energy storage devices. Manganese-based asymmetric supercapacitors (ASCs) can deliver high energy density while possessing high power density. However, the structural instability hampers the wider application of manganese dioxide in ASCs. A novel MnO2-based electrode material was designed in this study. We synthesized a MnO2/carbon cloth electrode, CC@NMO, with NH4+ ion pre-intercalation through a one-step hydrothermal method. The pre-intercalation of NH4+ stabilizes the MnO2 interlayer structure, expanding the electrode stable working potential window to 0-1.1 V and achieving a remarkable mass specific capacitance of 181.4 F g-1. Furthermore, the ASC device fabricated using the CC@NMO electrode and activated carbon electrode exhibits excellent electrochemical properties. The CC@NMO//AC achieves a high energy density of 63.49 Wh kg-1 and a power density of 949.8 W kg-1. Even after cycling 10,000 times at 10 A g-1, the device retains 81.2% of its capacitance. This work sheds new light on manganese dioxide-based asymmetric supercapacitors and represents a significant contribution for future research on them.
Collapse
Affiliation(s)
| | - Xiaohong Sun
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (C.Z.); (Z.Y.)
| | | | | | | | | | | |
Collapse
|
4
|
Pan L, Wang D, Wang J, Chu Y, Li X, Wang W, Mitsuzaki N, Jia S, Chen Z. Morphological control and performance engineering of Co-based materials for supercapacitors. Phys Chem Chem Phys 2024; 26:9096-9111. [PMID: 38456310 DOI: 10.1039/d3cp06038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
As one of the most promising energy storage devices, supercapacitors exhibit a higher power density than batteries. However, its low energy density usually requires high-performance electrode materials. Although the RuO2 material shows desirable properties, its high cost and toxicity significantly limit its application in supercapacitors. Recent developments demonstrated that Co-based materials have emerged as a promising alternative to RuO2 for supercapacitors due to their low cost, favorable redox reversibility and environmental friendliness. In this paper, the morphological control and performance engineering of Co-based materials are systematically reviewed. Firstly, the principle of supercapacitors is briefly introduced, and the characteristics and advantages of pseudocapacitors are emphasized. The special forms of cobalt-based materials are introduced, including 1D, 2D and 3D nanomaterials. After that, the ways to enhance the properties of cobalt-based materials are discussed, including adding conductive materials, constructing heterostructures and doping heteroatoms. Particularly, the influence of morphological control and modification methods on the electrochemical performances of materials is highlighted. Finally, the application prospect and development direction of Co-based materials are proposed.
Collapse
Affiliation(s)
- Lin Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jibiao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yuan Chu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiaosong Li
- Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, Jiangsu, 213032, China
| | | | - Shuyong Jia
- Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Mateen A, Suneetha M, Ahmad Shah SS, Usman M, Ahmad T, Hussain I, Khan S, Assiri MA, Hassan AM, Javed MS, Han SS, Althomali RH, Rahman MM. 2D MXenes Nanosheets for Advanced Energy Conversion and Storage Devices: Recent Advances and Future Prospects. CHEM REC 2024; 24:e202300235. [PMID: 37753795 DOI: 10.1002/tcr.202300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Since the initial MXenes were discovered in 2011, several MXene compositions constructed using combinations of various transition metals have been developed. MXenes are ideal candidates for different applications in energy conversion and storage, because of their unique and interesting characteristics, which included good electrical conductivity, hydrophilicity, and simplicity of large-scale synthesis. Herein, we study the current developments in two-dimensional (2D) MXene nanosheets for energy storage and conversion technologies. First, we discuss the introduction to energy storage and conversion devices. Later, we emphasized on 2D MXenes and some specific properties of MXenes. Subsequently, research advances in MXene-based electrode materials for energy storage such as supercapacitors and rechargeable batteries is summarized. We provide the relevant energy storage processes, common challenges, and potential approaches to an acceptable solution for 2D MXene-based energy storage. In addition, recent advances for MXenes used in energy conversion devices like solar cells, fuel cells and catalysis is also summarized. Finally, the future prospective of growing MXene-based energy conversion and storage are highlighted.
Collapse
Affiliation(s)
- Abdul Mateen
- Department of Physics and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100084, China
| | - Maduru Suneetha
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Usman
- Physics Department, Kaunas University of Technology, 50 Studentų St., 51368, Kaunas, Lithuania
| | - Tauqeer Ahmad
- Department of Physics Engineering, Faculty of Engineering, University of Porto, Rua dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Shaukat Khan
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, 211, Sultanate of, Oman
| | - Mohammed A Assiri
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ahmed M Hassan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
6
|
Wu ZX, Fan LQ, Chen JJ, Deng XG, Tang T, Huang YF, Wu JH. Amorphous Co-Mo-S nanospheres fabricated via room-temperature vulcanization for asymmetric supercapacitors. J Colloid Interface Sci 2023; 649:880-889. [PMID: 37390535 DOI: 10.1016/j.jcis.2023.06.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Ternary metal sulfides employed in supercapacitors exhibit better electrochemical performances than their counterpart oxides due to their superior conductivity. However, the insertion/extraction of electrolyte ions can lead to a significant volume change in electrode materials, which can result in poor cycling stability. Herein, novel amorphous Co-Mo-S nanospheres were fabricated through a facile room-temperature vulcanization method. It involves the conversion of crystalline CoMoO4 by reacting it with Na2S at room temperature. In addition to the conversion of the crystalline state into an amorphous structure with more grain boundaries, which is beneficial for the transport of electron/ion and can accommodate the volume change generated by the insertion/extraction of electrolyte ions, the production of more pores led to an increased specific surface area. The electrochemical results indicate that the as-prepared amorphous Co-Mo-S nanospheres had a specific capacitance of up to 2049.7F/g@1 A/g together with good rate capability. The amorphous Co-Mo-S nanospheres can be used as the cathode of supercapacitors and assembled with an activated carbon anode into an asymmetric supercapacitor possessing a satisfactory energy density of 47.6 Wh kg-1@1012.9 W kg-1. One of the prominent features exhibited by this asymmetric device is its remarkable cyclic stability, with a capacitance retention of 107% after 10,000 cycles.
Collapse
Affiliation(s)
- Zheng-Xue Wu
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Le-Qing Fan
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Jiao-Juan Chen
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xu-Geng Deng
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Tao Tang
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yun-Fang Huang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Ji-Huai Wu
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China.
| |
Collapse
|
7
|
Kowacz M, Withanage S, Niestępski S. Voltage and concentration gradients across membraneless interface generated next to hydrogels: relation to glycocalyx. SOFT MATTER 2023; 19:7528-7540. [PMID: 37750247 DOI: 10.1039/d3sm00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Next to many hydrophilic surfaces, including those of biological cells and tissues, a layer of water that effectively excludes solutes and particles can be generated. This interfacial water is the subject of research aiming for practical applications such as removal of salts, pathogens or manipulation of biomolecules. However, the exact mechanism of its creation is still elusive because its persistence and extension contradict hydrogen-bond dynamics and electric double layer predictions. The experimentally recorded negative voltage of this interfacial water remains to be properly explained. Even less is known about the nature of such water layers in biological systems. We present experimental evidence for ion and particle exclusion as a result of separation of ionic charges with distinct diffusion rates across a liquid junction at the gel/water interface and the subsequent repulsion of ions of a given sign by a like-charged gel surface. Gels represent features of biological interfaces (in terms of functional groups and porosity) and are subject to biologically relevant chemical triggers. Our results show that gels with -OSO3- and -COO- groups can effectively generate ion- and particle-depleted regions of water reaching over 100 μm and having negative voltage up to -30 mV. Exclusion distance and electric potential depend on the liquid junction potential at the gel/water interface and on the concentration gradient at the depleted region/bulk interface, respectively. The voltage and extension of these ion- and particle-depleted water layers can be effectively modified by CO2 (respiratory gas) or KH2PO4 (cell metabolite). Possible implications pertain to biologically unstirred water layers and a cell's bioenergetics.
Collapse
Affiliation(s)
- Magdalena Kowacz
- Department of Reproductive Immunology & Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Sinith Withanage
- Department of Reproductive Immunology & Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Sebastian Niestępski
- Department of Reproductive Immunology & Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
8
|
Zhang Z, Sun S, Xu Z, Yin S. Multicomponent Hybridization Transition Metal Oxide Electrode Enriched with Oxygen Vacancy for Ultralong-Life Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302479. [PMID: 37292050 DOI: 10.1002/smll.202302479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Transition metal oxide electrode materials for supercapacitors suffer from poor electrical conductivity and stability, which are the research focus of the energy storage field. Herein, multicomponent hybridization Ni-Cu oxide (NCO-Ar/H2 -10) electrode enriched with oxygen vacancy and high electrical conductivity including the Cu0.2 Ni0.8 O, Cu2 O and CuO is prepared by introducing Cu element into Ni metal oxide with hydrothermal, annealing, and plasma treatment. The NCO-Ar/H2 -10 electrode exhibits high specific capacity (1524 F g-1 at 3 A g-1 ), good rate performance (72%) and outstanding cyclic stability (109% after 40,000 cycles). The NCO-Ar/H2 -10//AC asymmetric supercapacitor (ASC) achieves high energy density of 48.6 Wh kg-1 at 799.6 W kg-1 while exhibiting good cycle life (117.5% after 10,000 cycles). The excellent electrochemical performance mainly comes from the round-trip valence change of Cu+ /Cu2+ in the multicomponent hybridization enhance the surface capacitance during the redox process, and the change of electronic microstructure triggered by a large number of oxygen vacancies reduce the adsorption energy of OH- ions of thin nanosheet with crack of surface edge, ensuring electron and ion-transport processes and remitting the structural collapse of material. This work provides a new strategy for improving the cycling stability of transition metal oxide electrode materials.
Collapse
Affiliation(s)
- Zhihui Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin, 300384, China
- Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin, 300384, China
| | - Shishuai Sun
- Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin, 300384, China
- College of Science, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhihui Xu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin, 300384, China
| | - Shougen Yin
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin, 300384, China
| |
Collapse
|
9
|
Zhu Y, Ma J, Das P, Wang S, Wu ZS. High-Voltage MXene-Based Supercapacitors: Present Status and Future Perspectives. SMALL METHODS 2023; 7:e2201609. [PMID: 36703554 DOI: 10.1002/smtd.202201609] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
As an emerging class of 2D materials, MXene exhibits broad prospects in the field of supercapacitors (SCs). However, the working voltage of MXene-based SCs is relatively limited (typically ≤ 0.6 V) due to the oxidation of MXene electrode and the decomposition of electrolyte, ultimately leading to low energy density of the device. To solve this issue, high-voltage MXene-based electrodes and corresponding matchable electrolytes are developed urgently to extend the voltage window of MXene-based SCs. Herein, a comprehensive overview and systematic discussion regarding the effects of electrolytes (aqueous, organic, and ionic liquid electrolytes), asymmetric device configuration, and material modification on the operating voltage of MXene-based SCs, is presented. A deep dive is taken into the latest advances in electrolyte design, structure regulation, and high-voltage mechanism of MXene-based SCs. Last, the future perspectives on high-voltage MXene-based SCs and their possible development directions are outlined and discussed in depth, providing new insights for the rational design and realization of advanced next-generation MXene-based electrodes and high-voltage electrolytes.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sen Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
10
|
Khaja Hussain S, Bang JH. Overview of the oxygen vacancy effect in bimetallic spinel and perovskite oxide electrode materials for high-performance supercapacitors. Phys Chem Chem Phys 2023; 25:11892-11907. [PMID: 37097013 DOI: 10.1039/d3cp00472d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Bimetallic spinel and perovskite metal oxide materials are advanced electrode materials for supercapacitor (SC) applications because of their low-cost, distinct crystal structures, eco-friendly nature, and high conductivity. However, they suffer from the disadvantages of poor ion-diffusion kinetics and pulverization issues during cyclability tests. Along with a deeper understanding of redox chemistry, the role of oxygen vacancies (OVs) in electrode materials to support the reaction kinetics for excellence in SCs must be clarified. In this review, we highlight for the first time the importance of OVs and summarize various design strategies for the preparation of advanced bimetallic spinel oxides and perovskites with improved electrochemical performances for SC applications. With new insights, we envision that the SC research community would endeavor to utilize the benefits of OVs effectively for the development of high-performance SCs.
Collapse
Affiliation(s)
- Sk Khaja Hussain
- Nanosensor Research Institute, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea.
| | - Jin Ho Bang
- Nanosensor Research Institute, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea.
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
11
|
Liang X, Wu J, Hua Z, Liu G. Improving the performance of supercapacitors by combining polymeric redox couples and a polymer hydrogel separator. Chem Commun (Camb) 2023; 59:2811-2814. [PMID: 36790145 DOI: 10.1039/d2cc06063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Based on a combination of polymeric redox couples and a polymer hydrogel separator, the performance of aqueous supercapacitors can be improved by concurrently increasing the specific capacitance, widening the electrolyte decomposition window, improving the cycling performance, and suppressing the self-discharge of both the electrical double-layer and faradaic charge storage.
Collapse
Affiliation(s)
- Xiaohong Liang
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Jiang Wu
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Guangming Liu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
12
|
Yang B, Zhang D, Xia X, Meng X, He Y, Wang B, Han Z, Wang K. Boosting energy density of the aqueous supercapacitors by employing trifluoroacetic acid as a novel high voltage electrolyte. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
13
|
Gu Z, Zhang W, Li X, Zhang S, Kang H, Yang B, Li Z. Self-assembled hierarchical porous nanoarchitectured 2,6-diaminopyridine decorated N-doped reduced graphene oxide as advanced electrode for high-performance aqueous Zn-ion hybrid supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
14
|
Lee JH, Lee SY, Park SJ. Highly Porous Carbon Aerogels for High-Performance Supercapacitor Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:817. [PMID: 36903696 PMCID: PMC10005637 DOI: 10.3390/nano13050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In recent years, porous carbon materials with high specific surface area and porosity have been developed to meet the commercial demands of supercapacitor applications. Carbon aerogels (CAs) with three-dimensional porous networks are promising materials for electrochemical energy storage applications. Physical activation using gaseous reagents provides controllable and eco-friendly processes due to homogeneous gas phase reaction and removal of unnecessary residue, whereas chemical activation produced wastes. In this work, we have prepared porous CAs activated by gaseous carbon dioxide, with efficient collisions between the carbon surface and the activating agent. Prepared CAs display botryoidal shapes resulting from aggregation of spherical carbon particles, whereas activated CAs (ACAs) display hollow space and irregular particles from activation reactions. ACAs have high specific surface areas (2503 m2 g-1) and large total pore volumes (1.604 cm3 g-1), which are key factors for achieving a high electrical double-layer capacitance. The present ACAs achieved a specific gravimetric capacitance of up to 89.1 F g-1 at a current density of 1 A g-1, along with a high capacitance retention of 93.2% after 3000 cycles.
Collapse
Affiliation(s)
| | - Seul-Yi Lee
- Correspondence: (S.-Y.L.); (S.-J.P.); Tel.: +82-32-876-7234 (S.-Y.L. & S.-J.P.)
| | - Soo-Jin Park
- Correspondence: (S.-Y.L.); (S.-J.P.); Tel.: +82-32-876-7234 (S.-Y.L. & S.-J.P.)
| |
Collapse
|
15
|
Ji Z, Liu C, Xie W, Liu S, Zhang C, Liu F, Sun H, Lu Y, Pan X, Wang C, Wang Z. Interfacial engineered PANI/carbon nanotube electrode for 1.8 V ultrahigh voltage aqueous supercapacitors. NANOTECHNOLOGY 2023; 34:165401. [PMID: 36669198 DOI: 10.1088/1361-6528/acb4f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Flexible three-dimensional interconnected carbon nanotubes on the carbon cloth (3D-CNTs/CC) were obtained through simple magnesium reduction reactions. According to the Nernst equation, the cell voltage based on these pure carbon electrodes without any additives could reach 1.5 V due to the higher di-hydrogen evolution over potential in neutral 3.5 M LiCl electrolytes. In order to improve the electrochemical performance of the electrodes, 3D-CNTs/CC electrodes covered with polyaniline barrier layer (3D-PANI/CNTs/CC) were prepared byin situelectropolymerization using interfacial engineering method. The assembled symmetric supercapacitors display a broadened voltage of 1.8 V, high areal capacitance of 380 mF cm-2, outstanding areal energy density of 85.5μWh cm-2and 84% of its initial capacitance after 20 000 charge-discharge cycles. This work demonstrated that the interface engineering strategy provides a promising way to improve the energy density of carbon-based aqueous supercapacitors by widening the voltage and boosting the capacitance simultaneously.
Collapse
Affiliation(s)
- Zhichao Ji
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Congcong Liu
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Wenhe Xie
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Shenghong Liu
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Chao Zhang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Fuwei Liu
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Haibin Sun
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Yang Lu
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Xuexue Pan
- Guangdong Jiuzhou Energy Storage Technology Co., Ltd, Zhongshan 528437, People's Republic of China
| | - Chunlei Wang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Zhuanpei Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
16
|
Bargnesi L, Rozzarin A, Lacarbonara G, Tombolesi S, Arbizzani C. Sustainable Modification of Chitosan Binder for Capacitive Electrodes Operating in Aqueous Electrolytes. ChemElectroChem 2023. [DOI: 10.1002/celc.202201080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Luca Bargnesi
- Department of Chemistry “Giacomo Ciamician” University of Bologna Via F. Selmi 2 40126 Bologna Italy
| | - Arianna Rozzarin
- Department of Chemistry “Giacomo Ciamician” University of Bologna Via F. Selmi 2 40126 Bologna Italy
| | - Giampaolo Lacarbonara
- Department of Chemistry “Giacomo Ciamician” University of Bologna Via F. Selmi 2 40126 Bologna Italy
| | - Serena Tombolesi
- Department of Chemistry “Giacomo Ciamician” University of Bologna Via F. Selmi 2 40126 Bologna Italy
| | - Catia Arbizzani
- Department of Chemistry “Giacomo Ciamician” University of Bologna Via F. Selmi 2 40126 Bologna Italy
| |
Collapse
|
17
|
Zhang B, Luo H, Ai B, Gou Q, Deng J, Wang J, Zheng Y, Xiao J, Li M. Modulating Surface Electron Density of Heterointerface with Bio-Inspired Light-Trapping Nano-Structure to Boost Kinetics of Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205431. [PMID: 36336631 DOI: 10.1002/smll.202205431] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Herein, inspired by natural sunflower heads' properties increasing the temperature of dish-shaped flowers by tracking the sun, a novel hybrid heterostructure (MoS2 /Ni3 S2 @CA, CA means carbon nanowire arrays) with the sunflower-like structure to boost the kinetics of water splitting is proposed. Density functional theory (DFT) reveals that it can modulate the active electronic states of NiMo atoms around the Fermi-level through the charge transfer between the metallic atoms of Ni3 S2 and MoMo bonds of MoS2 to boost overall water splitting. Most importantly, the finite difference time domain (FDTD) could find that its unique bio-inspired micro-nano light-trapping structure has high solar photothermal conversion efficiency. With the assistance of the photothermal field, the kinetics of water-splitting is improved, affording low overpotentials of 96 and 229 mV at 10 mA cm-2 for HER and OER, respectively. Moreover, the Sun-MoS2 /Ni3 S2 @CA enables the overall alkaline water splitting at a low cell voltage of 1.48 and 1.64 V to achieve 10 and 100 mA cm-2 with outstanding catalytic durability. This study may open up a new route for rationally constructing bionic sunflower micro-nano light-trapping structure to maximize their photothermal conversion and electrochemical performances, and accelerate the development of nonprecious electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Ben Zhang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Haoran Luo
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing, 400044, China
| | - Qianzhi Gou
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Jiangbin Deng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Jiacheng Wang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yujie Zheng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Juanxiu Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Meng Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
18
|
V2CTx MXene as novel anode for aqueous asymmetric supercapacitor with superb durability in ZnSO4 electrolyte. J Colloid Interface Sci 2022; 626:59-67. [DOI: 10.1016/j.jcis.2022.06.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/05/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022]
|
19
|
Liu X, Lu Z, Pan H, Cheng J, Dou J, Huang X, Chen X. Investigation of functionalization effect of carbon nanotubes as supercapacitor electrode material on hydrogen evolution side-reaction by scanning electrochemical microscopy. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Zhou M, Bo Z, Ostrikov KK. Challenges and prospects of high-voltage aqueous electrolytes for energy storage applications. Phys Chem Chem Phys 2022; 24:20674-20688. [PMID: 36052687 DOI: 10.1039/d2cp02795j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous electrolytes have attracted widespread attention as they are safe, environmentally benign and cost effective, holding great promise for future low-cost and sustainable energy storage devices. Nonetheless, the narrow electrochemical stability window caused by water electrolysis, as well as the trade-off between the stability window and other properties remain the bottleneck problem for the practical applications of aqueous electrolytes. Deep insights into the correlations between the microscopic physicochemical and electrochemical mechanisms and the macroscopic properties of aqueous electrolyte are essential for the envisaged applications, yet a systematic analysis of the recent progress in this area is still lacking. In this Perspective article, the basic mechanisms and influencing factors of water electrolysis including the hydrogen evolution and oxygen evolution reactions is critically examined. We systematically review the current state-of-the-art on high-voltage aqueous electrolytes focusing on the fundamental mechanisms of ion kinetics leading to dynamic electrolyte restructuring. Recent advances on the optimization of high-voltage aqueous electrolytes are also summarized. The existing challenges are identified and perspectives for exploring and developing future high-voltage aqueous electrolytes are provided.
Collapse
Affiliation(s)
- Meiqi Zhou
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P. R. China.
| | - Zheng Bo
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P. R. China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, Centre for Clean Energy Technologies and Practices, Centre for Waste-free World, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
21
|
Huang MK, Anuratha KS, Xiao Y, Chen YP, Lin JY. Co-solvent modified methylsulfonylmethane-based hybrid deep eutectic solvent electrolytes for high-voltage symmetric supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Heteroatom Doping Strategy Enables Bi-functional Electrode with Superior Electrochemical Performance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Gou Q, Luo H, Zheng Y, Zhang Q, Li C, Wang J, Odunmbaku O, Zheng J, Xue J, Sun K, Li M. Construction of Bio-inspired Film with Engineered Hydrophobicity to Boost Interfacial Reaction Kinetics of Aqueous Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201732. [PMID: 35561050 DOI: 10.1002/smll.202201732] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Aqueous zinc-ion batteries typically suffer from sluggish interfacial reaction kinetics and drastic cathode dissolution owing to the desolvation process of hydrated Zn2+ and continual adsorption/desorption behavior of water molecules, respectively. To address these obstacles, a bio-inspired approach, which exploits the moderate metabolic energy of cell systems and the amphiphilic nature of plasma membranes, is employed to construct a bio-inspired hydrophobic conductive poly(3,4-ethylenedioxythiophene) film decorating α-MnO2 cathode. Like plasma membranes, the bio-inspired film can "selectively" boost Zn2+ migration with a lower energy barrier and maintain the integrity of the entire cathode. Electrochemical reaction kinetics analysis and theoretical calculations reveal that the bio-inspired film can significantly improve the electrical conductivity of the electrode, endow the cathode-electrolyte interface with engineered hydrophobicity, and enhance the desolvation behavior of hydrated Zn2+ . This results in an enhanced ion diffusion rate and minimized cathode dissolution, thereby boosting the overall interfacial reaction kinetics and cathode stability. Owing to these intriguing merits, the composite cathode can demonstrate remarkable cycling stability and rate performance in comparison with the pristine MnO2 cathode. Based on the bio-inspired design philosophy, this work can provide a novel insight for future research on promoting the interfacial reaction kinetics and electrode stability for various battery systems.
Collapse
Affiliation(s)
- Qianzhi Gou
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Haoran Luo
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yujie Zheng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Qi Zhang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Chen Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jiacheng Wang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Omololu Odunmbaku
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Junmin Xue
- Department of Materials Science and Engineering, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, National University of Singapore, Singapore, 117573, Singapore
| | - Kuan Sun
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Meng Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
24
|
In-situ formed hierarchical transition metal oxide nanoarrays with rich antisite defects and oxygen vacancies for high-rate energy storage devices. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Guo T, Zhou D, Pang L, Sun S, Zhou T, Su J. Perspectives on Working Voltage of Aqueous Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106360. [PMID: 35064755 DOI: 10.1002/smll.202106360] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Aqueous supercapacitors have the superiorities of high safety, environmental friendliness, inexpensive, etc. High energy density supercapacitors are not conducive to manufacturing due to the limitation of water thermodynamic decomposition potential, resulting in a narrow working voltage window. To address such challenges, a great endeavor has started to investigate high voltage aqueous supercapacitors as well as making some progress. This review summarizes key strategies regarding the realization of wide working voltage of aqueous supercapacitors and analyzes the involved mechanism, including the optimization of electrodes, electrolytes, diaphragms, and supercapacitor structures. From the perspective of extending the theoretical voltage window, electrode functionalization, heteroatom doping, neutral electrolyte, water-in-salt electrolyte, introducing redox mediators into electrolyte, and designing asymmetric structure are effective strategies for achieving this goal. Further, the actual voltage window can be maximized by optimizing the electrode mass ratio, adjusting potential of zero voltage, and electrode functionalization. The challenge and future of expanding working voltage of aqueous supercapacitors are further discussed. Importantly, this review provides inspiration for the development of supercapacitors with high energy density.
Collapse
Affiliation(s)
- Tiezhu Guo
- Key Laboratory of Multifunctional Materials and Structures, Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Di Zhou
- Key Laboratory of Multifunctional Materials and Structures, Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Lixia Pang
- Micro-optoelectronic Systems Laboratories, Xi'an Technological University, Xi'an, Shaanxi, 710032, China
| | - Shikuan Sun
- School of Material Science and Energy Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Tao Zhou
- School of Electronic and Information Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jinzhan Su
- International Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
26
|
Zhu Y, Zheng S, Lu P, Ma J, Das P, Su F, Cheng HM, Wu ZS. OUP accepted manuscript. Natl Sci Rev 2022; 9:nwac024. [PMID: 35854784 PMCID: PMC9283101 DOI: 10.1093/nsr/nwac024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
MXenes are one of the key materials for micro-supercapacitors (MSCs), integrating miniaturized energy-storage components with microelectronics. However, the energy densities of MSCs are greatly hampered by MXenes’ narrow working potential window (typically ≤0.6 V) in aqueous electrolytes. Here, we report the fabrication of high-voltage MXene-MSCs through the efficient regulation of reaction kinetics in 2D Ti3C2Tx MXene microelectrodes using a water-in-LiCl (WIL, 20 m LiCl) salt gel electrolyte. Importantly, the intrinsic energy-storage mechanism of MXene microelectrodes in WIL, which is totally different from traditional electrolytes (1 m LiCl), was revealed through insitu and exsitu characterizations. We validated that the suppression of MXene oxidation at high anodic potential occurred due to the high content of WIL regulating anion intercalation in MXene electrodes, which effectively broadened the voltage window of MXene-MSCs. Remarkably, the symmetric planar MXene-MSCs presented a record operating voltage of 1.6 V, resulting in an exceptionally high volumetric energy density of 31.7 mWh cm−3. With the ultra-high ionic conductivity (69.5 mS cm−1) and ultralow freezing point (−57°C) of the WIL gel electrolyte, our MSCs could be operated in a wide temperature range of −40 to 60°C, and worked for a long duration even at −40°C, demonstrative of its practicality in extreme environments.
Collapse
Affiliation(s)
| | | | - Pengfei Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Su
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | |
Collapse
|
27
|
Fan LQ, Geng CL, Deng XG, Chen JJ, Wu ZX, Huang Y, Wu J. Improvement of Quasi-Solid-State Supercapacitors Based on “Water-in-Salt” Hydrogel Electrolyte by Introducing Redox-Active Ionic Liquid and Carbon Nanotubes. NEW J CHEM 2022. [DOI: 10.1039/d2nj00796g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In comparison with supercapacitors (SCs) with aqueous solution electrolytes, quasi-solid-state SCs (QSCs) based on hydrogel electrolytes (HEs) exhibit more extensive application prospect due to the advantages for example easier encapsulation...
Collapse
|
28
|
Chen X, Chang P, Zhang S, Guan L, Ren G, Tao J. Nano-dendrite structured cobalt phosphide based hybrid supercapacitor with high energy storage and cycling stability. NANOTECHNOLOGY 2021; 33:085403. [PMID: 34781277 DOI: 10.1088/1361-6528/ac39c8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
The supercapacitors possessing high energy storage and long serving period have strategic significance to solve the energy crisis issues. Herein, fluffy nano-dendrite structured cobalt phosphide (CoP) is grown on carbon cloth through simple hydrothermal and electrodeposition treatments (CoP/C-HE). Benefit from its excellent electrical conductivity and special structure, CoP/C-HE manifests a high specific capacity of 461.4 C g-1at 1 A g-1. Meanwhile, the capacity retention remains 92.8% over 10 000 cycles at 5 A g-1, proving the superior cycling stability. The phase conversion of Co2P during the activation process also contributes to the improved performance. The assembled two-electrode asymmetric supercapacitor demonstrates excellent performance in terms of energy density (42.4 W h kg-1at a power density of 800.0 W kg-1) and cycling stability (86.3% retention over 5000 cycles at 5 A g-1), which is superior to many reported cobalt-based supercapacitors. Our work promotes the potential of transition metal phosphides for the applications in supercapacitors.
Collapse
Affiliation(s)
- Xiaoyu Chen
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Pu Chang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Shuo Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Lixiu Guan
- School of Science, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Guohe Ren
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| | - Junguang Tao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, People's Republic of China
| |
Collapse
|
29
|
Yang M, Wang X, Chen Y, Du Y, Zou S, Emin A, Song X, Fu Y, Li Y, Li J, He D. NiCo2O4 nanowire-supported NiCoMnS4 nanosheets on carbon cloth as a flexible cathode for high-performance aqueous supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Wang T, Wang Y, Lei J, Chen K, Wang H. Electrochemically induced surface reconstruction of Ni-Co oxide nanosheet arrays for hybrid supercapacitors. EXPLORATION (BEIJING, CHINA) 2021; 1:20210178. [PMID: 37323694 PMCID: PMC10190942 DOI: 10.1002/exp.20210178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Transition metal oxides (TMOs) are promising materials for supercapacitors (SCs) because of their high theoretical capacity. However, their finite active sites and poor electrical conductivity lead to reluctant electrochemical performance. Herein, we report a facile electrochemical activation (ECA) method to boost the electrochemical activity of Ni-Co oxide nanosheet arrays (NiCoO NSA) for SCs. Specifically, honeycomb-like NiCoO NSA that was made through a solvothermal method followed by air annealing was activated by simply exerting certain cyclic voltammetry scans (the activated sample is named ac-NiCoO NSA). We have found this treatment results in dramatic surface structure change, forming numerous sub-nanostructures (nanoparticles and nano-leaves) on the NiCoO nanosheets. Rich antisite defects and oxygen vacancies in the NiCoO spinel phase were also created by the ECA treatment. Consequently, the ac-NiCoO NSA delivered a maximum capacity of 206.5 mAh g-1 (0.5 A g-1), which is about three times of the NiCoO NSA without treatment. A hybrid SC based on the ac-NiCoO NSA demonstrated excellent energy storage capacity (power density of 17.3 kW kg-1 and energy density of 45.4 Wh kg-1) and outstanding cyclability (>20,000 cycles, 77.4% retention rate). Our method provides a simple strategy for fabricating high performance TMOs for electrical energy storage devices like SCs.
Collapse
Affiliation(s)
- Teng Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, Department of Chemistry, School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi’ anP. R. China
- School of Chemistry and PhysicsFaculty of ScienceQueensland University of TechnologyBrisbaneAustralia
| | - You Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, Department of Chemistry, School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi’ anP. R. China
| | - Jiaqi Lei
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, Department of Chemistry, School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi’ anP. R. China
| | - Kai‐Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, Department of Chemistry, School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi’ anP. R. China
| | - Hongxia Wang
- School of Chemistry and PhysicsFaculty of ScienceQueensland University of TechnologyBrisbaneAustralia
| |
Collapse
|
31
|
Wu T, Jin B, Li H, Bi H, Lü H, He X. Foam-like porous carbons with ultrahigh surface area from petroleum pitch and their supercapacitive performance. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
|
33
|
Thalji MR, Ibrahim AA, Ali GA. Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Xu Y, Pan B, Li WS, Dong L, Wang X, Zhao FG. High-Performance Flexible Asymmetric Supercapacitor Paired with Indanthrone@Graphene Heterojunctions and MXene Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41537-41544. [PMID: 34428366 DOI: 10.1021/acsami.1c08406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The energy density formula illuminated that widening the voltage window and maximizing capacitance are effective strategies to boost the energy density of supercapacitors. However, aqueous electrolyte-based devices generally afford a voltage window less than 1.2 V in view of water electrolysis, and chemically converted graphene yields mediocre capacitance. Herein, multi-electron redox-reversible, structurally stable indanthrone (IDT) π-backbones were rationally coupled with the reduced graphene oxide (rGO) framework to form IDT@rGO molecular heterojunctions. Such conductive agent- and binder-free film electrodes delivered a maximized capacitance of up to 345 F g-1 in a potential range of -0.2 to 1.0 V. The partner film electrode-Ti3C2Tx MXene which worked in the negative potential range of -0.1 to -0.6 V-afforded a capacitance as large as 769 F g-1. Thanks to the perfect complementary potentials of the IDT@rGO heterojunction positive electrode and Ti3C2Tx MXene negative partner, the polyvinyl alcohol/H2SO4 hydrogel electrolyte-based flexible asymmetric supercapacitor delivered an enlarged voltage window of 1.6 V and an impressive energy density of 17 W h kg-1 at a high power density of 8 kW kg-1, plus remarkable rate capability and cycling life (capacitance retention of ∼90% after 10000 cycles) as well as exceptional flexibility and bendability.
Collapse
Affiliation(s)
- Yongqi Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Bingyige Pan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Wei-Shi Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Lei Dong
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Road, Shanghai 201210, China
| | - Xinping Wang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| | - Fu-Gang Zhao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018, China
| |
Collapse
|
35
|
|
36
|
Advanced carbon materials with different spatial dimensions for supercapacitors. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Lee Y, Bandari VK, Li Z, Medina-Sánchez M, Maitz MF, Karnaushenko D, Tsurkan MV, Karnaushenko DD, Schmidt OG. Nano-biosupercapacitors enable autarkic sensor operation in blood. Nat Commun 2021; 12:4967. [PMID: 34426576 PMCID: PMC8382768 DOI: 10.1038/s41467-021-24863-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Today's smallest energy storage devices for in-vivo applications are larger than 3 mm3 and lack the ability to continuously drive the complex functions of smart dust electronic and microrobotic systems. Here, we create a tubular biosupercapacitor occupying a mere volume of 1/1000 mm3 (=1 nanoliter), yet delivering up to 1.6 V in blood. The tubular geometry of this nano-biosupercapacitor provides efficient self-protection against external forces from pulsating blood or muscle contraction. Redox enzymes and living cells, naturally present in blood boost the performance of the device by 40% and help to solve the self-discharging problem persistently encountered by miniaturized supercapacitors. At full capacity, the nano-biosupercapacitors drive a complex integrated sensor system to measure the pH-value in blood. This demonstration opens up opportunities for next generation intravascular implants and microrobotic systems operating in hard-to-reach small spaces deep inside the human body.
Collapse
Affiliation(s)
- Yeji Lee
- grid.6810.f0000 0001 2294 5505Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, Germany ,grid.6810.f0000 0001 2294 5505Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany ,grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany
| | - Vineeth Kumar Bandari
- grid.6810.f0000 0001 2294 5505Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, Germany ,grid.6810.f0000 0001 2294 5505Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany ,grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany
| | - Zhe Li
- grid.6810.f0000 0001 2294 5505Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, Germany ,grid.6810.f0000 0001 2294 5505Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany ,grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany
| | - Mariana Medina-Sánchez
- grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany
| | - Manfred F. Maitz
- grid.419239.40000 0000 8583 7301Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Daniil Karnaushenko
- grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany
| | - Mikhail V. Tsurkan
- grid.419239.40000 0000 8583 7301Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Dmitriy D. Karnaushenko
- grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany
| | - Oliver G. Schmidt
- grid.6810.f0000 0001 2294 5505Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz, Germany ,grid.6810.f0000 0001 2294 5505Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany ,grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany ,grid.4488.00000 0001 2111 7257Nanophysics, Faculty of Physics, TU Dresden, Dresden, Germany
| |
Collapse
|
38
|
Zhang M, Wang W, Liang X, Li C, Deng W, Chen H, Li R. Promoting operating voltage to 2.3 V by a superconcentrated aqueous electrolyte in carbon-based supercapacitor. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Shaikh JS, Shaikh NS, Mishra YK, Pawar SS, Parveen N, Shewale PM, Sabale S, Kanjanaboos P, Praserthdam S, Lokhande CD. The implementation of graphene-based aerogel in the field of supercapacitor. NANOTECHNOLOGY 2021; 32:362001. [PMID: 34125718 DOI: 10.1088/1361-6528/ac0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Graphene and graphene-based hybrid materials have emerged as an outstanding supercapacitor electrode material primarily because of their excellent surface area, high electrical conductivity, and improved thermal, mechanical, electrochemical cycling stabilities. Graphene alone exhibits electric double layer capacitance (EDLC) with low energy density and high power density. The use of aerogels in a supercapacitor is a pragmatic approach due to its extraordinary properties like ultra-lightweight, high porosity and specific surface area. The aerogels encompass a high volume of pores which leads to easy soak by the electrolyte and fast charge-discharge process. Graphene aerogels assembled into three-dimensional (3D) architecture prevent there stacking of graphene sheets and maintain the high surface area and hence excellent cycling stability and rate capacitance. However, the energy density of graphene aerogels is limited due to EDLC type of charge storage mechanism. Consequently, 3D graphene aerogel coupled with pseudocapacitive materials such as transition metal oxides, metal hydroxides, conducting polymers, nitrides, chalcogenides show an efficient energy density and power density performance due to the presence of both types of charge storage mechanisms. This laconic review focuses on the design and development of graphene-based aerogel in the field of the supercapacitor. This review is an erudite article about methods, technology and electrochemical properties of graphene aerogel.
Collapse
Affiliation(s)
- Jasmin S Shaikh
- Centre of Interdisciplinary Research, D. Y. Patil University, Kolhapur, 416006, Maharashtra, India
| | - Navajsharif S Shaikh
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - S S Pawar
- Department of Engineering Sciences, Sinhgad College of Engineering, Vadgaon, Pune, 41, India
| | - Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, PO Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Poonam M Shewale
- D. Y. Patil School of Engineering and Technology, Lohegaon, Pune-412 105, Maharashtra, India
| | - Sandip Sabale
- P.G. Department of Chemistry, Jaysingpur College, Jaysingpur-416101, India
| | - Pongsakorn Kanjanaboos
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Supareak Praserthdam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Chandrakant D Lokhande
- Centre of Interdisciplinary Research, D. Y. Patil University, Kolhapur, 416006, Maharashtra, India
| |
Collapse
|
40
|
Abstract
Aqueous electrolytes are the leading candidate to meet the surging demand for safe and low-cost storage batteries. Aqueous electrolytes facilitate more sustainable battery technologies due to the attributes of being nonflammable, environmentally benign, and cost effective. Yet, water's narrow electrochemical stability window remains the primary bottleneck for the development of high-energy aqueous batteries with long cycle life and infallible safety. Water's electrolysis leads to either hydrogen evolution reaction (HER) or oxygen evolution reaction (OER), which causes a series of dire consequences, including poor Coulombic efficiency, short device longevity, and safety issues. These are often showstoppers of a new aqueous battery technology besides the low energy density. Prolific progress has been made in the understanding of HER and OER from both catalysis and battery fields. Unfortunately, a systematic review on these advances from a battery chemistry standpoint is lacking. This review provides in-depth discussions on the mechanisms of water electrolysis on electrodes, where we summarize the critical influencing factors applicable for a broad spectrum of aqueous battery systems. Recent progress and existing challenges on suppressing water electrolysis are discussed, and our perspectives on the future development of this field are provided.
Collapse
Affiliation(s)
- Yiming Sui
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
41
|
A Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials for Supercapacitors. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2020017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The development of smart negative electrode materials with high capacitance for the uses in supercapacitors remains challenging. Although several types of electrode materials with high capacitance in energy storage have been reported, carbon-based materials are the most reliable electrodes due to their high conductivity, high power density, and excellent stability. The most common complaint about general carbon materials is that these electrode materials can hardly ever be used as free-standing electrodes. Free-standing carbon-based electrodes are in high demand and are a passionate topic of energy storage research. Electrospun nanofibers are a potential candidate to fill this gap. However, the as-spun carbon nanofibers (ECNFs) have low capacitance and low energy density on their own. To overcome the limitations of pure CNFs, increasing surface area, heteroatom doping and metal doping have been chosen. In this review, we introduce the negative electrode materials that have been developed so far. Moreover, this review focuses on the advances of electrospun nanofiber-based negative electrode materials and their limitations. We put forth a future perspective on how these limitations can be overcome to meet the demands of next-generation smart devices.
Collapse
|
42
|
Zang X, Wang S, Zhang R. Ultrathin Carbon Deficient Molybdenum Carbide (α-MoC 1-x) Enables High-Rate Mg-Ion-based Energy Storage. J Phys Chem Lett 2021; 12:4434-4439. [PMID: 33950671 DOI: 10.1021/acs.jpclett.1c00908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dual-electron transfer with Mg2+-ion intercalation outperforms typical alkali metal-ion (Li+, Na+, K+) systems with superior charge storage efficiency while the neutral electrolytes can achieve a working voltage beyond the hydrolysis window of 1.23 V. Hence, aqueous Mg-ion electrolytes are promising for electrochemical energy storage devices to boost the energy density and solve the safety challenges synchronously. However, the Mg-based electrochemical energy storage (EES) devices are generally confined by poor rate performance due to the slow Mg2+ diffusion in the electrode materials. In this paper, we demonstrate that carbon-deficient carbide could function as a promising electrode material in Mg2+-ion-based EES. An electrode made of such carbide can operate over an extended window up to 2.4 V in 1 M magnesium acetate, showing superior performance of high capacitance (125.2 F/g), high energy density (25.1 Wh/kg), and high power density (3934.8 W/kg). Ab initio simulation reveals migration energy of Mg2+ being lower than that of Li+ diffusing from one carbon defect to another in the α-MoC1-x lattice, supporting the experimental results that a symmetric supercapacitor made of α-MoC1-x in an electrolyte based on Mg2+ outperforms electrolytes based on Li+.
Collapse
Affiliation(s)
- Xining Zang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Shuo Wang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Ruopeng Zhang
- National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
43
|
Shi W, Lee WSV, Xue J. Recent Development of Mn-based Oxides as Zinc-Ion Battery Cathode. CHEMSUSCHEM 2021; 14:1634-1658. [PMID: 33449431 DOI: 10.1002/cssc.202002493] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Manganese-based oxide is arguably one of the most well-studied cathode materials for zinc-ion battery (ZIB) due to its wide oxidation states, cost-effectiveness, and matured synthesis process. As a result, there are numerous reports that show significant strides in the progress of Mn-based oxides as ZIB cathode. However, ironically, due to the sheer number of Mn-based oxides that have been published in recent years, there remain certain contemplations with regards to the electrochemical performance of each type of Mn-based oxides and their performance comparison among various Mn polymorphs and oxidation states. Thus, to provide a clearer indication of the development of Mn-based oxides, the recent progress in Mn-based oxides as ZIB cathode was summarized systematically in this Review. More specifically, (1) the classification of Mn-based oxides based on the oxidation states (i. e., MnO2 , Mn3 O4 , Mn2 O3 , and MnO), (2) their respective polymorphs (i. e., α-MnO2 and δ-MnO2 ) as ZIB cathode, (3) the modification strategies commonly employed to enhance the performance, and (4) the effects of these modification strategies on the performance enhancement were reviewed. Lastly, perspectives and outlook of Mn-based oxides as ZIB cathode were discussed at the end of this Review.
Collapse
Affiliation(s)
- Wen Shi
- Department of Material Science and Engineering, National University of Singapore Block E3A #03-14, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Wee Siang Vincent Lee
- Department of Material Science and Engineering, National University of Singapore Block E3A #03-14, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Junmin Xue
- Department of Material Science and Engineering, National University of Singapore Block E3A #03-14, 7 Engineering Drive 1, Singapore, 117574, Singapore
| |
Collapse
|
44
|
Zhang F, Zhang J, Ma J, Zhao X, Li Y, Li R. Polyvinylpyrrolidone (PVP) assisted in-situ construction of vertical metal-organic frameworks nanoplate arrays with enhanced electrochemical performance for hybrid supercapacitors. J Colloid Interface Sci 2021; 593:32-40. [PMID: 33735831 DOI: 10.1016/j.jcis.2021.02.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Construction of two-dimensional (2D) metal-organic frameworks (MOFs) for energy storage and conversion has attracted great attention due to the synergistic advantages of 2D nanostructures and MOFs. Herein, a Co-MOF material with different 2D morphologies of vertical nanoplate arrays and faveolate nanosheets are in-situ fabricated on Ni foam with and without using polyvinylpyrrolidone (PVP) as a regulator. Toward the application in energy storage, both of two morphologies of the Co-MOF exhibit good electrochemical properties. In particular, the vertical Co-MOF nanoplate arrays deliver a high areal capacity of 8.56 C/cm2 at the current density of 5 mA/cm2, which is much higher than that of faveolate Co-MOF nanosheets (2.39 C/cm2 at 5 mA/cm2). Moreover, a hybrid supercapacitor (HSC) device using the Co-MOF nanoplate arrays positive electrode and activated carbon (AC) negative electrode is assembled, which delivers a volumetric capacitance of 17.9 F/cm3 at 10 mA/cm2, a high energy density of 7.2 mW h cm-3 and a good cyclic stability (retaining over 88.0% of initial capacitance after 3000 cycles). These findings demonstrate that the as-fabricated 2D Co-MOFs possess a huge potential in energy storage.
Collapse
Affiliation(s)
- Feng Zhang
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Junli Zhang
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Jinjin Ma
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Xiangyang Zhao
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yaoyao Li
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Rongqiang Li
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| |
Collapse
|
45
|
Zhao T, Liu C, Yi F, Deng W, Gao A, Shu D, Zheng L. Hollow N-doped carbon @ O-vacancies NiCo2O4 nanocages with a built-in electric field as high-performance cathodes for hybrid supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137260] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Liu Y, Zhang Y, Sun Z, Cheng S, Cui P, Wu Y, Zhang J, Fu J, Xie E. New Insight into the Mechanism of Multivalent Ion Hybrid Supercapacitor: From the Effect of Potential Window Viewpoint. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003403. [PMID: 33107205 DOI: 10.1002/smll.202003403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Multivalent ion hybrid supercapacitors have been developed as the novel electrochemical energy storage systems due to their combined merits of high energy density and high power density. Nevertheless, there are still some challenges due to the limited understanding of the electrochemical behaviors of multivalent ions in the electrode materials, which greatly hinders the large scale applications of its based hybrid supercapacitors. Herein, the long-term electrochemical behaviors of MnO2 -based electrode in the divalent Mg2+ ions electrolyte are systematically studied and linked with the morphological and electronic evolution of MnO2 by cycling at different potential windows (spanning to 1.2 V). It reveals that the different potential windows result in the different electrochemical behaviors, which can be divided into two ranges (below and above -0.2 V). And, the electrode cycled at a potential window of 0-1.2 V delivers the highest capacitance of 967 F g-1 at a scan rate of 10 mV s-1 , in which the MnO2 is transformed into a uniformly distributed and nonagglomerated nanoflake morphology promoting the intercalation and deintercalation of Mg2+ ions. This study will enrich the understanding of the charge storage mechanism of multivalent ions and provide significant guidance on the performance improvement of the hybrid supercapacitors.
Collapse
Affiliation(s)
- Yupeng Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yaxiong Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhenheng Sun
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Situo Cheng
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Peng Cui
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yin Wu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Junli Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiecai Fu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Erqing Xie
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
47
|
Avasthi P, Arya N, Singh M, Balakrishnan V. Fabrication of iron oxide-CNT based flexible asymmetric solid state supercapacitor device with high cyclic stability. NANOTECHNOLOGY 2020; 31:435402. [PMID: 32619994 DOI: 10.1088/1361-6528/aba2a0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Integration of high surface area nanostructures with conducting and deformable electrodes at large scale are of significant importance for flexible supercapacitors with high cyclic stability and low cost. Here, we report water assisted meter scale growth of aligned iron oxide and CNT 1D nanostructures on flexible stainless steel mesh for asymmetric supercapacitor device applications. Electron microscopic investigations revealed the uniform coverage of both iron oxide and CNT forest nanostructures over one meter length of SS mesh. Both iron oxide and CNT nanostructures were tested for supercapacitor electrode material in neutral electrolytes. Further, asymmetric solid state devices were fabricated and connected in serial fashion to demonstrate glowing of LEDs as well as rotation of 5 V micro fan. In addition, at bending angle of 90°, device showed 68% increase whereas, at 180° it showed 13% decrease in capacitance. The calculated specific capacitance for single device is found to be 14.4 mF cm-2. Corresponding energy density and power density are found to be 3 μW-hr cm-2 and 0.74 mW cm-2 respectively. The device showed remarkable capacitance retention of 87% over 25 000 charge discharge cycles. The flexible nature with remarkable cyclic stability of solid state iron oxide/CNT device is suitable for low cost flexible and wearable supercapacitor applications.
Collapse
Affiliation(s)
- Piyush Avasthi
- School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | | | | | | |
Collapse
|