1
|
Wang Y, Qian G, Yu H, Xie Z, Li L, Lu M, Chen C, Min D, Chen J, Tsiakaras P. Superhydrophilicity and Electronic Modulation on Self-Supported Lignin-Derived Carbon Coupled with NiO@MoNi 4 for Enhancing Urea Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410044. [PMID: 39692182 DOI: 10.1002/smll.202410044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Developing highly efficient biomass-derived carbon-based electrocatalysts remains challenging for urea electrolysis because most of these electrocatalysts show powder morphology, which can lead to Ostwald ripening during the reaction process, and its reaction mechanism should be further verified. Herein, self-supported lignin-derived carbon coupling NiO@MoNi4 heterojunction (NiO@MoNi4/C) possesses superhydrophilic properties and electronic modulation, boosting the performance of urea electrolysis. Electrochemical results show that an indirect oxidation step for urea oxidation reaction (UOR) and Volmer-Heyrovsky mechanism for hydrogen evolution reaction (HER) occurs on the surface of NiO@MoNi4/C. It displays low potentials for UOR (E10/500/1000 = 1.28/1.41/1.47 V) and for HER (E-10/-500/-1000 = -38/-264/-355 mV) in 1.0 M KOH + 0.5 M urea electrolyte solution. The good activity is ascribed to the self-supported lignin-derived carbon and heterojunction, which increases the number of active sites, optimizes electronic structure, and improves electron transfer. Benefiting from the self-supported lignin-derived carbon, NiO@MoNi4/C demonstrates corrosion resistance and superhydrophilicity, which avoids Ostwald ripening and accelerates gas-liquid transfer, thus, maintaining for 100 h at ±1000/±1500 mA cm-2 during the UOR and HER test. This work provides a good catalyst for urea electrolysis and presents a promising way for preparing lignin-derived carbon-based catalysts while expanding the application of lignin-based biomass carbon materials.
Collapse
Affiliation(s)
- Yunpeng Wang
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Guangfu Qian
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Hui Yu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Zehan Xie
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Liancen Li
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Minsheng Lu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Changzhou Chen
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning, 530004, China
| | - Jinli Chen
- State Key Laboratory of Materials Processing & Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Street, Pedion Areos, 38834, Greece
| |
Collapse
|
2
|
Chen C, Olu PY, Fan R, Shen M. Review of Ni-Based Materials for Industrial Alkaline Hydrogen Production. CHEMSUSCHEM 2024:e202401415. [PMID: 39305106 DOI: 10.1002/cssc.202401415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/01/2024] [Indexed: 11/08/2024]
Abstract
Hydrogen has been recognized as a green energy carrier, which can relieve energy shortage and environmental pollution. Currently, alkaline water electrolysis (AWE) driven by renewable energy to produce large-scale green hydrogen is a mainstream technology. However, tardy cathodic hydrogen evolution reaction (HER) and stability issue of catalysts make it challenging to meet the industrial requirements. Ni-based materials have attracted wide attention, thanks to their low cost and rich tuning possibilities, and many efforts have focused on their activity and stability. However, due to the significant discrepancy between laboratory and industrial conditions, these catalysts have not been widely deployed in industrial AWE. In this review, we first introduce the differences between laboratory and industrial stage, especially concerning equipment, protocols and evaluation metrics. To shorten these gaps, some strategies are proposed to improve the activity and stability of the Ni-based catalysts. Besides, some key issues related to the catalysts in industrial AWE device are also emphasized, including reverse-current and foreign ions in the electrolyte. Finally, the challenges and outlooks on the industrial alkaline AWE are discussed.
Collapse
Affiliation(s)
- Cong Chen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou, 215006, China
| | - Pierre-Yves Olu
- John Cockerill Hydrogen S.A, 1 Rue Jean Potier, 4100, Seraing, Belgium
| | - Ronglei Fan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou, 215006, China
| | - Mingrong Shen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 1 Shizi Street, Suzhou, 215006, China
| |
Collapse
|
3
|
Yang Y, Li J, Qu W, Wang W, Ma C, Wei Z, Liu J, He X. Graphene/MoS 2-assisted alum sludge electrode induces selective oxidation for organophosphorus pesticides degradation: Co-oxidation and detoxification mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135002. [PMID: 38925050 DOI: 10.1016/j.jhazmat.2024.135002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Designing an electrode that can generate abundant free radicals and 1O2, which can effectively degrade and detoxify organophosphorus pesticides (OPPs) through a co-oxidation pathway, is important. In this study, we prepared a electrode GO/MoS2@AS by supporting MoS2 on alum sludge (AS) under graphene oxide (GO) nanoconfinement. The results show that the dominant role of 1O2 at the cathode and •OHads at the anode for degradation, in addition to the involvement of 1O2 in the cathodic degradation mechanism, can be attributed to the abundant precursor •O2- and H2O2. Furthermore, calculations using density functional theory and toxicity prediction of products show that the energy (∆E) requirements of •OHfree to break the C-O bond of the pyridine ring and phosphate group are higher than that required for 1O2, and this non-radical oxidation plays a key role in detoxification. In contrast, accelerating ring opening and oxidation processes are attributed to radical oxidation. Above all, the cathodic detoxification is more effective than anodic detoxification. Three prevalent OPPs, chlorpyrifos, glyphosate, and trichlorfon, were degraded in the GO/MoS2@AS system by over 90 %, with mineralization rates of 76.66 %, 85.46 %, and 82.18 %, respectively. This study provides insights into the co-oxidation degradation and detoxification mechanism mediated by 1O2 and •OHfree.
Collapse
Affiliation(s)
- Yulin Yang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China
| | - Junfeng Li
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China.
| | - Wenying Qu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China
| | - Wenhuai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China
| | - Chengxiao Ma
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China
| | - Zihan Wei
- College of Environment,Hohai University, Nanjing 210024, Jiangsu, PR China
| | - Jianchao Liu
- College of Environment,Hohai University, Nanjing 210024, Jiangsu, PR China
| | - Xinlin He
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China.
| |
Collapse
|
4
|
Zang B, Liu X, Gu C, Chen J, Wang L, Zheng W. Design Strategies of Hydrogen Evolution Reaction Nano Electrocatalysts for High Current Density Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1172. [PMID: 39057849 PMCID: PMC11280403 DOI: 10.3390/nano14141172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Hydrogen is now recognized as the primary alternative to fossil fuels due to its renewable, safe, high-energy density and environmentally friendly properties. Efficient hydrogen production through water splitting has laid the foundation for sustainable energy technologies. However, when hydrogen production is scaled up to industrial levels, operating at high current densities introduces unique challenges. It is necessary to design advanced electrocatalysts for hydrogen evolution reactions (HERs) under high current densities. This review will briefly introduce the challenges posed by high current densities on electrocatalysts, including catalytic activity, mass diffusion, and catalyst stability. In an attempt to address these issues, various electrocatalyst design strategies are summarized in detail. In the end, our insights into future challenges for efficient large-scale industrial hydrogen production from water splitting are presented. This review is expected to guide the rational design of efficient high-current density water electrolysis electrocatalysts and promote the research progress of sustainable energy.
Collapse
Affiliation(s)
- Bao Zang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Xianya Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Chen Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (B.Z.); (X.L.); (C.G.); (J.C.)
| | - Weihao Zheng
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
5
|
Malhotra D, Nguyen TH, Tran DT, Dinh VA, Kim NH, Lee JH. Triphasic Ni 2P-Ni 12P 5-Ru with Amorphous Interface Engineering Promoted by Co Nano-Surface for Efficient Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309122. [PMID: 38377285 DOI: 10.1002/smll.202309122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/13/2024] [Indexed: 02/22/2024]
Abstract
This research designs a triphasic Ni2P-Ni12P5-Ru heterostructure with amorphous interface engineering strongly coupled by a cobalt nano-surface (Co@NimPn-Ru) to form a hierarchical 3D interconnected architecture. The Co@NimPn-Ru material promotes unique reactivities toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media. The material delivers an overpotential of 30 mV for HER at 10 mA cm-2 and 320 mV for OER at 50 mA cm-2 in freshwater. The electrolyzer cell derived from Co@NimPn-Ru(+,-) requires a small cell voltage of only 1.43 V in alkaline freshwater or 1.44 V in natural seawater to produce 10 mA cm-2 at a working temperature of 80 °C, along with high performance retention after 76 h. The solar energy-powered electrolyzer system also shows a prospective solar-to-hydrogen conversion efficiency and sufficient durability, confirming its good potential for economic and sustainable hydrogen production. The results are ascribed to the synergistic effects by an exclusive combination of multi-phasic crystalline Ni2P, Ni12P5, and Ru clusters in presence of amorphous phosphate interface attached onto cobalt nano-surface, thereby producing rich exposed active sites with optimized free energy and multi open channels for rapid charge transfer and ion diffusion to promote the reaction kinetics.
Collapse
Affiliation(s)
- Deepanshu Malhotra
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Thanh Hai Nguyen
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Van An Dinh
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- AHES Co., 445 Techno Valley-ro, Bongdong-eup, Jeonbuk, Wanju-gun, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- AHES Co., 445 Techno Valley-ro, Bongdong-eup, Jeonbuk, Wanju-gun, Republic of Korea
- Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
6
|
Arias KS, Hurtado B, Climent MJ, Iborra S, Corma A. Noble-Metal-Free Carbon Encapsulated CoNi Alloy Catalyst for the Hydrogenation of 5-(Hydroxymethyl) Furfural to Tetrahydrofurandiol in Aqueous Media. Chempluschem 2024; 89:e202300643. [PMID: 38230921 DOI: 10.1002/cplu.202300643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/18/2024]
Abstract
The selective hydrogenation of 5-(hydroxymethyl)furfural (HMF) into 2,5-bis-(hydroxymethyl)tetrahydrofuran (BHMTHF) in flow reactor using water as a green solvent, has been achieved on a non-noble metal catalyst based on monodispersed CoNi alloy nanoparticles covered by a thin carbon layer. The alloyed catalyst containing CoNi (molar ratio 1 : 1) was prepared in a one-step synthesis following a hydrothermal method. Total conversion of HMF with 91 % selectivity to BHMTHF was achieved. The reaction network has been stablished, in which the carbonyl group of HMF is first reduced to alcohol giving the 2,5-bis-(hydroxymethyl)furan (BHMF) with an apparent activation energy of 25 KJ/mol, and then the double bonds of the furan ring are hydrogenated (apparent Ea=31 KJ/mol). Formation of byproducts, mainly proceed from furan ring opening and ring rearrangement processes of BHMF, promoted by water. BHMTHF resulted a compound highly stable under reaction conditions. The fixed bed flow reactor was maintained operational for 65 h without observing any loss of catalytic activity and selectivity.
Collapse
Affiliation(s)
- Karen S Arias
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| | - Beatriz Hurtado
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| | - Maria J Climent
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València- Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain
| |
Collapse
|
7
|
Ye J, Yuan B, Peng W, Liang J, Han Q, Hu R. Highly Stable Mo-NiO@NiFe-Layered Double Hydroxide Heterojunction Anode Catalyst for Alkaline Electrolyzers with Porous Membrane. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652766 DOI: 10.1021/acsami.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Heterostructure catalysts are considered as promising candidates for promoting the oxygen evolution reaction (OER) process due to their strong electron coupling. However, the inevitable dissolution and detachment of the heterostructure catalysts are caused by the severe reconstruction, dramatically limiting their industrial application. Herein, the NiFe-layered double hydroxide (LDH) nanosheets attached on Mo-NiO microrods (Mo-NiO@NiFe LDH) by the preoxidation strategy of the core NiMoN layer are synthesized for ensuring the high catalytic performance and stability. Owing to the enhanced electron coupling and preoxidation process, the obtained Mo-NiO@NiFe LDH exhibits a superlow overpotential of 253 mV to achieve a practically relevant current density of 1000 mA cm-2 for OER with exceptional stability over 1200 h. Notably, the overall water splitting system based on Mo-NiO@NiFe LDH reveals remarkable stability, maintaining the catalytic activity at a current density of 1000 mA cm-2 for 140 h under industrial harsh conditions. Furthermore, the Mo-NiO@NiFe LDH demonstrates outstanding activity and long-term durability in a practical alkaline electrolyzer assembly with a porous membrane, even surpassing the performance of IrO2. This work provides a new sight for designing and synthesizing highly stable heterojunction electrocatalysts, further promoting and realizing the industrial electrocatalytic OER.
Collapse
Affiliation(s)
- Jianwei Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
| | - Bin Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
- Guangdong Province Waste Lithium Battery Clean Regeneration Engineering Technology Research Center, Zhaoqing 526116, P. R. China
| | - Weiliang Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
| | - Jinxia Liang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
| | - Qiying Han
- Guangdong Province Waste Lithium Battery Clean Regeneration Engineering Technology Research Center, Zhaoqing 526116, P. R. China
- Guangdong Jinsheng New Energy Co Ltd, Zhaoqing 526116, P. R. China
| | - Renzong Hu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
- Guangdong Province Waste Lithium Battery Clean Regeneration Engineering Technology Research Center, Zhaoqing 526116, P. R. China
| |
Collapse
|
8
|
Wu J, Wang K, Yu T, Huang S, Zhai Z, Wen H, Yin S. Amorphous-crystalline heterostructure: Efficient catalyst for biomass oxidation coupled with hydrogen evolution. J Colloid Interface Sci 2024; 655:676-684. [PMID: 37976740 DOI: 10.1016/j.jcis.2023.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The development of catalysts with high activity, selectivity, and stability is critical for biomass upgrading coupled with hydrogen evolution. In this study, we present a simple method for fabricating crystalline-amorphous phase heterostructures using the etching effect of the acidic medium generated during cobalt salt hydrolysis, resulting in the formation of NiCo(OH)x-modified Ni/NiMoO4 nanosheets electrode (NiCo(OH)x/Ni/NiMoO4/NF). The nanosheets array formed during the synthesis process enlarges the surface area of the prepared catalyst, which facilitates the exposure of electrochemically active sites and improves mass transfer. Unexpectedly, the strong coupling interactions between the amorphous-crystalline heterointerface optimize the adsorption of reaction molecules and the corresponding charge transfer process, consequently boosting the catalytic activity for the 5-hydroxymethylfurfural oxidation reaction (HMFOR) and hydrogen evolution reaction (HER). Specifically, NiCo(OH)x/Ni/NiMoO4/NF catalyst requires only 1.34 V to obtain a current density of 10 mA cm-2 for HMFOR-coupled H2 evolution, and operates stably for 13 consecutive cycles with good product selectivity. This work thus provides insights into the design of efficient and robust catalysts for HMFOR-assisted H2 evolution.
Collapse
Affiliation(s)
- Jia Wu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Ke Wang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Tianqi Yu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Shuaiqin Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Zhixiang Zhai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Huan Wen
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China.
| | - Shibin Yin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China.
| |
Collapse
|
9
|
Xia P, Pan J, Zhang Y, Mao M, Ma L, Chen J, Zhang L, Wang H, Fan H, Gao X, Deng L. Highly sensitive detection of glucose at a novel non-enzyme electrochemical sensing based on Mo-doped CoO Nanosheets. Chem Asian J 2024; 19:e202300951. [PMID: 38105351 DOI: 10.1002/asia.202300951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
In this work, a Mo doped CoO nanosheet grown on nickel foam (labeled as: Mo-CoO) with defect-rich and improved electron transfer capacity was designed to be used as a novel non-enzyme electrode material. Physical characterizations demonstrated the Mo elements were doped inside of the samples and they were mutually stabilized with each other, resulting in a high structural stability electrochemical catalytical activity even if the content of Mo was low. For non-enzymatic glucose electrochemical sensing, the prepared Mo-CoO-1 showed a remarkable sensitivity of 89.3 mA cm-2 mM-1 , and a low detection limit of 0.43 μM. Density functional theory (DFT) studies revealed that the doped Mo atom exhibited a higher d-band center compared to the Co atom. A stronger p-d orbital hybridization between the glucose and the Mo atoms indicated the enhancement of glucose adsorption and activation. Importantly, Mo-CoO-1 provided a good selectivity and long-term stability, which can be expected to be used in future practical applications.
Collapse
Affiliation(s)
- Pengkun Xia
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
| | - Jing Pan
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Yue Zhang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Mingzhen Mao
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Lei Ma
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Jianlin Chen
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Long Zhang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Hui Wang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Hui Fan
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
| | - Xiaohui Gao
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Lianwen Deng
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
10
|
Zou Y, Zhang WD, Chen M, Liu J, Gu ZG, Yan X. Ligand-engineered Ru-doped cobalt oxides derived from metal-organic frameworks for large-current-density water splitting. J Colloid Interface Sci 2024; 653:11-19. [PMID: 37708727 DOI: 10.1016/j.jcis.2023.09.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The influence of the preorganized structure and chemical composition of metal-organic frameworks (MOFs) on the morphology, surface properties, and catalytic activity of the MOFs-derived metal oxides is yet to be revealed. In this work, two types of Co-MOFs with different coordination configurations are synthesized for the preparation of the structure-engineered ruthenium (Ru)-doped cobalt oxides. The effect of the preorganized coordination structure of the MOFs on the morphology and surface properties is investigated. Interestingly, the oxalate-based MOFs derived Ru-doped cobalt oxide (OX-Co3O4-Ru) exhibits much better surface wettability and more oxygen vacancies than the zeolitic imidazolate framework-67 derived Ru-doped cobalt oxide. As expected, the OX-Co3O4-Ru owns excellent catalytic properties towards both hydrogen evolution reaction and oxygen evolution reaction with an overpotential of 49 and 286 mV, respectively at a current density of 100 mA cm-2 in 1.0 M KOH. Importantly, the bifunctional OX-Co3O4-Ru catalyst offers an extremely high current density of 500 mA cm-2 at a cell voltage of 1.71 V for overall water splitting and as well demonstrates robust working stability.
Collapse
Affiliation(s)
- Yizhong Zou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ming Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Zheng Y, Mou Y, Wang Y, Wan J, Yao G, Feng C, Sun Y, Dai L, Zhang H, Wang Y. Aluminum-incorporation activates vanadium carbide with electron-rich carbon sites for efficient pH-universal hydrogen evolution reaction. J Colloid Interface Sci 2023; 656:367-375. [PMID: 37995406 DOI: 10.1016/j.jcis.2023.11.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Vanadium carbide (VC) is the greatest potential hydrogen evolution reaction (HER) catalyst because of its platinum-like property and abundant earth reserves. However, it exhibits insufficient catalytic performance due to the unfavorable interaction of reaction intermediates with catalysts. In this work, using NH4VO3 as the main raw material, the flow ratio of CH4 to Ar was accurately controlled, and a non-transition metal Al-doped into VC (100) nano-flowers with carbon hybrids on nickel foams (Al-VC@C/NF) was prepared for the first time as a high-efficiency HER catalyst by chemical vapor carbonization. The overpotential of Al-VC@C/NF catalysts in 0.5 M H2SO4 and 1 M KOH at a current density of 10 mA cm-2 are only 58 mV and 97 mV, respectively, which are the best HER performance among non-noble metal vanadium carbide based catalysts. Simultaneously, Al-VC@C/NF exhibits small Tafel slope (45 mV dec-1 and 73 mV dec-1) and excellent stability in acidic and alkaline media. Theoretical calculations demonstrate that doped Al atoms can induce electron redistribution on the vanadium carbide surface to form electron-rich carbon sites, which significantly reduces the energy barrier during the HER process. This work provides a new tactic to modulate vanadium-based carbons as efficient HER catalysts through non-transition metal doping.
Collapse
Affiliation(s)
- Yanan Zheng
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Yiwei Mou
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Yanwei Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Jin Wan
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Guangxu Yao
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Chuanzhen Feng
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Yue Sun
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Longhua Dai
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China; College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, PR China.
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China; College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, PR China.
| |
Collapse
|
12
|
Dong J, Wang S, Xi P, Zhang X, Zhu X, Wang H, Huang T. Reduced Graphene Oxide-Supported Iron-Cobalt Alloys as High-Performance Catalysts for Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2735. [PMID: 37836376 PMCID: PMC10574026 DOI: 10.3390/nano13192735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exploring non-precious metal-based catalysts for oxygen reduction reactions (ORR) as a substitute for precious metal catalysts has attracted great attention in recent times. In this paper, we report a general methodology for preparing nitrogen-doped reduced graphene oxide (N-rGO)-supported, FeCo alloy (FeCo@N-rGO)-based catalysts for ORR. The structure of the FeCo@N-rGO based catalysts is investigated using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and transition electron microscopy, etc. Results show that the FeCo alloy is supported by the rGO and carbon that derives from the organic ligand of Fe and Co ions. The eletrocatalytic performance is examined by cyclic voltammetry, linear scanning voltammetry, Tafel, electrochemical spectroscopy impedance, rotate disc electrode, and rotate ring disc electrode, etc. Results show that FeCo@N-rGO based catalysts exhibit an onset potential of 0.98 V (vs. RHE) and a half-wave potential of 0.93 V (vs. RHE). The excellent catalytic performance of FeCo@N-rGO is ascribed to its large surface area and the synergistic effect between FeCo alloy and N-rGO, which provides a large number of active sites and a sufficient surface area.
Collapse
Affiliation(s)
- Jun Dong
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Shanshan Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (S.W.); (X.Z.); (H.W.)
| | - Peng Xi
- Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
| | - Xinggao Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China;
| | - Xinyu Zhu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (S.W.); (X.Z.); (H.W.)
| | - Huining Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (S.W.); (X.Z.); (H.W.)
| | - Taizhong Huang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (S.W.); (X.Z.); (H.W.)
| |
Collapse
|
13
|
Liang S, Ma Y, Luo H, Wu K, Chen J, Yang J. A Membrane-Free Decoupled Water Electrolyzer Operating at Simulated Fluctuating Renewables with Tri-Functional NiCo-P Electrode. Chemistry 2023; 29:e202302160. [PMID: 37434274 DOI: 10.1002/chem.202302160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Water electrolysis has been considered a promising technology for the conversion of renewables to hydrogen. However, preventing mixing of products (H2 and O2 ) and exploring cost-efficient electrolysis components remains challenging for conventional water electrolyzers. Herein, we designed a membrane-free decoupled water electrolysis system by using graphite felt supported nickel-cobalt phosphate (GF@Nix Coy -P) material as a tri-functional (redox mediator, hydrogen evolution reaction (HER), oxygen evolution reaction (OER)) electrode. The versatile GF@Ni1 Co1 -P electrode obtained by a one-step electrodeposition not only exhibits high specific capacity (176 mAh g-1 at 0.5 A g-1 ) and long cycle life (80 % capacity retention after 3000 cycles) as a redox mediator, but also has relatively outstanding catalytic activities for HER and OER. The excellent properties of the GF@Nix Coy -P electrode endow this decoupled system with more flexibility for H2 production by fluctuating renewable energies. This work provides guidance for multifunctional applications of transition metal compounds between energy storage and electrocatalysis.
Collapse
Affiliation(s)
- Shuaika Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Engineering Research Center of Advanced Glass Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, China
| | - Hongxia Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Kangxi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Engineering Research Center of Advanced Glass Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, China
| |
Collapse
|
14
|
Hu B, Huang K, Tang B, Lei Z, Wang Z, Guo H, Lian C, Liu Z, Wang L. Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:217. [PMID: 37768413 PMCID: PMC10539274 DOI: 10.1007/s40820-023-01182-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023]
Abstract
The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide (2H-MoS2) presents a significant hurdle in realizing its full potential applications. Here, we utilize theoretical calculations to predict possible functionalized graphene quantum dots (GQDs), which can enhance HER activity of bulk MoS2. Subsequently, we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS2 nanosheets mediated with GQDs (ALQD) by modulating the concentration of electron withdrawing/donating functional groups. Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role. Notably, the higher the concentration and strength of electron-withdrawing functional groups on GQDs, the thinner and more active the resulting ALQD are. Remarkably, the synthesized near atom-layer ALQD-SO3 demonstrate significantly improved HER performance. Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS2. Furthermore, it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials.
Collapse
Affiliation(s)
- Bingjie Hu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China
| | - Kai Huang
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Bijun Tang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China.
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
15
|
Zhang Q, Wang Q, Cui J, Zhao S, Zhang G, Gao A, Yan Y. Structural design and preparation of Ti 3C 2T x MXene/polymer composites for absorption-dominated electromagnetic interference shielding. NANOSCALE ADVANCES 2023; 5:3549-3574. [PMID: 37441247 PMCID: PMC10334419 DOI: 10.1039/d3na00130j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Electromagnetic interference (EMI) is a pervasive and harmful phenomenon in modern society that affects the functionality and reliability of electronic devices and poses a threat to human health. To address this issue, EMI-shielding materials with high absorption performance have attracted considerable attention. Among various candidates, two-dimensional MXenes are promising materials for EMI shielding due to their high conductivity and tunable surface chemistry. Moreover, by incorporating magnetic and conductive fillers into MXene/polymer composites, the EMI shielding performance can be further improved through structural design and impedance matching. Herein, we provide a comprehensive review of the recent progress in MXene/polymer composites for absorption-dominated EMI shielding applications. We summarize the fabrication methods and EMI shielding mechanisms of different composite structures, such as homogeneous, multilayer, segregated, porous, and hybrid structures. We also analyze the advantages and disadvantages of these structures in terms of EMI shielding effectiveness and the absorption ratio. Furthermore, we discuss the roles of magnetic and conductive fillers in modulating the electrical properties and EMI shielding performance of the composites. We also introduce the methods for evaluating the EMI shielding performance of the materials and emphasize the electromagnetic parameters and challenges. Finally, we provide insights and suggestions for the future development of MXene/polymer composites for EMI shielding applications.
Collapse
Affiliation(s)
- Qimei Zhang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
- School of Materials and Environmental Engineering, Chizhou University Chizhou 247000 China
| | - Qi Wang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Jian Cui
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Shuai Zhao
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Guangfa Zhang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Ailin Gao
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yehai Yan
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
16
|
Wang HY, Wang L, Ren JT, Tian WW, Sun ML, Yuan ZY. Heteroatom-Induced Accelerated Kinetics on Nickel Selenide for Highly Efficient Hydrazine-Assisted Water Splitting and Zn-Hydrazine Battery. NANO-MICRO LETTERS 2023; 15:155. [PMID: 37337062 PMCID: PMC10279626 DOI: 10.1007/s40820-023-01128-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/14/2023] [Indexed: 06/21/2023]
Abstract
Hydrazine-assisted water electrolysis is a promising energy conversion technology for highly efficient hydrogen production. Rational design of bifunctional electrocatalysts, which can simultaneously accelerate hydrogen evolution reaction (HER)/hydrazine oxidation reaction (HzOR) kinetics, is the key step. Herein, we demonstrate the development of ultrathin P/Fe co-doped NiSe2 nanosheets supported on modified Ni foam (P/Fe-NiSe2) synthesized through a facile electrodeposition process and subsequent heat treatment. Based on electrochemical measurements, characterizations, and density functional theory calculations, a favorable "2 + 2" reaction mechanism with a two-step HER process and a two-step HzOR step was fully proved and the specific effect of P doping on HzOR kinetics was investigated. P/Fe-NiSe2 thus yields an impressive electrocatalytic performance, delivering a high current density of 100 mA cm-2 with potentials of - 168 and 200 mV for HER and HzOR, respectively. Additionally, P/Fe-NiSe2 can work efficiently for hydrazine-assisted water electrolysis and Zn-Hydrazine (Zn-Hz) battery, making it promising for practical application.
Collapse
Affiliation(s)
- Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, People's Republic of China
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, People's Republic of China
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, People's Republic of China
| | - Wen-Wen Tian
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, People's Republic of China
| | - Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, People's Republic of China
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, People's Republic of China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
17
|
Ning M, Wang Y, Wu L, Yang L, Chen Z, Song S, Yao Y, Bao J, Chen S, Ren Z. Hierarchical Interconnected NiMoN with Large Specific Surface Area and High Mechanical Strength for Efficient and Stable Alkaline Water/Seawater Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:157. [PMID: 37336833 PMCID: PMC10279610 DOI: 10.1007/s40820-023-01129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/13/2023] [Indexed: 06/21/2023]
Abstract
NiMo-based nanostructures are among the most active hydrogen evolution reaction (HER) catalysts under an alkaline environment due to their strong water dissociation ability. However, these nanostructures are vulnerable to the destructive effects of H2 production, especially at industry-standard current densities. Therefore, developing a strategy to improve their mechanical strength while maintaining or even further increasing the activity of these nanocatalysts is of great interest to both the research and industrial communities. Here, a hierarchical interconnected NiMoN (HW-NiMoN-2h) with a nanorod-nanowire morphology was synthesized based on a rational combination of hydrothermal and water bath processes. HW-NiMoN-2h is found to exhibit excellent HER activity due to the accomodation of abundant active sites on its hierarchical morphology, in which nanowires connect free-standing nanorods, concurrently strengthening its structural stability to withstand H2 production at 1 A cm-2. Seawater is an attractive feedstock for water electrolysis since H2 generation and water desalination can be addressed simultaneously in a single process. The HER performance of HW-NiMoN-2h in alkaline seawater suggests that the presence of Na+ ions interferes with the reation kinetics, thus lowering its activity slightly. However, benefiting from its hierarchical and interconnected characteristics, HW-NiMoN-2h is found to deliver outstanding HER activity of 1 A cm-2 at 130 mV overpotential and to exhibit excellent stability at 1 A cm-2 over 70 h in 1 M KOH seawater.
Collapse
Affiliation(s)
- Minghui Ning
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Yu Wang
- Cullen College of Engineering and TcSUH, University of Houston, Houston, TX, 77204, USA
| | - Libo Wu
- Cullen College of Engineering and TcSUH, University of Houston, Houston, TX, 77204, USA
| | - Lun Yang
- School of Materials Science and Engineering, Hubei Normal University, Huangshi, 435002, Hubei, People's Republic of China
| | - Zhaoyang Chen
- Department of Electrical and Computer Engineering and TcSUH, University of Houston, Houston, TX, 77204, USA
| | - Shaowei Song
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA
| | - Yan Yao
- Department of Electrical and Computer Engineering and TcSUH, University of Houston, Houston, TX, 77204, USA
| | - Jiming Bao
- Department of Electrical and Computer Engineering and TcSUH, University of Houston, Houston, TX, 77204, USA
| | - Shuo Chen
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA.
| | - Zhifeng Ren
- Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
18
|
Ding L, Xie Z, Yu S, Wang W, Terekhov AY, Canfield BK, Capuano CB, Keane A, Ayers K, Cullen DA, Zhang FY. Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:144. [PMID: 37269447 PMCID: PMC10239421 DOI: 10.1007/s40820-023-01117-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/05/2023]
Abstract
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm-2 demonstrates superior cell performance to the commercial CCM (3.0 mgPt cm-2), achieving 99.5% catalyst savings and more than 237-fold higher catalyst utilization. The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction. Overall, this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Alexander Y Terekhov
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Brian K Canfield
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | - David A Cullen
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA.
| |
Collapse
|
19
|
Senthil Raja D, Cheng CC, Ting YC, Lu SY. NiMo-MOF-Derived Carbon-Armored Ni 4Mo Alloy of an Interwoven Nanosheet Structure as an Outstanding pH-Universal Catalyst for Hydrogen Evolution Reaction at High Current Densities. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20130-20140. [PMID: 36946987 DOI: 10.1021/acsami.3c01061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Development of highly efficient and stable non-precious metal-based pH-universal catalysts for hydrogen evolution reaction (HER) at high current densities remains challenging for water electrolysis-based green hydrogen production. Herein, a simple solvothermal process was developed to synthesize a NiMo metal-organic framework (MOF), from which a carbon-armored Ni4Mo alloy of an interwoven nanosheet structure was derived with a two-stage thermal treatment, to serve as a high-performance pH-universal HER catalyst. It requires low overpotentials of 22, 48, and 98 mV to achieve a current density of -10 mA cm-2 and 192, 267, and 360 mV to deliver an ultrahigh current density of -500 mA cm-2 in alkaline, acidic, and neutral media, respectively, and exhibits remarkable operational stability at an ultrahigh initial current density of -500 mA cm-2 for over 50 h, making it promising for applications in large-scale green hydrogen production. The success can be attributed to the unique catalyst design of a carbon-armored, composition-optimized NiMo alloy of an advantageous nanostructure of interwoven nanosheets for enhanced utilization of active sites and mass transfer of electrolytes and gaseous products, made possible with a MOF-derivation fabrication approach.
Collapse
Affiliation(s)
- Duraisamy Senthil Raja
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Chieh Cheng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chieh Ting
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shih-Yuan Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
20
|
Lee G, Jun SE, Kim Y, Park IH, Jang HW, Park SH, Kwon KC. Multicomponent Metal Oxide- and Metal Hydroxide-Based Electrocatalysts for Alkaline Water Splitting. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3280. [PMID: 37110115 PMCID: PMC10145119 DOI: 10.3390/ma16083280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Developing cost-effective, highly catalytic active, and stable electrocatalysts in alkaline electrolytes is important for the development of highly efficient anion-exchange membrane water electrolysis (AEMWE). To this end, metal oxides/hydroxides have attracted wide research interest for efficient electrocatalysts in water splitting owing to their abundance and tunable electronic properties. It is very challenging to achieve an efficient overall catalytic performance based on single metal oxide/hydroxide-based electrocatalysts due to low charge mobilities and limited stability. This review is mainly focused on the advanced strategies to synthesize the multicomponent metal oxide/hydroxide-based materials that include nanostructure engineering, heterointerface engineering, single-atom catalysts, and chemical modification. The state of the art of metal oxide/hydroxide-based heterostructures with various architectures is extensively discussed. Finally, this review provides the fundamental challenges and perspectives regarding the potential future direction of multicomponent metal oxide/hydroxide-based electrocatalysts.
Collapse
Affiliation(s)
- Goeun Lee
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sang Eon Jun
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Yujin Kim
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hwa Park
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Ki Chang Kwon
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| |
Collapse
|
21
|
Carbon-encapsulated Co 2P/P-modified NiMoO 4 hierarchical heterojunction as superior pH-universal electrocatalyst for hydrogen production. J Colloid Interface Sci 2023; 634:693-702. [PMID: 36563426 DOI: 10.1016/j.jcis.2022.12.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The development of hydrogen evolution reaction (HER) technology that operates stably in a wide potential of hydrogen (pH) range of electrolytes is particular important for large-scale hydrogen production. However, the rational design of low-cost and pH-universal electrocatalyst with high catalytic performance remains a huge challenge. Herein, Co2P nanoparticles strongly coupled with P-modified NiMoO4 nanorods are directly grown on nickel foam (NF) substrates through carbon layer encapsulation (denoted as C-Co2P@P-NiMoO4/NF) by hydrothermal, deposition, and phosphating processes. This novel kind of hierarchical heterojunction has abundant heterogeneous interfaces, strong electronic interactions, and optimized reaction kinetics, representing the highly-active pH-universal electrodes for HER. Remarkably, the C-Co2P@P-NiMoO4/NF catalyst shows excellent HER properties in acidic and basic electrolytes, where the overpotentials of 105 mV and 107 mV are applied to drive the current density of 100 mA cm-2. In addition, a low overpotential of 177 mV at 100 mA cm-2 along with high stability is realized in 1 M phosphate buffer solution (PBS), which is close to the state-of-the-art non-precious metal electrocatalysts. Our work not only provides a class of robust pH-universal electrocatalyst but also offers a novel way for the rational design of other heterogeneous materials bythe interface regulation strategy.
Collapse
|
22
|
Zhang Y, Xia P, Fan H, Gao X, Ouyang F, Chen W. In situ growth of the CoO nanoneedle array on a 3D nickel foam toward a high-performance glucose sensor. Dalton Trans 2023; 52:2603-2610. [PMID: 36734601 DOI: 10.1039/d2dt03877c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A glucose sensor with high sensitivity and low detection limit is vital for human beings' health. Herein, a CoO nanoneedle array with an unique electronic structure was successfully constructed by a hydrothermal and subsequent high-temperature calcination process. The optimized CoO-400 nanoneedles exhibit a larger electrochemical active surface area, beneficial electronic structure, favorable lattice distortion, and abundant active sites, which effectively promote electrochemical properties toward glucose sensing. The glucose sensor constructed by CoO-400 nanoneedles shows a high sensitivity of 84.23 mA cm-2 mM-1 and low detection limit of 4.4 × 10-7 M, superior to the results from most previous reports. Moreover, outstanding anti-interference ability, superior long-term stability, good repeatability, and satisfactory reproducibility in glucose detection for CoO-400 nanoneedles are also demonstrated.
Collapse
Affiliation(s)
- Yue Zhang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, People's Republic of China.
| | - Pengkun Xia
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Hui Fan
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Xiaohui Gao
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, People's Republic of China.
| | - Fangping Ouyang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, People's Republic of China.
| | - Wei Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal university, Guilin 541004, People's Republic of China
| |
Collapse
|
23
|
Zhao H, Zhang Y, Xie C, Wang J, Zhou T, Zhou C, Li J, Bai J, Zhu X, Zhou B. Facile, Controllable, and Ultrathin NiFe-LDH In Situ Grown on a Ni Foam by Ultrasonic Self-Etching for Highly Efficient Urine Conversion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2939-2948. [PMID: 36763939 DOI: 10.1021/acs.est.2c07282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As the primary source of nitrogen pollutants in domestic sewage, urine is also an alternative for H2 production via electrochemical processes. However, it suffers from sluggish kinetics and noble-metal catalyst requirement. Here, we report a non-precious ultrathin NiFe-layered double hydroxide catalyst for the remarkable conversion of urea into N2 and H2, which is in situ grown on a Ni foam via ultrasonic self-etching in Fe3+/ethylene glycol (EG). EG regulates the etching rate of Fe3+, resulting in an ultrathin nanosheet structure with the aid of ultrasonication. This structure dramatically promotes the dehydrogenation process via decreasing the nanolayer thickness from 120 to 3.4 nm and leads to a 4.8-fold increase in the generation of active sites. It exhibits record urea oxidation kinetics (390.8 mA·cm-2 at 1.5 V vs RHE) with excellent stability (120 h), which is 11.8 times better than that of commercial Pt/C catalyst (33.1 mA·cm-2). Tests with real urine at 20 mA cm-2 achieve 74% total nitrogen removal and 2853 μmol·h-1 of H2 production. This study provides an attractive landscape for producing H2 by consuming urine biowastes.
Collapse
Affiliation(s)
- Hongfeng Zhao
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yan Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chaoyue Xie
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiachen Wang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tingsheng Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Changhui Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinhua Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jing Bai
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
24
|
Wang C, Zhang Q, Yan B, You B, Zheng J, Feng L, Zhang C, Jiang S, Chen W, He S. Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. NANO-MICRO LETTERS 2023; 15:52. [PMID: 36795218 PMCID: PMC9935811 DOI: 10.1007/s40820-023-01024-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 05/19/2023]
Abstract
The crystal facets featured with facet-dependent physical and chemical properties can exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) attributed to their anisotropy. The highly active exposed crystal facets enable increased mass activity of active sites, lower reaction energy barriers, and enhanced catalytic reaction rates for HER and OER. The formation mechanism and control strategy of the crystal facet, significant contributions as well as challenges and perspectives of facet-engineered catalysts for HER and OER are provided. The electrocatalytic water splitting technology can generate high-purity hydrogen without emitting carbon dioxide, which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality. Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency. Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface. Owing to the anisotropy, crystal planes with different orientations usually feature facet-dependent physical and chemical properties, leading to differences in the adsorption energies of oxygen or hydrogen intermediates, and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, a brief introduction of the basic concepts, fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided. The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes. Subsequently, three strategies of selective capping agent, selective etching agent, and coordination modulation to tune crystal planes are comprehensively summarized. Then, we present an overview of significant contributions of facet-engineered catalysts toward HER, OER, and overall water splitting. In particular, we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity. Finally, the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
Collapse
Affiliation(s)
- Changshui Wang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qian Zhang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Bing Yan
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
| | - Jiaojiao Zheng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Li Feng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 2150009, People's Republic of China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
25
|
Li L, Cheng S, Deng L, Liu T, Dong W, Liu Y, Huang L, Yao H, Ji X. Effective Solution toward the Issues of Zn-Based Anodes for Advanced Alkaline Ni-Zn Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3953-3960. [PMID: 36635280 DOI: 10.1021/acsami.2c18460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Alkaline nickel-zinc (Ni-Zn) batteries, as traditional rechargeable aqueous batteries, possess an obvious advantage in terms of energy density, but their development has been hindered by the anode-concerned problems, Zn dendrites, self-corrosion, passivation, deformation, and hydrogen evolution reaction (HER). Herein, to solve these problems, a dual protective strategy is proposed toward the anode using ZnO as an initial active material, including a C coating on ZnO (ZnO@C) and a thin poly(vinyl alcohol) (PVA) layer coating on the electrode (ZnO@C-PVA). In a three-electrode configuration, the reversible capacity can reach 600 mAh g-1 for the ZnO@C-PVA. Using excessive commercial Ni(OH)2 as the cathode, the alkaline Ni-Zn cells exhibit good electrochemical performance: Discharge capacity can be as high as 640-650 mAh g-1 at 4 A g-1 with a Coulomb efficiency (CE) as high as 97-99% after activity, suggesting low self-corrosion and HER. Capacity retention is 97% after 1200 cycles, indicating rather good durability. The discharge capacity is even slightly increased with the increase of charge/discharge current density (≤8 A g-1), implying good rate performance. Additionally, the discharge voltage can reach 1.8 V (midpoint value) at various current densities, reflecting the fast reaction kinetics of the anode. Most importantly, no Zn dendrites and passivation are observed after long-term cycling. The strategy proposed here can solve the anode-concerned problems effectively, exhibiting a high application prospect.
Collapse
Affiliation(s)
- Luping Li
- School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Shuang Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Liyu Deng
- School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Ting Liu
- School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Wenju Dong
- School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Yuxiu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Longjun Huang
- School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Huan Yao
- School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Xu Ji
- College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou510225, China
| |
Collapse
|
26
|
Pan Z, Tang Z, Sun D, Zhan Y. Hierarchical NiCo2S4@NiMoO4 nanotube arrays on nickel foam as an advanced bifunctional electrocatalyst for efficient overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Chen Z, Yun S, Wu L, Zhang J, Shi X, Wei W, Liu Y, Zheng R, Han N, Ni BJ. Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy. NANO-MICRO LETTERS 2022; 15:4. [PMID: 36454315 PMCID: PMC9715911 DOI: 10.1007/s40820-022-00974-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
The sustainable production of green hydrogen via water electrolysis necessitates cost-effective electrocatalysts. By following the circular economy principle, the utilization of waste-derived catalysts significantly promotes the sustainable development of green hydrogen energy. Currently, diverse waste-derived catalysts have exhibited excellent catalytic performance toward hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water electrolysis (OWE). Herein, we systematically examine recent achievements in waste-derived electrocatalysts for water electrolysis. The general principles of water electrolysis and design principles of efficient electrocatalysts are discussed, followed by the illustration of current strategies for transforming wastes into electrocatalysts. Then, applications of waste-derived catalysts (i.e., carbon-based catalysts, transitional metal-based catalysts, and carbon-based heterostructure catalysts) in HER, OER, and OWE are reviewed successively. An emphasis is put on correlating the catalysts' structure-performance relationship. Also, challenges and research directions in this booming field are finally highlighted. This review would provide useful insights into the design, synthesis, and applications of waste-derived electrocatalysts, and thus accelerate the development of the circular economy-driven green hydrogen energy scheme.
Collapse
Affiliation(s)
- Zhijie Chen
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Lan Wu
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jiaqi Zhang
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Xingdong Shi
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Renji Zheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, 3001, Louvain, Belgium
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
28
|
Zhou C, Hu E, Liu S, Cao W, Zhu Y, Zhang H, Zhu T, Gao X, Lin Z. Boosting oxygen evolution reaction activity and durability of phosphate doped Ni(OH)2/FeOOH hierarchical microtubes by morphology engineering and reconstruction strategy. J Colloid Interface Sci 2022; 622:319-326. [DOI: 10.1016/j.jcis.2022.04.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 01/25/2023]
|
29
|
Liu Y, Zhang W, Zheng W. Quantum Dots Compete at the Acme of MXene Family for the Optimal Catalysis. NANO-MICRO LETTERS 2022; 14:158. [PMID: 35916985 PMCID: PMC9346050 DOI: 10.1007/s40820-022-00908-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/25/2022] [Indexed: 05/05/2023]
Abstract
It is well known that two-dimensional (2D) MXene-derived quantum dots (MQDs) inherit the excellent physicochemical properties of the parental MXenes, as a Chinese proverb says, "Indigo blue is extracted from the indigo plant, but is bluer than the plant it comes from." Therefore, 0D QDs harvest larger surface-to-volume ratio, outstanding optical properties, and vigorous quantum confinement effect. Currently, MQDs trigger enormous research enthusiasm as an emerging star of functional materials applied to physics, chemistry, biology, energy conversion, and storage. Since the surface properties of small-sized MQDs include the type of surface functional groups, the functionalized surface directly determines their performance. As the Nobel Laureate Wolfgang Pauli says, "God made the bulk, but the surface was invented by the devil," and it is just on the basis of the abundant surface functional groups, there is lots of space to be thereof excavated from MQDs. We are witnessing such excellence and even more promising to be expected. Nowadays, MQDs have been widely applied to catalysis, whereas the related reviews are rarely reported. Herein, we provide a state-of-the-art overview of MQDs in catalysis over the past five years, ranging from the origin and development of MQDs, synthetic routes of MQDs, and functionalized MQDs to advanced characterization techniques. To explore the diversity of catalytic application and perspectives of MQDs, our review will stimulate more efforts toward the synthesis of optimal MQDs and thereof designing high-performance MQDs-based catalysts.
Collapse
Affiliation(s)
- Yuhua Liu
- Key Laboratory of Automobile Materials MOE, and School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, People's Republic of China.
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, and School of Materials Science and Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
30
|
Hurtado B, Arias KS, Climent MJ, Concepción P, Corma A, Iborra S. Selective Conversion of HMF into 3-Hydroxymethylcyclopentylamine through a One-Pot Cascade Process in Aqueous Phase over Bimetallic NiCo Nanoparticles as Catalyst. CHEMSUSCHEM 2022; 15:e202200194. [PMID: 35362654 PMCID: PMC9401071 DOI: 10.1002/cssc.202200194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
5-hydroxymethylfurfural (HMF) has been successfully valorized into 3-hydroxymethylcyclopentylamine through a one-pot cascade process in aqueous phase by coupling the hydrogenative ring-rearrangement of HMF into 3-hydroxymethylcyclopentanone (HCPN) with a subsequent reductive amination with ammonia. Mono- (Ni@C, Co@C) and bimetallic (NiCo@C) nanoparticles with different Ni/Co ratios partially covered by a thin carbon layer were prepared and characterized. Results showed that a NiCo catalyst, (molar ratio Ni/Co=1, Ni0.5 Co0.5 @C), displayed excellent performance in the hydrogenative ring-rearrangement of HMF into HCPN (>90 % yield). The high selectivity of the catalyst was attributed to the formation of NiCo alloy structures as hydrogenating sites that limited competitive reactions such as the hydrogenation of furan ring and the over-reduction of the formed HPCN. The subsequent reductive amination of HPCN with aqueous ammonia was performed giving the target cyclopentylaminoalcohol in 97 % yield. Moreover, the catalyst exhibited high stability maintaining its activity and selectivity for repeated reaction cycles.
Collapse
Affiliation(s)
- Beatriz Hurtado
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Karen S. Arias
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Maria J. Climent
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Patricia Concepción
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Avelino Corma
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Sara Iborra
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| |
Collapse
|
31
|
Pan Z, Yaseen M, Kang Shen P, Zhan Y. Designing highly efficient 3D porous Ni-Fe sulfide nanosheets based catalyst for the overall water splitting through component regulation. J Colloid Interface Sci 2022; 616:422-432. [DOI: 10.1016/j.jcis.2022.02.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 11/24/2022]
|
32
|
Insertion of Carbon Skeleton in Ni/MoO2 Heterojunction with Porous Hollow Sphere for Efficient Alkaline Electrochemical Hydrogen production. J Colloid Interface Sci 2022; 627:21-27. [DOI: 10.1016/j.jcis.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
|
33
|
Zhang L, Shi Z, Lin Y, Chong F, Qi Y. Design Strategies for Large Current Density Hydrogen Evolution Reaction. Front Chem 2022; 10:866415. [PMID: 35464231 PMCID: PMC9023860 DOI: 10.3389/fchem.2022.866415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogen energy is considered one of the cleanest and most promising alternatives to fossil fuel because the only combustion product is water. The development of water splitting electrocatalysts with Earth abundance, cost-efficiency, and high performance for large current density industrial applications is vital for H2 production. However, most of the reported catalysts are usually tested within relatively small current densities (< 100 mA cm-2), which is far from satisfactory for industrial applications. In this minireview, we summarize the latest progress of effective non-noble electrocatalysts for large current density hydrogen evolution reaction (HER), whose performance is comparable to that of noble metal-based catalysts. Then the design strategy of intrinsic activities and architecture design are discussed, including self-supporting electrodes to avoid the detachment of active materials, the superaerophobicity and superhydrophilicity to release H2 bubble in time, and the mechanical properties to resist destructive stress. Finally, some views on the further development of high current density HER electrocatalysts are proposed, such as scale up of the synthesis process, in situ characterization to reveal the micro mechanism, and the implementation of catalysts into practical electrolyzers for the commercial application of as-developed catalysts. This review aimed to guide HER catalyst design and make large-scale hydrogen production one step further.
Collapse
Affiliation(s)
- Lishang Zhang
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou, China
| | - Zhe Shi
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou, China
| | - Yanping Lin
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou, China
| | - Fali Chong
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou, China
| | - Yunhui Qi
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
34
|
Liu Y, Song Z, Li Z, Han M, Cheng Y, Zheng Z. Standing NiFe LDH nanosheets on stainless steel fibers felt: A synergistic impact on the oxygen evolution reaction (OER) for the water splitting. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Zhang B, Wu Z, Shao W, Gao Y, Wang W, Ma T, Ma L, Li S, Cheng C, Zhao C. Interfacial Atom-Substitution Engineered Transition-Metal Hydroxide Nanofibers with High-Valence Fe for Efficient Electrochemical Water Oxidation. Angew Chem Int Ed Engl 2022; 61:e202115331. [PMID: 34936185 PMCID: PMC9306610 DOI: 10.1002/anie.202115331] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Developing low-cost electrocatalysts for efficient and robust oxygen evolution reaction (OER) is the key for scalable water electrolysis, for instance, NiFe-based materials. Decorating NiFe catalysts with other transition metals offers a new path to boost their catalytic activities but often suffers from the low controllability of the electronic structures of the NiFe catalytic centers. Here, we report an interfacial atom-substitution strategy to synthesize an electrocatalytic oxygen-evolving NiFeV nanofiber to boost the activity of NiFe centers. The electronic structure analyses suggest that the NiFeV nanofiber exhibits abundant high-valence Fe via a charge transfer from Fe to V. The NiFeV nanofiber supported on a carbon cloth shows a low overpotential of 181 mV at 10 mA cm-2 , along with long-term stability (>20 h) at 100 mA cm-2 . The reported substitutional growth strategy offers an effective and new pathway for the design of efficient and durable non-noble metal-based OER catalysts.
Collapse
Affiliation(s)
- Ben Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zihe Wu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Wenjie Shao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yun Gao
- College of Biomass Science and EngineeringSichuan UniversityChengdu610065China
| | - Weiwen Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Tian Ma
- Department of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Lang Ma
- Department of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Functional MaterialsDepartment of ChemistryTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Changsheng Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
36
|
Pan M, Chen W, Qian G, Yu T, Wang Z, Luo L, Yin S. Carbon-encapsulated Co3V decorated Co2VO4 nanosheets for enhanced urea oxidation and hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Zhao M, Du J, Lei H, Pei L, Gong Z, Wang X, Bao H. Enhanced electrocatalytic activity of FeNi alloy quantum dot-decorated cobalt carbonate hydroxide nanosword arrays for effective overall water splitting. NANOSCALE 2022; 14:3191-3199. [PMID: 35142772 DOI: 10.1039/d1nr08035k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of earth-abundant catalysts toward high-efficiency overall water splitting is of critical importance for electrochemical hydrogen production. Here, novel FeNi alloy quantum dot (QD)-decorated cobalt carbonate hydroxide (CoCH) nanosword arrays were successfully constructed on Ni foam (FeNi/CoCH/Ni foam) and used as an efficient bifunctional electrocatalyst for overall water splitting in alkaline media. Benefiting from the synergistic effect between the FeNi alloy QDs and CoCH, the FeNi/CoCH/Ni foam electrode delivers a current density of 20 mA cm-2 at an overpotential of 240 mV and a small Tafel slope of 44.8 mV dec-1 for the oxygen evolution reaction (OER). Further, it displays excellent performance for overall water splitting with a voltage of 1.49 V at 10 mA cm-2 and maintains its activity for at least 23 h. In particular, it only needs low cell voltages of 1.54 and 1.6 V to drive high current densities of 100 and 400 mA cm-2, respectively, which is much better than commercial Pt/C/Ni foam‖RuO2/Ni foam, providing great potential for large-scale application.
Collapse
Affiliation(s)
- Meiru Zhao
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, 430200 Wuhan, China.
| | - Jia Du
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, 430200 Wuhan, China.
| | - Hao Lei
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, 430200 Wuhan, China.
| | - Lingwei Pei
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, 430200 Wuhan, China.
| | - Zhangquan Gong
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, 430200 Wuhan, China.
| | - Xing Wang
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, 430200 Wuhan, China.
| | - Haifeng Bao
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, 430200 Wuhan, China.
| |
Collapse
|
38
|
Electrocatalyst based on Ni 2P nanoparticles and NiCoP nanosheets for efficient hydrogen evolution from urea wastewater. J Colloid Interface Sci 2022; 608:2932-2941. [PMID: 34801236 DOI: 10.1016/j.jcis.2021.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Urea electrolysis is a promising approach to produce hydrogen while simultaneously purifying urea-rich wastewater. In practice, it is highly desirable but still challenging, through the structure construction strategy, to implement a method with controllable synthesis of ultra-thin nanosheet arrays with rich interfaces, and then apply them into the catalysis operations of hydrogen evolution reaction (HER) and urea oxidation reaction (UOR). In this work, the bifunctional electrocatalyst Ni2P/NiCoP nanosheets anchored nickel foam (NF) were prepared with ultra-thin rich interfaces by regulating the Co- and P-doping. The results showed that the elaborated Ni2P/NiCoP/NF electrode delivered the excellent electrocatalytic activities for both UOR and HER operations. Particularly for UOR, it required only a cell voltage of 1.41 V at 100 mA cm-2, which was 400 mV lower than that in the traditional overall water splitting operation.
Collapse
|
39
|
Zhang B, Wu Z, Shao W, Gao Y, Wang W, Ma T, Ma L, Li S, Cheng C, Zhao C. Interfacial Atom‐Substitution Engineered Transition‐Metal Hydroxide Nanofibers with High‐Valence Fe for Efficient Electrochemical Water Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ben Zhang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zihe Wu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Wenjie Shao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Yun Gao
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Weiwen Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Tian Ma
- Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Lang Ma
- Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Shuang Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- Functional Materials Department of Chemistry Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
40
|
Lin Y, Fan X, Huang M, Yang Z, Zhang W. Preferential Co substitution on Ni sites in Ni–Fe oxide arrays enabling large-current-density alkaline oxygen evolution. Chem Sci 2022; 13:7332-7340. [PMID: 35799815 PMCID: PMC9214842 DOI: 10.1039/d2sc02019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
Developing low-cost and high-activity transition metal oxide electrocatalysts for an efficient oxygen evolution reaction (OER) at a large current density is highly demanded for industrial application and remains a big challenge. Herein, we report vertically aligned cobalt doped Ni–Fe based oxide (Co–NiO/Fe2O3) arrays as a robust OER electrocatalyst via a simple method combining hydrothermal reaction with heat treatment. Density functional theory calculation and XRD Rietveld refinement reveal that Co preferentially occupies the Ni sites compared to Fe in the Ni–Fe based oxides. The electronic structures of the Co–NiO/Fe2O3 could be further optimized, leading to the improvement of the intrinsic electronic conductivity and d-band center energy level and the decrease in the reaction energy barrier of the rate-determining step for the OER, thus accelerating its OER electrocatalytic activity. The Co–NiO/Fe2O3 nanosheet arrays display state-of-the-art OER activities at a large current density for industrial demands among Fe–Co–Ni based oxide electrocatalysts, which only require an ultra-low overpotential of 230 mV at a high current density of 500 mA cm−2, and exhibit superb durability at 500 mA cm−2 for at least 300 h without obvious degradation. The Co–NiO/Fe2O3 nanosheet arrays also have a small Tafel slope of 33.9 mV dec−1, demonstrating fast reaction kinetics. This work affords a simple and effective method to design and construct transition metal oxide based electrocatalysts for efficient water oxidation. Co–NiO/Fe2O3 nanosheets featuring Co substitution on Ni sites can effectively regulate electronic structures and exhibit high OER activities with low overpotential (η500 = 230 mV), small Tafel slope (33.9 mV dec−1) and superb durability for 300 h.![]()
Collapse
Affiliation(s)
- Yuping Lin
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Xiaoming Fan
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China
- Institute of Energy, Hefei Comprehensive National Science Center, Anhui, Hefei 230009, PR China
| | - Mengqiu Huang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Zeheng Yang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Weixin Zhang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China
- Institute of Energy, Hefei Comprehensive National Science Center, Anhui, Hefei 230009, PR China
| |
Collapse
|
41
|
Qian G, Chen J, Yu T, Liu J, Luo L, Yin S. Three-Phase Heterojunction NiMo-Based Nano-Needle for Water Splitting at Industrial Alkaline Condition. NANO-MICRO LETTERS 2021; 14:20. [PMID: 34882293 PMCID: PMC8660933 DOI: 10.1007/s40820-021-00744-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/08/2021] [Indexed: 05/29/2023]
Abstract
Constructing heterojunction is an effective strategy to develop high-performance non-precious-metal-based catalysts for electrochemical water splitting (WS). Herein, we design and prepare an N-doped-carbon-encapsulated Ni/MoO2 nano-needle with three-phase heterojunction (Ni/MoO2@CN) for accelerating the WS under industrial alkaline condition. Density functional theory calculations reveal that the electrons are redistributed at the three-phase heterojunction interface, which optimizes the adsorption energy of H- and O-containing intermediates to obtain the best ΔGH* for hydrogen evolution reaction (HER) and decrease the ΔG value of rate-determining step for oxygen evolution reaction (OER), thus enhancing the HER/OER catalytic activity. Electrochemical results confirm that Ni/MoO2@CN exhibits good activity for HER (ƞ-10 = 33 mV, ƞ-1000 = 267 mV) and OER (ƞ10 = 250 mV, ƞ1000 = 420 mV). It shows a low potential of 1.86 V at 1000 mA cm-2 for WS in 6.0 M KOH solution at 60 °C and can steadily operate for 330 h. This good HER/OER performance can be attributed to the three-phase heterojunction with high intrinsic activity and the self-supporting nano-needle with more active sites, faster mass diffusion, and bubbles release. This work provides a unique idea for designing high efficiency catalytic materials for WS.
Collapse
Affiliation(s)
- Guangfu Qian
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Jinli Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Tianqi Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Jiacheng Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, People's Republic of China.
| |
Collapse
|
42
|
Motivating borate doped FeNi layered double hydroxides by molten salt method toward efficient oxygen evolution. J Colloid Interface Sci 2021; 610:173-181. [PMID: 34922073 DOI: 10.1016/j.jcis.2021.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/23/2022]
Abstract
The incorporation of borate is a beneficial strategy to improve the catalytic activity of transition metal-based electrocatalyts for oxygen evolution reaction (OER). However, how to efficiently introduce borate has always been a challenge. Here, a facile and scalable molten salt method is developed to successfully dope borate into FeNi layered double hydroxides (FeBi@FeNi LDH) for efficient OER. The molten salt method can not only promote the formation of evenly dispersed nano-pompous FeBi precursor, thus providing the possibility to realize the direct doping of borate and the increase of mass, charge transfer and oxygen evolution active sites in FeNi LDH, but also promote the in-situ growth of FeBi@FeNi LDH on the conductive iron foam, improvingconductivity and stability of the material. The results indicate that the synthesized FeBi@FeNi LDH shows enhanced OER activity by delivering current densities of 10 and 100 mA cm-2 at low overpotentials of 246 and 295 mV and showing a small Tafel slope of 56.48 mV dec-1, benefiting from the optimization of geometric structure of active sites as well as the adjustment of electron density by borate doping especially in the case of molten salt. In addition, the sample can maintain durability at an industrial current density of 100 mA cm-1 for 90 h. This work provides a new way for the construction of efficient catalysts using boron doping assisted by molten salt.
Collapse
|
43
|
Zhou X, Zhou X, Liu L, Chen H, Hu X, Qian J, Huang D, Zhang B, Tang J. Self-supported Cu 3P nanowire electrode as an efficient electrocatalyst for the oxygen evolution reaction. RSC Adv 2021; 11:34137-34143. [PMID: 35497269 PMCID: PMC9042363 DOI: 10.1039/d1ra05526g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2021] [Indexed: 01/08/2023] Open
Abstract
Hydrogen is an ideal energy carrier due to its abundant reserves and high energy density. Electrolyzing water is one of the carbon free technologies for hydrogen production, which is limited by the sluggish kinetics of the half reaction of the anode – the oxygen evolution reaction (OER). In this study, a self-supported Cu3P nanowire (Cu3P NWs/CF) electrode is prepared by electrodeposition of a Cu(OH)2 nanowire precursor on conductive Cu foam (Cu(OH)2 NWs/CF) with a subsequent phosphating procedure under a N2 atmosphere. When used as an OER working electrode in 1.0 M KOH solution at room temperature, Cu3P NWs/CF exhibits excellent catalytic performance with an overpotential of 327 mV that delivers a current density of 20 mA cm−2. Notably, it can run stably for 22 h at a current density of 20 mA cm−2 without obvious performance degradation. This highly efficient and stable OER catalytic performance is mainly attributed to the unique nanostructure and stable electrode construction. Interestingly, this synthesis strategy has been proved to be feasible to prepare large-area working electrodes (e.g. 40 cm−2) with unique nanowire structure. Therefore, this work has provided a good paradigm for the mass fabrication of self-supporting non-noble metal OER catalysts and effectively promoted the reaction kinetics of the anode of the electrolyzing water reaction. We prepared Cu3P nanowires via a simple two-step method and Cu(OH)2 NWs/CF was converted to Cu3P/NWs after a phosphating process. The prepared Cu3P NWs/CF electrode shows high efficiency and excellent stability to OER in alkaline medium.![]()
Collapse
Affiliation(s)
- Xin Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 PR China
| | - Xiaoliang Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 PR China
| | - Limin Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 PR China
| | - Hanyu Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 PR China
| | - Xingguo Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 PR China
| | - Jiaqi Qian
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 PR China
| | - Di Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 PR China
| | - Bo Zhang
- Hydrogen Energy Division, Dong Fang Boiler Group Co., Ltd. Chengdu 611731 PR China
| | - Junlei Tang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 PR China
| |
Collapse
|
44
|
Zhang YC, Han C, Gao J, Pan L, Wu J, Zhu XD, Zou JJ. NiCo-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction: A Review. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03260] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yong-Chao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Caidi Han
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Gao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jinting Wu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiao-Dong Zhu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
45
|
Interfacial electronic engineering of carbon encapsulated Co5.47N-WO2 for boosting overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Li S, Li E, An X, Hao X, Jiang Z, Guan G. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. NANOSCALE 2021; 13:12788-12817. [PMID: 34477767 DOI: 10.1039/d1nr02592a] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a clean energy carrier, hydrogen has priority in decarbonization to build sustainable and carbon-neutral economies due to its high energy density and no pollutant emission upon combustion. Electrochemical water splitting driven by renewable electricity to produce green hydrogen with high-purity has been considered to be a promising technology. Unfortunately, the reaction of water electrolysis always requires a large excess potential, let alone the large-scale application (e.g., >500 mA cm-2 needs a cell voltage range of 1.8-2.4 V). Thus, developing cost-effective and robust transition metal electrocatalysts working at high current density is imperative and urgent for industrial electrocatalytic water splitting. In this review, the strategies and requirements for the design of self-supported electrocatalysts are summarized and discussed. Subsequently, the fundamental mechanisms of water electrolysis (OER or HER) are analyzed, and the required important evaluation parameters, relevant testing conditions and potential conversion in exploring electrocatalysts working at high current density are also introduced. Specifically, recent progress in the engineering of self-supported transition metal-based electrocatalysts for either HER or OER, as well as overall water splitting (OWS), including oxides, hydroxides, phosphides, sulfides, nitrides and alloys applied in the alkaline electrolyte at large current density condition is highlighted in detail, focusing on current advances in the nanostructure design, controllable fabrication and mechanistic understanding for enhancing the electrocatalytic performance. Finally, remaining challenges and outlooks for constructing self-supported transition metal electrocatalysts working at large current density are proposed. It is expected to give guidance and inspiration to rationally design and prepare these electrocatalysts for practical applications, and thus further promote the practical production of hydrogen via electrochemical water splitting.
Collapse
Affiliation(s)
- Shasha Li
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | | | | | | | | | | |
Collapse
|
47
|
Zhuo X, Jiang W, Qian G, Chen J, Yu T, Luo L, Lu L, Chen Y, Yin S. Ni 3S 2/Ni Heterostructure Nanobelt Arrays as Bifunctional Catalysts for Urea-Rich Wastewater Degradation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35709-35718. [PMID: 34308650 DOI: 10.1021/acsami.1c08148] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Urea electrolysis is a cost-effective method for urea-rich wastewater degradation to achieve a pollution-free environment. In this work, the Ni3S2/Ni heterostructure nanobelt arrays supported on nickel foam (Ni3S2/Ni/NF) are synthesized for accelerating the urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). It only needs ultralow potentials of 1.30 V and -54 mV to achieve the current density of ±10 mA cm-2 for UOR and HER, respectively. Meanwhile, the overall urea oxidation driven by Ni3S2/Ni/NF only needs 1.36 V to achieve 10 mA cm-2, and it can remain at 100 mA cm-2 for 60 h without obvious activity attenuation. The superior performance could be attributed to the heterostructure between Ni3S2 and Ni, which can promote electron transfer and form electron-poor Ni species to optimize urea decomposition and hydrogen production. Moreover, the nanobelt self-supported structure could expose abundant active sites. This work thus provides a feasible and cost-effective strategy for urea-rich wastewater degradation and hydrogen production.
Collapse
Affiliation(s)
- Xiaoyan Zhuo
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenjie Jiang
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Guangfu Qian
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Jinli Chen
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Tianqi Yu
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Lihai Lu
- Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexing Road, Nanning 530007, China
| | - Yongli Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexing Road, Nanning 530007, China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China
| |
Collapse
|
48
|
Tuo Y, Liu W, Chen C, Lu Q, Zhou Y, Zhang J. Constructing RuCoO x /NC Nanosheets with Low Crystallinity within ZIF-9 as Bifunctional Catalysts for Highly Efficient Overall Water Splitting. Chem Asian J 2021; 16:2511-2519. [PMID: 34255429 DOI: 10.1002/asia.202100629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Indexed: 12/26/2022]
Abstract
Electrocatalysts play a pivotal role in accelerating the sluggish electrochemical water splitting reaction. Herein, a Ru-Co oxides and carbon nitrides hybrid (RuCoOx /NC) electrocatalyst was constructed by employing ZIF-9 to disperse Ru precursor and deliberately regulating the calcination temperature. The moderate calcination temperature results in the RuCoOx nanocomposites with small particle size and low crystallinity as well as the co-existence of multi-valence metal compounds, thus boosting the amount and species of active sites. Moreover, the strong interactions between Co and Ru species induce the electron transfer from Co to Ru, thus enhancing the adsorption of anion intermediates on the electron-deficient Co species and the proton capturing capacity of electron-sufficient Ru species. As a result, the optimized RuCoOx /NC-350 catalyst behaved good electrocatalytic activities with 73 and 210 mV overpotential to achieve 10 mA cm-2 for HER and OER, respectively. Remarkably, it showed good durability by holding at 100 mA cm-2 for 100 h in HER and 50 mA cm-2 for 24 h in OER with small activity decline. This study may shed new light on the rational construction of highly efficient Ru-based catalysts for electrochemical water splitting.
Collapse
Affiliation(s)
- Yongxiao Tuo
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China
| | - Wanli Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China
| | - Chen Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China
| | - Qing Lu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China.,State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
49
|
Fan Y, Zhang X, Zhang Y, Xie X, Ding J, Cai J, Li B, Lv H, Liu L, Zhu M, Zheng X, Cai Q, Liu Y, Lu S. Decoration of Ru/RuO 2 hybrid nanoparticles on MoO 2 plane as bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2021; 604:508-516. [PMID: 34274714 DOI: 10.1016/j.jcis.2021.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022]
Abstract
Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the two branches of artificial overall water splitting (OWS), in which the reaction efficiency usually depends on different specific catalysts. Although effective bifunctional electrocatalyst for OWS (HER and OER) are highly desired, designing and constructing such suitable materials is full of challenges to overcome several difficulties, involving slow kinetics, differences in catalytic mechanisms, large overpotential values, and low round-trip efficiencies. In this work, we reported a new bifunctional electrocatalyst Ru/RuO2-MoO2 catalyst (RRMC) via a redox solid phase reaction (RSPR) strategy to achieve the high electrocatalytic activity of OWS. Briefly, due to the restricted transport behavior of atoms in solid state precursor, the designed redox reaction occurred between the adjacent part of RuO2 and MoS2, forming Ru/RuO2 hybrid NPs and MoO2 plane. Therefore, the newly formed Ru/RuO2 hybrid NPs and MoO2 plane were tightly combined and used as an electrocatalyst for OWS. Benefiting from the exposed active sites and optimized electronic structure, the RRMC sample annealed at 500 °C (RRMC-500) exhibited low overpotential for HER (18 mV) and for OER (260 mV) at 10 mA cm-2 under alkaline conditions. Especially, a low cell voltage of 1.54 V was required at 10 mA cm-2 under alkaline condition.
Collapse
Affiliation(s)
- Yunxiao Fan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Xudong Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yongjiang Zhang
- Luoyang Cigarette Factory of China Tobacco Henan Industrial co., ltd, Luoyang 471003, PR China
| | - Xin Xie
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Jie Ding
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Jialin Cai
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Baojun Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Hualun Lv
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Leyan Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Mingming Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Xiucheng Zheng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Qiang Cai
- College of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yushan Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| |
Collapse
|
50
|
Radwan A, Jin H, He D, Mu S. Design Engineering, Synthesis Protocols, and Energy Applications of MOF-Derived Electrocatalysts. NANO-MICRO LETTERS 2021; 13:132. [PMID: 34138365 PMCID: PMC8169752 DOI: 10.1007/s40820-021-00656-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 05/25/2023]
Abstract
The core reactions for fuel cells, rechargeable metal-air batteries, and hydrogen fuel production are the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), which are heavily dependent on the efficiency of electrocatalysts. Enormous attempts have previously been devoted in non-noble electrocatalysts born out of metal-organic frameworks (MOFs) for ORR, OER, and HER applications, due to the following advantageous reasons: (i) The significant porosity eases the electrolyte diffusion; (ii) the supreme catalyst-electrolyte contact area enhances the diffusion efficiency; and (iii) the electronic conductivity can be extensively increased owing to the unique construction block subunits for MOFs-derived electrocatalysis. Herein, the recent progress of MOFs-derived electrocatalysts including synthesis protocols, design engineering, DFT calculations roles, and energy applications is discussed and reviewed. It can be concluded that the elevated ORR, OER, and HER performances are attributed to an advantageously well-designed high-porosity structure, significant surface area, and plentiful active centers. Furthermore, the perspectives of MOF-derived electrocatalysts for the ORR, OER, and HER are presented.
Collapse
Affiliation(s)
- Amr Radwan
- School of Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, People's Republic of China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Huihui Jin
- School of Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, People's Republic of China
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, People's Republic of China.
| | - Shichun Mu
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, People's Republic of China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|