1
|
Wang S, Sun X, Shi J, Zhao R, Zhang B, Lu S, Li P, Li F, Manna L, Zhang Y, Song Y. Additive-Driven Enhancement of Crystallization: Strategies and Prospects for Boosting Photoluminescence Quantum Yields in Halide Perovskite Films for Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413673. [PMID: 39506414 DOI: 10.1002/adma.202413673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Halide perovskite light-emitting diodes (PeLEDs) hold great potential for applications in displays and lighting. To enhance the external quantum efficiency (EQE) of PeLEDs, it is crucial to boost the photoluminescence quantum yield (PLQY) of the perovskite films. The use of additives has emerged as a powerful chemical strategy to control the crystallization process in solution-processed perovskite films. The different types of additives that can be used reflect the various types of chemical interactions with the perovskite materials, influencing their crystallization process in various possible ways. Understanding the relationship between these chemical interactions and their impact on the crystallization process is a key step for designing emitters with improved PLQY and devices with superior EQE. Following the logic chain of additive-perovskite interactions, impacts on crystallization, and subsequent enhancement of PLQY and EQE, this review discusses how additives play a pivotal role in influencing the crystallization process to enhance the PLQY of the perovskite films. Furthermore, this assessment addresses the open challenges and outlines future prospects for the development of PeLEDs.
Collapse
Affiliation(s)
- Shiheng Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xianglong Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiantao Shi
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rudai Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Baowei Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Pengwei Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Fengyu Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia (IIT), Genova, 16163, Italy
| | - Yiqiang Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS) Beijing, Beijing, 100190, P. R. China
| |
Collapse
|
2
|
Chen K, Du Q, Cao Q, Du C, Feng S, Pan Y, Liang Y, Wang L, Chen J, Ma D. Ligand Engineering Achieves Suppression of Temperature Quenching in Pure Green Perovskite Nanocrystals for Efficient and Thermostable Electroluminescence. NANO-MICRO LETTERS 2024; 17:77. [PMID: 39604744 PMCID: PMC11602897 DOI: 10.1007/s40820-024-01564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024]
Abstract
Formamidinium lead bromide (FAPbBr3) perovskite nanocrystals (NCs) are promising for display and lighting due to their ultra-pure green emission. However, the thermal quenching will exacerbate their performance degradation in practical applications, which is a common issue for halide perovskites. Here, we reported the heat-resistant FAPbBr3 NCs prepared by a ligand-engineered room-temperature synthesis strategy. An aromatic amine, specifically β-phenylethylamine (PEA) or 3-fluorophenylethylamine (3-F-PEA), was incoporated as the short-chain ligand to expedite the crystallization rate and control the size distribution of FAPbBr3 NCs. Employing this ligand engineering approach, we synthesized high quality FAPbBr3 NCs with uniform grain size and reduced long-chain alkyl ligands, resulting in substantially suppressed thermal quenching and enhanced carrier transportation in the perovskite NCs films. Most notably, more than 90% of the room temperature PL intensity in the 3-F-PEA modified FAPbBr3 NCs film was preserved at 380 K. Consequently, we fabricated ultra-pure green EL devices with a room temperature external quantum efficiency (EQE) as high as 21.9% at the luminance of above 1,000 cd m-2, and demonstrated less than 10% loss in EQE at 343 K. This study introduces a novel room temperature method to synthesize efficient FAPbBr3 NCs with exceptional thermal stability, paving the way for advanced optoelectronic device applications.
Collapse
Affiliation(s)
- Kaiwang Chen
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Qing Du
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Qiufen Cao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Chao Du
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Shangwei Feng
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Yutong Pan
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Yue Liang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Lei Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jiangshan Chen
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
3
|
Baek SD, Yang SJ, Yang H, Shao W, Yang YT, Dou L. Exciton Dynamics in Layered Halide Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411998. [PMID: 39564714 DOI: 10.1002/adma.202411998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Indexed: 11/21/2024]
Abstract
Layered halide perovskites have garnered significant interest due to their exceptional optoelectronic properties and great promises in light-emitting applications. Achieving high-performance perovskite light-emitting diodes (PeLEDs) requires a deep understanding of exciton dynamics in these materials. This review begins with a fundamental overview of the structural and photophysical properties of layered halide perovskites, then delves into the importance of dimensionality control and cascade energy transfer in quasi-2D PeLEDs. In the second half of the review, more complex exciton dynamics, such as multiexciton processes and triplet exciton dynamics, from the perspective of LEDs are explored. Through this comprehensive review, an in-depth understanding of the critical aspects of exciton dynamics in layered halide perovskites and their impacts on future research and technological advancements for layered halide PeLEDs is provided.
Collapse
Affiliation(s)
- Sung-Doo Baek
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Seok Joo Yang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, 39177, Republic of Korea
| | - Hanjun Yang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Wenhao Shao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yu-Ting Yang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
4
|
Liu C, Tian T, Shi Y, Li M, Hong L, Zhou J, Liu J, Zhong Y, Wang X, Wang Z, Bai X, Wang L, Li C, Wu Z. Enhancing antibacterial photodynamic therapy with NIR‐activated gold nanoclusters: Atomic‐precision size effect on reducing bacterial biofilm formation and virulence. AGGREGATE 2024. [DOI: 10.1002/agt2.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
AbstractPersistent biofilm infections pose a critical health threat with their relentless presence and amplified antibiotic resistance. Traditional antibacterial photodynamic therapy can inhibit bacteria extracellularly but struggles to control biofilm formation and virulence. Thus, there is an urgent need to develop photosensitizers, such as ultra‐small gold nanoclusters (AuNCs), that can penetrate biofilms and internalize into bacteria. However, AuNCs still face the challenge of insufficient reactive oxygen species (ROS) production and limited near‐infrared light absorption. This study develops a model of indocyanine green (ICG)‐sensitized AuNCs with atomic‐precision size effect. This approach achieved near‐infrared light absorption while inhibiting radiation transitions, thereby regulating the generation of ROS. Notably, different‐sized AuNCs (Au10NCs, Au15NCs, Au25NCs) yielded varied ROS types, resulting from different energy level distributions and electron transfer rates. ICG‐Au15NCs achieved a treatment efficacy of 99.94% against Staphylococcus aureus infections in vitro and significantly accelerated wound healing in vivo. Moreover, this study highlights the unique role of ICG‐AuNCs in suppressing quorum sensing, virulence, and ABC transporters compared to their larger counterparts. This strategy demonstrates that atomic‐precision size effect of AuNCs paves the way for innovative approaches in antibacterial photodynamic therapy for infection control.
Collapse
Affiliation(s)
- Chengyu Liu
- Department of Prosthodontics Jilin Provincial Key Laboratory of Tooth Development and Remodeling School and Hospital of Stomatology Jilin University Changchun China
| | - Tenghui Tian
- Hospital of Affiliated Changchun University of Chinese Medicine Branch of National Clinical Research Center for Chinese Medicine Cardiology Changchun China
| | - Yujia Shi
- Department of Oral Implantology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Jilin University Changchun China
| | - Meiqi Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Jilin University Changchun China
| | - Le Hong
- Hospital of Affiliated Changchun University of Chinese Medicine Branch of National Clinical Research Center for Chinese Medicine Cardiology Changchun China
| | - Jing Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Jilin University Changchun China
| | - Jia Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Jilin University Changchun China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering Jilin university Changchun China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering Jilin university Changchun China
| | - Zhenyu Wang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering Jilin university Changchun China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering Jilin university Changchun China
| | - Lin Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering Jilin University Changchun China
| | - Chunyan Li
- Department of Prosthodontics Jilin Provincial Key Laboratory of Tooth Development and Remodeling School and Hospital of Stomatology Jilin University Changchun China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering Jilin university Changchun China
| |
Collapse
|
5
|
Cheng Y, Wan H, Sargent EH, Ma D. Reduced-Dimensional Perovskites: Quantum Well Thickness Distribution and Optoelectronic Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410633. [PMID: 39295466 DOI: 10.1002/adma.202410633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Reduced-dimensional perovskites (RDPs), a large category of metal halide perovskites, have attracted considerable attention and shown high potential in the fields of solid-state displays and lighting. RDPs feature a quantum-well-based structure and energy funneling effects. The multiple quantum well (QW) structure endows RDPs with superior energy transfer and high luminescence efficiency. The effect of QW confinement directly depends on the number of inorganic octahedral layers (QW thickness, i.e., n value), so the distribution of n values determines the optoelectronic properties of RDPs. Here, it is focused on the QW thickness distribution of RDPs, detailing its effect on the structural characteristics, carrier recombination dynamics, optoelectronic properties, and applications in light-emitting diodes. The reported distribution control strategies is also summarized and discuss the current challenges and future trends of RDPs. This review aims to provide deep insight into RDPs, with the hope of advancing their further development and applications.
Collapse
Affiliation(s)
- Yuanzhuang Cheng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haoyue Wan
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Dongxin Ma
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Zhuang D, Wang Y, Cai Q, Zhai L, Huang H, Yang G, Yang Y, Zhang L, Zou C. Restraint of Nonradiative Recombination via Modulation of n-Phase Distribution through Interfacial Lithium Salt Insertion for High-Performance Pure-Blue Perovskite LEDs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31274-31282. [PMID: 38842415 DOI: 10.1021/acsami.4c03752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Quasi-two-dimensional perovskite has been widely used in blue perovskite light-emitting diodes. However, the performance of these devices is still hampered by random phase distribution, nonradiative recombination, and imbalanced carrier transport. In this work, an effective strategy is proposed to mitigate these limitations by inserting lithium salts at the interfaces between the hole transport layer (HTL) and the perovskite layer. The perovskite film on the inserted Li2CO3 layer exhibits reasonable n-value redistribution, which leads to the repressive nonradiation recombination and enhanced carrier transport. Moreover, the inserted Li2CO3 layer also improves the electrical conductivity of PEDOT:PSS and hinders indium ion diffusion from the PEDOT:PSS layer to the perovskite film, which inhibits exciton quenching and nonradiative recombination loss at the HTL/perovskite interface. Taking advantage of these merits, we have successfully fabricated efficient pure-blue PeLEDs with an external quantum efficiency of 6.2% at 472 nm and a luminance of 726 cd cm-2. The restraint of nonradiative recombination at the interface offers a promising approach for efficient pure-blue PeLEDs.
Collapse
Affiliation(s)
- Dicai Zhuang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yingyu Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Qiuting Cai
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lanlan Zhai
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - He Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Guanghong Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yun Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Lijie Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Chao Zou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| |
Collapse
|
7
|
Wang H, Qi H, Zhang Z, Wang K, Wang H, Tong Y. Phosphonic Chloride Assisted Fabrication of Highly Emissive Mixed Halide Perovskite Films in Ambient Air for Blue Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28771-28779. [PMID: 38795117 DOI: 10.1021/acsami.3c19394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Blue perovskite light-emitting diodes (LEDs) have emerged as promising candidates for full-color display and lighting applications. However, the fabrication of blue-emitting perovskite films typically requires an inert environment, leading to increased complexity and cost in the manufacturing process, which is undesirable for applications of perovskite LEDs. Herein, we report a strategy to fabricate bright blue-emitting perovskite films in ambient air by incorporating phosphonic chlorides in a perovskite precursor solution. We used two different phosphonic chlorides, diphenylphosphonic chloride (DPPC) and phenylphosphonic dichloride (PPDC), and comparatively studied their effects on the properties of perovskite films and the blue LEDs. It is found that PPDC possesses a stronger chlorination ability due to higher hydrolysis reactivity; meanwhile, it has a stronger interaction with the perovskite compared to DPPC, resulting in an improved film quality and enhanced blue emission with a photoluminescence quantum yield of 45%, which represents the record value for the air-processed blue perovskite films. Blue perovskite LEDs are fabricated, and the emission wavelengths are effectively tuned by controlling the concentration of phosphonic chlorides. Benefiting from the optimized perovskite films with reduced nonradiative recombination and promoted charge injection and transport, the PPDC-derived blue perovskite LEDs exhibit improved performance with an external quantum efficiency of 3.3% and 1.2% for the 490 and 480 nm emission wavelength, respectively.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Heng Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Zekun Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Kun Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Yu Tong
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| |
Collapse
|
8
|
Dong W, Li H, Li J, Hua Y, Yang F, Dong Q, Zhang X, Zheng W. Precursor Engineering Induced High-Efficiency Electroluminescence of Quasi-Two-Dimensional Perovskites: A Synergistic Defect Inhibition and Passivation Approach. NANO LETTERS 2024; 24:3952-3960. [PMID: 38527956 DOI: 10.1021/acs.nanolett.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Despite light-emitting diodes (LEDs) based on quasi-two-dimensional (Q-2D) perovskites being inexpensive and exhibiting high performance, defects still limit the improvement of electroluminescence efficiency and stability by causing nonradiative recombination. Here, an organic molecule, 1-(o-tolyl) biguanide, is used to simultaneously inhibit and passivate defects of Q-2D perovskites via in situ synchronous crystallization. This molecule not only prevents surface bromine vacancies from forming through hydrogen bonding with the bromine of intermediaries but also passivates surface defects through its interaction with uncoordinated Pb. Via combination of defect inhibition and passivation, the trap density of Q-2D perovskite films can be significantly reduced, and the emission efficiency of the film can be improved. Consequently, the corresponding LED shows an external quantum efficiency of 24.3%, and its operational stability has been increased nearly 15 times.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| | - Hanming Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Jing Li
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| | - Yulu Hua
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| | - Fan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qingfeng Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
9
|
Du X, Duan W, Gao Y, Wang T, Li T, Lin Y, Yu ZP, Xu K. Nano-Cu Derived from a Copper Nitride Precatalyst for Reductive Coupling of Nitroaromatics to Azo Compounds. Inorg Chem 2024; 63:4328-4336. [PMID: 38367216 DOI: 10.1021/acs.inorgchem.3c04552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
The study of structural reconstruction is vital for the understanding of the real active sites in heterogeneous catalysis and guiding the improved catalyst design. Herein, we applied a copper nitride precatalyst in the nitroarene reductive coupling reaction and made a systematic investigation on the dynamic structural evolution behaviors and catalytic performance. This Cu3N precatalyst undergoes a rapid phase transition to nanostructured Cu with rich defective sites, which act as the actual catalytic sites for the coupling process. The nitride-derived defective Cu is very active and selective for azo formation, with 99.6% conversion of nitrobenzene and 97.1% selectivity to azobenzene obtained under mild reaction conditions. Density functional theory calculations suggest that the defective Cu sites play a role for the preferential adsorption of nitrosobenzene intermediates and significantly lowered the activation energy of the key coupling step. This work not only proposes a highly efficient noble-metal-free catalyst for nitroarenes coupling to valuable azo products but also may inspire more scientific interest in the study of the dynamic evolution of metal nitrides in different catalytic reactions.
Collapse
Affiliation(s)
- Xianting Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Wanchun Duan
- Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Yanan Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Tong Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Tairan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Yunxiang Lin
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Kun Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
10
|
Xiao H, Li R, Cai W, Zang Z. Development of Quasi-Two-Dimensional Perovskites and Their Application in Light-Emitting Diodes. Inorg Chem 2024; 63:2853-2876. [PMID: 38299502 DOI: 10.1021/acs.inorgchem.3c03375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Quasi-two-dimensional (quasi-2D) perovskites have attracted much attention due to their outstanding properties, such as inherent quantum-well structure, strong dielectric and quantum confinement, large exciton binding energy, and high photoluminescence quantum yield. By virtue of these superior merits, quasi-2D perovskites have shown great potential for next-generation light-emitting diodes (LEDs). Herein, this review presents an overview of the basic properties of quasi-2D perovskites and their photoluminescence modulations by large organic cation engineering, monovalent cation engineering, halogen engineering, defect passivation engineering, and dimensionality engineering. Furthermore, the strategies of charge-transport layer optimization, interfacial engineering, light-outcoupling efficiency improvement, and operating stability improvement are summarized for fabricating high-performance quasi-2D perovskite LEDs (PeLEDs). Finally, the challenges and outlook for the future development of quasi-2D PeLEDs are unambiguously proposed.
Collapse
Affiliation(s)
- Hongbin Xiao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Ru Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Wensi Cai
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Tang J, Zhang G, Wang C, Deng L, Zhu X, Yu H, Wang K, Li J. Investigation of the Role of K 2SO 4 Electrolyte in Hole Transport Layer for Efficient Quasi-2D Perovskite Light-Emitting Diodes. J Phys Chem Lett 2024; 15:1112-1120. [PMID: 38262437 DOI: 10.1021/acs.jpclett.3c03417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Quasi-two-dimensional (2D) perovskite light-emitting diodes are promising light sources for color display and lighting. However, poor carrier injection and transport between the bottom hole transport layer (HTL) and perovskite limit the device performance. Here we demonstrate a simple and effective way to modify the HTL for enhancing the performance of perovskite light-emitting diodes (PeLEDs). An electrolyte K2SO4 is used to mix with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the hole transport layer. The K+ doping helped the quasi-2D perovskite phases grow vertically along the interface of the PEDOT:PSS, fine-modulate the phase distribution, and simultaneously reduce the defect density of quasi-2D perovskites. It also significantly reduced the exciton quenching and injection barrier at PEDOT:PSS and quasi-2D perovskite interface. The optimized green PeLEDs with the K2SO4 doped PEDOT:PSS HTL showed a maximum luminance of 17185 cd/m2 which is almost 4.7 times brighter than the control one, with a maximum external quantum efficiency of 18.64%.
Collapse
Affiliation(s)
- Jun Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Guoshuai Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chenming Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Liangliang Deng
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xixiang Zhu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Haomiao Yu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinpeng Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
12
|
Liu A, Lu P, Lu M, Chai X, Liu Y, Guan G, Gao Y, Wu Z, Bai X, Hu J, Wang D, Zhang Y. Multiple Phase Regulation Enables Efficient and Bright Quasi-2D Perovskite Light-Emitting Diodes. NANO LETTERS 2023. [PMID: 37991828 DOI: 10.1021/acs.nanolett.3c03440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Quasi-2D perovskites, multiquantum well materials with the energy cascade structure, exhibit impressive optoelectronic properties and a wide range of applications in various optoelectronic devices. However, the insufficient exciton energy transfer caused by the excess of small-n phases that induce nonradiative recombination and the spatially random phase distribution that impedes charge transport severely inhibit the device performance of light-emitting diodes (LEDs). Here, a faster energy transfer process and efficient carrier recombination are achieved by introducing the multifunctional additive 2-(methylsulfonyl)-4-(trifluoromethyl)benzoic acid (MTA) to manipulate the crystallization process of perovskites. The introduction of MTA not only constrains the PEA and restrains the formation of small-n phases to improve the energy transfer process but also optimizes the crystal orientation to promote charge transport. As a result, highly efficient pure green quasi-2D perovskite LEDs with a peak EQE of 25.9%, a peak current efficiency of 108.1 cd A-1, and a maximum luminance of 288798 cd m-2 are achieved.
Collapse
Affiliation(s)
- Anqi Liu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Po Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaomei Chai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yu Liu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Gangyun Guan
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yanbo Gao
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Junhua Hu
- Key Laboratory of Materials Physics of Ministry of Education Department of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Dingdi Wang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
13
|
Zhou B, Du A, Ding D, Liu Z, Wang Y, Zhong H, Li H, Hu H, Shi Y. Achieving Tunable Cold/Warm White-Light Emission in a Single Perovskite Material with Near-Unity Photoluminescence Quantum Yield. NANO-MICRO LETTERS 2023; 15:207. [PMID: 37651000 PMCID: PMC10471562 DOI: 10.1007/s40820-023-01168-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/15/2023] [Indexed: 09/01/2023]
Abstract
Single materials that exhibit efficient and stable white-light emission are highly desirable for lighting applications. This paper reports a novel zero-dimensional perovskite, Rb4CdCl6:Sn2+, Mn2+, which demonstrates exceptional white-light properties including adjustable correlated color temperature, high color rendering index of up to 85, and near-unity photoluminescence quantum yield of 99%. Using a co-doping strategy involving Sn2+ and Mn2+, cyan-orange dual-band emission with complementary spectral ranges is activated by the self-trapped excitons and d-d transitions of the Sn2+ and Mn2+ centers in the Rb4CdCl6 host, respectively. Intriguingly, although Mn2+ ions doped in Rb4CdCl6 are difficult to excite, efficient Mn2+ emission can be realized through an ultra-high-efficient energy transfer between Sn2+ and Mn2+ via the formation of adjacent exchange-coupled Sn-Mn pairs. Benefiting from this efficient Dexter energy transfer process, the dual emission shares the same optimal excitation wavelengths of the Sn2+ centers and suppresses the non-radiative vibration relaxation significantly. Moreover, the relative intensities of the dual-emission components can be modulated flexibly by adjusting the fraction of the Sn2+ ions to the Sn-Mn pairs. This co-doping approach involving short-range energy transfer represents a promising avenue for achieving high-quality white light within a single material.
Collapse
Affiliation(s)
- Bo Zhou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, People's Republic of China
| | - Aixuan Du
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Dong Ding
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, People's Republic of China
| | - Zexiang Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ye Wang
- Key Laboratory of Material Physics, School of Physics and Microelectronics, Zhengzhou University, Ministry of Education, Zhengzhou, 450052, People's Republic of China
| | - Haizhe Zhong
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Henan Li
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518060, People's Republic of China.
| | - Yumeng Shi
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|