1
|
Zitzmann A, Pulletz S, Gonzales‐Rios P, Frenkel P, Teschendorf P, Kremeier P, Löser B, Krukewitt L, Reuter DA, Böhm SH, Müller‐Graf F. Regional ventilation in spontaneously breathing COVID-19 patients during postural maneuvers assessed by electrical impedance tomography. Acta Anaesthesiol Scand 2023; 67:185-194. [PMID: 36268561 PMCID: PMC9874544 DOI: 10.1111/aas.14161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/26/2022] [Accepted: 10/13/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Gravity-dependent positioning therapy is an established concept in the treatment of severe acute respiratory distress syndrome and improves oxygenation in spontaneously breathing patients with hypoxemic acute respiratory failure. In patients with coronavirus disease 2019, this therapy seems to be less effective. Electrical impedance tomography as a point-of-care functional imaging modality for visualizing regional ventilation can possibly help identify patients who might benefit from positioning therapy and guide those maneuvers in real-time. Therefore, in this prospective observational study, we aimed to discover typical patterns in response to positioning maneuvers. METHODS Distribution of ventilation in 10 healthy volunteers and in 12 patients with hypoxemic respiratory failure due to coronavirus disease 2019 was measured in supine, left, and right lateral positions using electrical impedance tomography. RESULTS In this study, patients with coronavirus disease 2019 showed a variety of ventilation patterns, which were not predictable, whereas all but one healthy volunteer showed a typical and expected gravity-dependent distribution of ventilation with the body positions. CONCLUSION Distribution of ventilation and response to lateral positioning is variable and thus unpredictable in spontaneously breathing patients with coronavirus disease 2019. Electrical impedance tomography might add useful information on the immediate reaction to postural maneuvers and should be elucidated further in clinical studies. Therefore, we suggest a customized individualized positioning therapy guided by electrical impedance tomography.
Collapse
Affiliation(s)
- Amelie Zitzmann
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Sven Pulletz
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Pablo Gonzales‐Rios
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany,Department of Anaesthesiology and Intensive Care MedicineKlinikum OsnabrückOsnabrückGermany
| | - Paul Frenkel
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Peter Teschendorf
- Department of Anaesthesiology and Intensive Care MedicineKlinikum OsnabrückOsnabrückGermany
| | - Peter Kremeier
- Simulation Center for Clinical VentilationWaldbronnGermany
| | - Benjamin Löser
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Lisa Krukewitt
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Daniel A. Reuter
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Stephan H. Böhm
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| | - Fabian Müller‐Graf
- Department of Anaesthesiology, Intensive Care Medicine and Pain TherapyUniversity Medical Centre RostockRostockGermany
| |
Collapse
|
2
|
Dynamic relative regional strain visualized by electrical impedance tomography in patients suffering from COVID-19. J Clin Monit Comput 2021; 36:975-985. [PMID: 34386896 PMCID: PMC8363090 DOI: 10.1007/s10877-021-00748-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023]
Abstract
Respiratory failure due to SARS-CoV-2 may progress rapidly. During the course of COVID-19, patients develop an increased respiratory drive, which may induce high mechanical strain a known risk factor for Patient Self-Inflicted Lung Injury (P-SILI). We developed a novel Electrical Impedance Tomography-based approach to visualize the Dynamic Relative Regional Strain (DRRS) in SARS-CoV-2 positive patients and compared these findings with measurements in lung healthy volunteers. DRRS was defined as the ratio of tidal impedance changes and end-expiratory lung impedance within each pixel of the lung region. DRRS values of the ten patients were considerably higher than those of the ten healthy volunteers. On repeated examination, patterns, magnitude and frequency distribution of DRRS were reproducible and in line with the clinical course of the patients. Lung ultrasound scores correlated with the number of pixels showing DRRS values above the derived threshold. Using Electrical Impedance Tomography we were able to generate, for the first time, images of DRRS which might indicate P-SILI in patients suffering from COVID-19. Trial Registration This observational study was registered 06.04.2020 in German Clinical Trials Register (DRKS00021276).
Collapse
|
3
|
Sophocleous L, Waldmann AD, Becher T, Kallio M, Rahtu M, Miedema M, Papadouri T, Karaoli C, Tingay DG, Van Kaam AH, Yerworth R, Bayford R, Frerichs I. Effect of sternal electrode gap and belt rotation on the robustness of pulmonary electrical impedance tomography parameters. Physiol Meas 2020; 41:035003. [DOI: 10.1088/1361-6579/ab7b42] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Positive End-expiratory Pressure and Distribution of Ventilation in Pneumoperitoneum Combined with Steep Trendelenburg Position. Anesthesiology 2020; 132:476-490. [DOI: 10.1097/aln.0000000000003062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Background
Pneumoperitoneum and a steep Trendelenburg position during robot-assisted laparoscopic prostatectomy have been demonstrated to promote a cranial shift of the diaphragm and the formation of atelectasis in the dorsal parts of the lungs. However, neither an impact of higher positive end-expiratory pressure (PEEP) on preserving the ventilation in the dorsal region nor its physiologic effects have been fully examined. The authors hypothesized that PEEP of 15 cm H2O during robot-assisted laparoscopic prostatectomy might maintain ventilation in the dorsal parts and thus improve lung mechanics.
Methods
In this randomized controlled study, 48 patients undergoing robot-assisted laparoscopic prostatectomy were included in the analysis. Patients were assigned to the conventional PEEP (5 cm H2O) group or the high PEEP (15 cm H2O) group. Regional ventilation was monitored using electrical impedance tomography before and after the establishment of pneumoperitoneum and 20° Trendelenburg position during the surgery. The primary endpoint was the regional ventilation in the dorsal parts of the lungs while the secondary endpoints were lung mechanics and postoperative lung function.
Results
Compared to that in the conventional PEEP group, the fraction of regional ventilation in the most dorsal region was significantly higher in the high PEEP group during pneumoperitoneum and Trendelenburg position (mean values at 20 min after taking Trendelenburg position: conventional PEEP, 5.5 ± 3.9%; high PEEP, 9.9 ± 4.7%; difference, –4.5%; 95% CI, –7.4 to –1.6%; P = 0.004). Concurrently, lower driving pressure (conventional PEEP, 14.9 ± 2.5 cm H2O; high PEEP, 11.5 ± 2.8 cm H2O; P < 0.001), higher lung dynamic compliance, and better oxygenation were demonstrated in the high PEEP group. Postoperative lung function did not differ between the groups.
Conclusions
Application of a PEEP of 15 cm H2O resulted in more homogeneous ventilation and favorable physiologic effects during robot-assisted laparoscopic prostatectomy but did not improve postoperative lung function.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
5
|
de Gelidi S, Seifnaraghi N, Bardill A, Wu Y, Frerichs I, Demosthenous A, Tizzard A, Bayford R. Towards a thoracic conductive phantom for EIT. Med Eng Phys 2020; 77:88-94. [PMID: 31948771 DOI: 10.1016/j.medengphy.2019.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 10/14/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023]
Abstract
Phantom experiments are a crucial step for testing new hardware or imaging algorithms for electrical impedance tomography (EIT) studies. However, constructing an accurate phantom for EIT research remains critical; some studies have attempted to model the skull and breasts, and even fewer, as yet, have considered the thorax. In this study, a critical comparison between the electrical properties (impedance) of three materials is undertaken: a polyurethane foam, a silicone mixture and a thermoplastic polyurethane filament. The latter was identified as the most promising material and adopted for the development of a flexible neonatal torso. The validation is performed by the EIT image reconstruction of the air filled cavities, which mimic the lung regions. The methodology is reproducible for the creation of any phantom that requires a slight flexibility.
Collapse
Affiliation(s)
- Serena de Gelidi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom.
| | - Nima Seifnaraghi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Andy Bardill
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Yu Wu
- University College London, London, United Kingdom
| | - Inéz Frerichs
- University Medical Centre Schlewig-Holstein, Kiel, Germany
| | | | - Andrew Tizzard
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Richard Bayford
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| |
Collapse
|
6
|
Thürk F, Elenkov M, Waldmann AD, Böhme S, Braun C, Adler A, Kaniusas E. Influence of reconstruction settings in electrical impedance tomography on figures of merit and physiological parameters. Physiol Meas 2019; 40:094003. [DOI: 10.1088/1361-6579/ab248e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Scaramuzzo G, Spadaro S, Waldmann AD, Böhm SH, Ragazzi R, Marangoni E, Alvisi V, Spinelli E, Mauri T, Volta CA. Heterogeneity of regional inflection points from pressure-volume curves assessed by electrical impedance tomography. Crit Care 2019; 23:119. [PMID: 30992054 PMCID: PMC6469223 DOI: 10.1186/s13054-019-2417-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background The pressure-volume (P-V) curve has been suggested as a bedside tool to set mechanical ventilation; however, it reflects a global behavior of the lung without giving information on the regional mechanical properties. Regional P-V (PVr) curves derived from electrical impedance tomography (EIT) could provide valuable clinical information at bedside, being able to explore the regional mechanics of the lung. In the present study, we hypothesized that regional P-V curves would provide different information from those obtained from global P-V curves, both in terms of upper and lower inflection points. Therefore, we constructed pressure-volume curves for each pixel row from non-dependent to dependent lung regions of patients affected by acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS). Methods We analyzed slow-inflation P-V maneuvers data from 12 mechanically ventilated patients. During the inflation, the pneumotachograph was used to record flow and airway pressure while the EIT signals were recorded digitally. From each maneuver, global respiratory system P-V curve (PVg) and PVr curves were obtained, each one corresponding to a pixel row within the EIT image. PVg and PVr curves were fitted using a sigmoidal equation, and the upper (UIP) and lower (LIP) inflection points for each curve were mathematically identified; LIP and UIP from PVg were respectively called LIPg and UIPg. From each measurement, the highest regional LIP (LIPrMAX) and the lowest regional UIP (UIPrMIN) were identified and the pressure difference between those two points was defined as linear driving pressure (ΔPLIN). Results A significant difference (p < 0.001) was found between LIPrMAX (15.8 [9.2–21.1] cmH2O) and LIPg (2.9 [2.2–8.9] cmH2O); in all measurements, the LIPrMAX was higher than the corresponding LIPg. We found a significant difference (p < 0.005) between UIPrMIN (30.1 [23.5–37.6] cmH2O) and UIPg (40.5 [34.2–45] cmH2O), the UIPrMIN always being lower than the corresponding UIPg. Median ΔPLIN was 12.6 [7.4–20.8] cmH2O and in 56% of cases was < 14 cmH2O. Conclusions Regional inflection points derived by EIT show high variability reflecting lung heterogeneity. Regional P-V curves obtained by EIT could convey more sensitive information than global lung mechanics on the pressures within which all lung regions express linear compliance. Trial registration Clinicaltrials.gov, NCT02907840. Registered on 20 September 2016. Electronic supplementary material The online version of this article (10.1186/s13054-019-2417-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Azienda Ospedaliera - Universitaria Sant'Anna Hospital, Via Aldo Moro, Ferrara, Italy
| | - Savino Spadaro
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Azienda Ospedaliera - Universitaria Sant'Anna Hospital, Via Aldo Moro, Ferrara, Italy.
| | - Andreas D Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Stephan H Böhm
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Riccardo Ragazzi
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Azienda Ospedaliera - Universitaria Sant'Anna Hospital, Via Aldo Moro, Ferrara, Italy
| | - Elisabetta Marangoni
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Azienda Ospedaliera - Universitaria Sant'Anna Hospital, Via Aldo Moro, Ferrara, Italy
| | - Valentina Alvisi
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Azienda Ospedaliera - Universitaria Sant'Anna Hospital, Via Aldo Moro, Ferrara, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Ca' Granda, University of Milan, Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Ca' Granda, University of Milan, Milan, Italy
| | - Carlo Alberto Volta
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Azienda Ospedaliera - Universitaria Sant'Anna Hospital, Via Aldo Moro, Ferrara, Italy
| |
Collapse
|
8
|
Shiraz A, Khodadad D, Nordebo S, Yerworth R, Frerichs I, van Kaam A, Kallio M, Papadouri T, Bayford R, Demosthenous A. Compressive sensing in electrical impedance tomography for breathing monitoring. Physiol Meas 2019; 40:034010. [PMID: 30844770 DOI: 10.1088/1361-6579/ab0daa] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Electrical impedance tomography (EIT) is a functional imaging technique in which cross-sectional images of structures are reconstructed based on boundary trans-impedance measurements. Continuous functional thorax monitoring using EIT has been extensively researched. Increasing the number of electrodes, number of planes and frame rate may improve clinical decision making. Thus, a limiting factor in high temporal resolution, 3D and fast EIT is the handling of the volume of raw impedance data produced for transmission and its subsequent storage. Owing to the periodicity (i.e. sparsity in frequency domain) of breathing and other physiological variations that may be reflected in EIT boundary measurements, data dimensionality may be reduced efficiently at the time of sampling using compressed sensing techniques. This way, a fewer number of samples may be taken. APPROACH Measurements using a 32-electrode, 48-frames-per-second EIT system from 30 neonates were post-processed to simulate random demodulation acquisition method on 2000 frames (each consisting of 544 measurements) for compression ratios (CRs) ranging from 2 to 100. Sparse reconstruction was performed by solving the basis pursuit problem using SPGL1 package. The global impedance data (i.e. sum of all 544 measurements in each frame) was used in the subsequent studies. The signal to noise ratio (SNR) for the entire frequency band (0 Hz-24 Hz) and three local frequency bands were analysed. A breath detection algorithm was applied to traces and the subsequent error-rates were calculated while considering the outcome of the algorithm applied to a down-sampled and linearly interpolated version of the traces as the baseline. MAIN RESULTS SNR degradation was generally proportional with CR. The mean degradation for 0 Hz-8 Hz (of interest for the target physiological variations) was below ~15 dB for all CRs. The error-rates in the outcome of the breath detection algorithm in the case of decompressed traces were lower than those associated with the corresponding down-sampled traces for CR ⩾ 25, corresponding to sub-Nyquist rate for breathing frequency. For instance, the mean error-rate associated with CR = 50 was ~60% lower than that of the corresponding down-sampled traces. SIGNIFICANCE To the best of our knowledge, no other study has evaluated the applicability of compressive sensing techniques on raw boundary impedance data in EIT. While further research should be directed at optimising the acquisition and decompression techniques for this application, this contribution serves as the baseline for future efforts.
Collapse
Affiliation(s)
- A Shiraz
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Karagiannidis C, Waldmann AD, Róka PL, Schreiber T, Strassmann S, Windisch W, Böhm SH. Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:221. [PMID: 30236123 PMCID: PMC6148957 DOI: 10.1186/s13054-018-2137-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/27/2018] [Indexed: 01/17/2023]
Abstract
Background Electrical impedance tomography (EIT) has been used to guide mechanical ventilation in ICU patients with lung collapse. Its use in patients with obstructive pulmonary diseases has been rare since obstructions could not be monitored on a regional level at the bedside. The current study therefore determines breath-by-breath regional expiratory time constants in intubated patients with chronic obstructive pulmonary disease (COPD) and acute respiratory distress syndrome (ARDS). Methods Expiratory time constants calculated from the global impedance EIT signal were compared to the pneumatic volume signals measured with an electronic pneumotachograph. EIT-derived expiratory time constants were additionally determined on a regional and pixelwise level. However, regional EIT signals on a single pixel level could in principle not be compared with similar pneumatic changes since these measurements cannot be obtained in patients. For this study, EIT measurements were conducted in 14 intubated patients (mean Simplified Acute Physiology Score II (SAPS II) 35 ± 10, mean time on invasive mechanical ventilation 36 ± 26 days) under four different positive end-expiratory pressure (PEEP) levels ranging from 10 to 17 cmH2O. Only patients with moderate-severe ARDS or COPD exacerbation were included into the study, preferentally within the first days following intubation. Results Spearman’s correlation coefficient for comparison between EIT-derived time constants and those from flow/volume curves was between 0.78 for tau (τ) calculated from the global impedance signal up to 0.83 for the mean of all pixelwise calculated regional impedance changes over the entire PEEP range. Furthermore, Bland-Altman analysis revealed a corresponding bias of 0.02 and 0.14 s within the limits of agreement ranging from − 0.50 to 0.65 s for the aforementioned calculation methods. In addition, exemplarily in patients with moderate-severe ARDS or COPD exacerbation, different PEEP levels were shown to have an influence on the distribution pattern of regional time constants. Conclusions EIT-based determination of breath-by-breath regional expiratory time constants is technically feasible, reliable and valid in invasively ventilated patients with severe respiratory failure and provides a promising tool to individually adjust mechanical ventilation in response to the patterns of regional airflow obstruction. Trial registration German Trial Register DRKS 00011650, registered 01/31/17. Electronic supplementary material The online version of this article (10.1186/s13054-018-2137-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany.
| | - Andreas D Waldmann
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany.,Swisstom AG, Schulstrasse 1, 7302, Landquart, Switzerland
| | - Péter L Róka
- Budapest University of Technology and Economics, Budapest, Hungary
| | - Tina Schreiber
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Stephan Strassmann
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Wolfram Windisch
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Stephan H Böhm
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsmedizin Rostock, Schillingallee 35, D-18057, Rostock, Germany
| |
Collapse
|
10
|
Khodadad D, Nordebo S, Müller B, Waldmann A, Yerworth R, Becher T, Frerichs I, Sophocleous L, van Kaam A, Miedema M, Seifnaraghi N, Bayford R. Optimized breath detection algorithm in electrical impedance tomography. Physiol Meas 2018; 39:094001. [PMID: 30074906 DOI: 10.1088/1361-6579/aad7e6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This paper defines a method for optimizing the breath delineation algorithms used in electrical impedance tomography (EIT). In lung EIT the identification of the breath phases is central for generating tidal impedance variation images, subsequent data analysis and clinical evaluation. The optimisation of these algorithms is particularly important in neonatal care since the existing breath detectors developed for adults may give insufficient reliability in neonates due to their very irregular breathing pattern. APPROACH Our approach is generic in the sense that it relies on the definition of a gold standard and the associated definition of detector sensitivity and specificity, an optimisation criterion and a set of detector parameters to be investigated. The gold standard has been defined by 11 clinicians with previous experience with EIT and the performance of our approach is described and validated using a neonatal EIT dataset acquired within the EU-funded CRADL project. MAIN RESULTS Three different algorithms are proposed that improve the breath detector performance by adding conditions on (1) maximum tidal breath rate obtained from zero-crossings of the EIT breathing signal, (2) minimum tidal impedance amplitude and (3) minimum tidal breath rate obtained from time-frequency analysis. As a baseline a zero-crossing algorithm has been used with some default parameters based on the Swisstom EIT device. SIGNIFICANCE Based on the gold standard, the most crucial parameters of the proposed algorithms are optimised by using a simple exhaustive search and a weighted metric defined in connection with the receiver operating characterics. This provides a practical way to achieve any desirable trade-off between the sensitivity and the specificity of the detectors.
Collapse
Affiliation(s)
- D Khodadad
- Department of Physics and Electrical Engineering, Linnaeus University, Växjö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mosing M, Waldmann AD, Raisis A, Böhm SH, Drynan E, Wilson K. Monitoring of tidal ventilation by electrical impedance tomography in anaesthetised horses. Equine Vet J 2018; 51:222-226. [PMID: 30035329 DOI: 10.1111/evj.12998] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Electrical impedance tomography (EIT) is a method to measure regional impedance changes within the thorax. The total tidal impedance variation has been used to measure changes in tidal volumes in pigs, dogs and men. OBJECTIVES To assess the ability of EIT to quantify changes in tidal volume in anaesthetised mechanically ventilated horses. STUDY DESIGN In vivo experimental study. METHODS Six horses (mean ± s.d.: age 11.5 ± 7.5 years and body weight 491 ± 40 kg) were anaesthetised using isoflurane in oxygen. The lungs were mechanically ventilated using a volume-controlled mode. With an end-tidal carbon dioxide tension in the physiological range, and a set tidal volume (VTvent ) of 11-16 mL/kg (baseline volume), EIT data and VT measured by conventional spirometry were collected over 1 min. Thereafter, VTvent was changed in 1 L steps until reaching 10 L. After, VTvent was reduced to 1 L below the baseline volume and then further reduced in 1 L steps until 4 L. On each VT step data were recorded for 1 min after allowing 1 min of stabilisation. Impedance changes within the predefined two lung regions of interest (EITROI ) and the whole image (EITthorax ) were calculated. Linear regression analysis was used to assess the relationship between spirometry data and EITROI and EITthorax for individual horses and pooled data. RESULTS Both EITROI and EITthorax significantly predicted spirometry data for individual horses with R2 ranging from 0.937 to 0.999 and from 0.954 to 0.997 respectively. This was similar for pooled data from all six horses with EITROI (R2 = 0.799; P<0.001) and EITthorax (R2 = 0.841; P<0.001). MAIN LIMITATIONS The method was only tested in healthy mechanically ventilated horses. CONCLUSIONS The EIT can be used to quantify changes in tidal volume.
Collapse
Affiliation(s)
- M Mosing
- College of Veterinary Medicine, Murdoch University, Perth, Australia
| | - A D Waldmann
- Swisstom, Landquart, Switzerland.,Department of Pneumology and Critical Care Medicine, Witten/Herdecke University Hospital, Cologne, Germany
| | - A Raisis
- College of Veterinary Medicine, Murdoch University, Perth, Australia
| | - S H Böhm
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - E Drynan
- College of Veterinary Medicine, Murdoch University, Perth, Australia
| | - K Wilson
- College of Veterinary Medicine, Murdoch University, Perth, Australia
| |
Collapse
|
12
|
Sophocleous L, Frerichs I, Miedema M, Kallio M, Papadouri T, Karaoli C, Becher T, Tingay DG, van Kaam AH, Bayford R, Waldmann AD. Clinical performance of a novel textile interface for neonatal chest electrical impedance tomography. Physiol Meas 2018. [DOI: 10.1088/1361-6579/aab513] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Braun F, Proença M, Adler A, Riedel T, Thiran JP, Solà J. Accuracy and reliability of noninvasive stroke volume monitoring via ECG-gated 3D electrical impedance tomography in healthy volunteers. PLoS One 2018; 13:e0191870. [PMID: 29373611 PMCID: PMC5786320 DOI: 10.1371/journal.pone.0191870] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/12/2018] [Indexed: 01/31/2023] Open
Abstract
Cardiac output (CO) and stroke volume (SV) are parameters of key clinical interest. Many techniques exist to measure CO and SV, but are either invasive or insufficiently accurate in clinical settings. Electrical impedance tomography (EIT) has been suggested as a noninvasive measure of SV, but inconsistent results have been reported. Our goal is to determine the accuracy and reliability of EIT-based SV measurements, and whether advanced image reconstruction approaches can help to improve the estimates. Data were collected on ten healthy volunteers undergoing postural changes and exercise. To overcome the sensitivity to heart displacement and thorax morphology reported in previous work, we used a 3D EIT configuration with 2 planes of 16 electrodes and subject-specific reconstruction models. Various EIT-derived SV estimates were compared to reference measurements derived from the oxygen uptake. Results revealed a dramatic impact of posture on the EIT images. Therefore, the analysis was restricted to measurements in supine position under controlled conditions (low noise and stable heart and lung regions). In these measurements, amplitudes of impedance changes in the heart and lung regions could successfully be derived from EIT using ECG gating. However, despite a subject-specific calibration the heart-related estimates showed an error of 0.0 ± 15.2 mL for absolute SV estimation. For trending of relative SV changes, a concordance rate of 80.9% and an angular error of -1.0 ± 23.0° were obtained. These performances are insufficient for most clinical uses. Similar conclusions were derived from lung-related estimates. Our findings indicate that the key difficulty in EIT-based SV monitoring is that purely amplitude-based features are strongly influenced by other factors (such as posture, electrode contact impedance and lung or heart conductivity). All the data of the present study are made publicly available for further investigations.
Collapse
Affiliation(s)
- Fabian Braun
- Systems Division, Centre Suisse d’Electronique et de Microtechnique (CSEM), CH-2002 Neuchâtel, Switzerland
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- * E-mail:
| | - Martin Proença
- Systems Division, Centre Suisse d’Electronique et de Microtechnique (CSEM), CH-2002 Neuchâtel, Switzerland
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Andy Adler
- Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas Riedel
- Cantonal Hospital Graubuenden, CH-7000 Chur, Switzerland
- University Children’s Hospital and University of Bern, CH-3010 Bern, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland
| | - Josep Solà
- Systems Division, Centre Suisse d’Electronique et de Microtechnique (CSEM), CH-2002 Neuchâtel, Switzerland
| |
Collapse
|
14
|
|