1
|
Ahmad IS, Dai J, Xie Y, Liang X. Deep learning models for CT image classification: a comprehensive literature review. Quant Imaging Med Surg 2025; 15:962-1011. [PMID: 39838987 PMCID: PMC11744119 DOI: 10.21037/qims-24-1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 01/23/2025]
Abstract
Background and Objective Computed tomography (CT) imaging plays a crucial role in the early detection and diagnosis of life-threatening diseases, particularly in respiratory illnesses and oncology. The rapid advancement of deep learning (DL) has revolutionized CT image analysis, enhancing diagnostic accuracy and efficiency. This review explores the impact of advanced DL methodologies in CT imaging, with a particular focus on their applications in coronavirus disease 2019 (COVID-19) detection and lung nodule classification. Methods A comprehensive literature search was conducted, examining the evolution of DL architectures in medical imaging from conventional convolutional neural networks (CNNs) to sophisticated foundational models (FMs). We reviewed publications from major databases, focusing on developments in CT image analysis using DL from 2013 to 2023. Our search criteria included all types of articles, with a focus on peer-reviewed research papers and review articles in English. Key Content and Findings The review reveals that DL, particularly advanced architectures like FMs, has transformed CT image analysis by streamlining interpretation processes and enhancing diagnostic capabilities. We found significant advancements in addressing global health challenges, especially during the COVID-19 pandemic, and in ongoing efforts for lung cancer screening. The review also addresses technical challenges in CT image analysis, including data variability, the need for large high-quality datasets, and computational demands. Innovative strategies such as transfer learning, data augmentation, and distributed computing are explored as solutions to these challenges. Conclusions This review underscores the pivotal role of DL in advancing CT image analysis, particularly for COVID-19 and lung nodule detection. The integration of DL models into clinical workflows shows promising potential to enhance diagnostic accuracy and efficiency. However, challenges remain in areas of interpretability, validation, and regulatory compliance. The review advocates for continued research, interdisciplinary collaboration, and ethical considerations as DL technologies become integral to clinical practice. While traditional imaging techniques remain vital, the integration of DL represents a significant advancement in medical diagnostics, with far-reaching implications for future research, clinical practice, and healthcare policy.
Collapse
Affiliation(s)
- Isah Salim Ahmad
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Dai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaoqin Xie
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaokun Liang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Sagar D, Dwivedi T, Gupta A, Aggarwal P, Bhatnagar S, Mohan A, Kaur P, Gupta R. Clinical Features Predicting COVID-19 Severity Risk at the Time of Hospitalization. Cureus 2024; 16:e57336. [PMID: 38690475 PMCID: PMC11059179 DOI: 10.7759/cureus.57336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 05/02/2024] Open
Abstract
The global spread of COVID-19 has led to significant mortality and morbidity worldwide. Early identification of COVID-19 patients who are at high risk of developing severe disease can help in improved patient management, care, and treatment, as well as in the effective allocation of hospital resources. The severity prediction at the time of hospitalization can be extremely helpful in deciding the treatment of COVID-19 patients. To this end, this study presents an interpretable artificial intelligence (AI) model, named COVID-19 severity predictor (CoSP) that predicts COVID-19 severity using the clinical features at the time of hospital admission. We utilized a dataset comprising 64 demographic and laboratory features of 7,416 confirmed COVID-19 patients that were collected at the time of hospital admission. The proposed hierarchical CoSP model performs four-class COVID severity risk prediction into asymptomatic, mild, moderate, and severe categories. CoSP yielded better performance with good interpretability, as observed via Shapley analysis on COVID severity prediction compared to the other popular ML methods, with an area under the received operating characteristic curve (AUC-ROC) of 0.95, an area under the precision-recall curve (AUPRC) of 0.91, and a weighted F1-score of 0.83. Out of 64 initial features, 19 features were inferred as predictive of the severity of COVID-19 disease by the CoSP model. Therefore, an AI model predicting COVID-19 severity may be helpful for early intervention, optimizing resource allocation, and guiding personalized treatments, potentially enabling healthcare professionals to save lives and allocate resources effectively in the fight against the pandemic.
Collapse
Affiliation(s)
- Dikshant Sagar
- Computer Science, Indraprastha Institute of Information Technology - Delhi, Delhi, IND
- Computer Science, Calfornia State University, Los Angeles, Los Angeles, USA
| | - Tanima Dwivedi
- Oncology, Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, IND
| | - Anubha Gupta
- Centre of Excellence in Healthcare, Indraprastha Institute of Information Technology - Delhi, Delhi, IND
| | - Priya Aggarwal
- Electronics and Communication Engineering, Indraprastha Institute of Information Technology - Delhi, Delhi, IND
| | - Sushma Bhatnagar
- Onco-Anaesthesia and Palliative Medicine, Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, IND
| | - Anant Mohan
- Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, IND
| | - Punit Kaur
- Biophysics, All India Institute of Medical Sciences, New Delhi, IND
| | - Ritu Gupta
- Oncology, Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, IND
| |
Collapse
|
3
|
Battaglia C, Manti F, Mazzuca D, Cutruzzolà A, Corte MD, Caputo F, Gratteri S, Laganà D. Impact of the COVID-19 pandemic and COVID vaccination campaign on imaging case volumes and medicolegal aspects. FRONTIERS IN HEALTH SERVICES 2024; 4:1253905. [PMID: 38487373 PMCID: PMC10937363 DOI: 10.3389/frhs.2024.1253905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Purpose The coronavirus pandemic (COVID-19) significantly impacted the global economy and health. Italy was one of the first and most affected countries. The objective of our study was to assess the impact of the pandemic and the vaccination campaign on the radiological examinations performed in a radiology department of a tertiary center in Southern Italy. Materials and methods We analyzed weekly and retrospectively electronic medical records of case volumes performed at the Radiology Department of "Mater Domini" University Hospital of Catanzaro from March 2020 to March 2022, comparing them with the volumes in the same period of the year 2019. We considered the origin of patients (outpatient, inpatient) and the type of examinations carried out (x-ray, mammography, CT, MRI, and ultrasound). A non-parametric test (Wilcoxon Signed Rank test) was applied to evaluate the average volumes. Results Total flows in the pandemic period from COVID-19 were lower than in the same pre-pandemic period with values of 552 (120) vs. 427 (149) median (IQR) (p < 0.001). The vaccination campaign allowed the resumption of the pre-vaccination pandemic with total flows 563 (113) vs. 427 (149) median (IQR) p < 0.001. In the post-vaccination period, the number of examinations was found to overlap with the pre-COVID period. Conclusion The pandemic impacted the volume of radiological examinations performed, particularly with the reduction of tests in outpatients. The vaccination allowed the return to the pre-COVID period imaging case volumes.
Collapse
Affiliation(s)
- Caterina Battaglia
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Francesco Manti
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Daniela Mazzuca
- Department of Surgical and Medical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Antonio Cutruzzolà
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Marcello Della Corte
- Department of Surgical and Medical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Fiorella Caputo
- Department of Surgical and Medical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Santo Gratteri
- Department of Surgical and Medical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Domenico Laganà
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, Catanzaro, Italy
| |
Collapse
|
4
|
Baek S, Jeong YJ, Kim YH, Kim JY, Kim JH, Kim EY, Lim JK, Kim J, Kim Z, Kim K, Chung MJ. Development and Validation of a Robust and Interpretable Early Triaging Support System for Patients Hospitalized With COVID-19: Predictive Algorithm Modeling and Interpretation Study. J Med Internet Res 2024; 26:e52134. [PMID: 38206673 PMCID: PMC10811577 DOI: 10.2196/52134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Robust and accurate prediction of severity for patients with COVID-19 is crucial for patient triaging decisions. Many proposed models were prone to either high bias risk or low-to-moderate discrimination. Some also suffered from a lack of clinical interpretability and were developed based on early pandemic period data. Hence, there has been a compelling need for advancements in prediction models for better clinical applicability. OBJECTIVE The primary objective of this study was to develop and validate a machine learning-based Robust and Interpretable Early Triaging Support (RIETS) system that predicts severity progression (involving any of the following events: intensive care unit admission, in-hospital death, mechanical ventilation required, or extracorporeal membrane oxygenation required) within 15 days upon hospitalization based on routinely available clinical and laboratory biomarkers. METHODS We included data from 5945 hospitalized patients with COVID-19 from 19 hospitals in South Korea collected between January 2020 and August 2022. For model development and external validation, the whole data set was partitioned into 2 independent cohorts by stratified random cluster sampling according to hospital type (general and tertiary care) and geographical location (metropolitan and nonmetropolitan). Machine learning models were trained and internally validated through a cross-validation technique on the development cohort. They were externally validated using a bootstrapped sampling technique on the external validation cohort. The best-performing model was selected primarily based on the area under the receiver operating characteristic curve (AUROC), and its robustness was evaluated using bias risk assessment. For model interpretability, we used Shapley and patient clustering methods. RESULTS Our final model, RIETS, was developed based on a deep neural network of 11 clinical and laboratory biomarkers that are readily available within the first day of hospitalization. The features predictive of severity included lactate dehydrogenase, age, absolute lymphocyte count, dyspnea, respiratory rate, diabetes mellitus, c-reactive protein, absolute neutrophil count, platelet count, white blood cell count, and saturation of peripheral oxygen. RIETS demonstrated excellent discrimination (AUROC=0.937; 95% CI 0.935-0.938) with high calibration (integrated calibration index=0.041), satisfied all the criteria of low bias risk in a risk assessment tool, and provided detailed interpretations of model parameters and patient clusters. In addition, RIETS showed potential for transportability across variant periods with its sustainable prediction on Omicron cases (AUROC=0.903, 95% CI 0.897-0.910). CONCLUSIONS RIETS was developed and validated to assist early triaging by promptly predicting the severity of hospitalized patients with COVID-19. Its high performance with low bias risk ensures considerably reliable prediction. The use of a nationwide multicenter cohort in the model development and validation implicates generalizability. The use of routinely collected features may enable wide adaptability. Interpretations of model parameters and patients can promote clinical applicability. Together, we anticipate that RIETS will facilitate the patient triaging workflow and efficient resource allocation when incorporated into a routine clinical practice.
Collapse
Affiliation(s)
- Sangwon Baek
- Medical AI Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Center for Data Science, New York University, New York, NY, United States
| | - Yeon Joo Jeong
- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yun-Hyeon Kim
- Department of Radiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jin Young Kim
- Department of Radiology, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Jin Hwan Kim
- Department of Radiology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Eun Young Kim
- Department of Radiology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Jae-Kwang Lim
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jungok Kim
- Department of Infectious Diseases, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Zero Kim
- Medical AI Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Data Convergence & Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyunga Kim
- Department of Data Convergence & Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Myung Jin Chung
- Medical AI Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Data Convergence & Future Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Radiology, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|