1
|
Nabawy A, Chattopadhyay AN, Makabenta JMV, Hassan MA, Yang J, Park J, Jiang M, Jeon T, Im J, Rotello VM. Cationic conjugated polymers with tunable hydrophobicity for efficient treatment of multidrug-resistant wound biofilm infections. Biomaterials 2025; 316:123015. [PMID: 39705926 PMCID: PMC11755787 DOI: 10.1016/j.biomaterials.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Biofilm-associated infections arising from antibiotic-resistant bacteria pose a critical challenge to global health. We report the generation of a library of cationic conjugated poly(phenylene ethynylene) (PPE) polymers featuring trimethylammonium terminated sidechains with tunable hydrophobicity. Screening of the library identified an amphiphilic polymer with a C11 hydrophobic spacer as the polymer with the highest antimicrobial efficacy against biofilms in the dark with excellent selectivity. These polymers are highly fluorescent, allowing label-free monitoring of polymer-bacteria/biofilm interactions. The amphiphilic conjugated polymer penetrated the biofilm matrix in vitro and eradicated resident bacteria through membrane disruption. This C11 polymer was likewise effective in an in vivo murine model of antibiotic-resistant wound biofilm infections, clearing >99.9 % of biofilm colonies and efficient alleviation of biofilm-associated inflammation. The results demonstrate the therapeutic potential of the fluorescent conjugated polymer platform as a multi-modal antimicrobial and imaging tool, surpassing conventional antimicrobial strategies against resilient biofilm infection.
Collapse
Affiliation(s)
- Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Jessa Marie V Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Junwhee Yang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA, 01003, USA
| | - Jungkyun Im
- Department of Chemical Engineering, and Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyangro, Asan, 31538, Republic of Korea
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
2
|
Tian JH, Hu XY, Hu ZY, Tian HW, Li JJ, Pan YC, Li HB, Guo DS. A facile way to construct sensor array library via supramolecular chemistry for discriminating complex systems. Nat Commun 2022; 13:4293. [PMID: 35879312 PMCID: PMC9314354 DOI: 10.1038/s41467-022-31986-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022] Open
Abstract
Differential sensing, which discriminates analytes via pattern recognition by sensor arrays, plays an important role in our understanding of many chemical and biological systems. However, it remains challenging to develop new methods to build a sensor unit library without incurring a high workload of synthesis. Herein, we propose a supramolecular approach to construct a sensor unit library by taking full advantage of recognition and assembly. Ten sensor arrays are developed by replacing the building block combinations, adjusting the ratio between system components, and changing the environment. Using proteins as model analytes, we examine the discriminative abilities of these supramolecular sensor arrays. Then the practical applicability for discriminating complex analytes is further demonstrated using honey as an example. This sensor array construction strategy is simple, tunable, and capable of developing many sensor units with as few syntheses as possible.
Collapse
Affiliation(s)
- Jia-Hong Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Zong-Ying Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Han-Wen Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Juan-Juan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Delabie J, Ceunen W, Detavernier S, De Winter J, Gerbaux P, Verbiest T, Koeckelberghs G. Catechol as a Universal Linker for the Synthesis of Hybrid Polyfluorene/Nanoparticle Materials. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jonas Delabie
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Heverlee, Belgium
| | - Ward Ceunen
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Heverlee, Belgium
| | - Siebe Detavernier
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Heverlee, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Materials Science and Engineering, University of Mons-UMONS, 23 Place de Parc, B-7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Materials Science and Engineering, University of Mons-UMONS, 23 Place de Parc, B-7000 Mons, Belgium
| | - Thierry Verbiest
- Laboratory for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan 200D, Box 2425, B-3001 Heverlee, Belgium
| | - Guy Koeckelberghs
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Heverlee, Belgium
| |
Collapse
|
4
|
A Multichannel Pattern-Recognition-Based Protein Sensor with a Fluorophore-Conjugated Single-Stranded DNA Set. SENSORS 2020; 20:s20185110. [PMID: 32911729 PMCID: PMC7570997 DOI: 10.3390/s20185110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022]
Abstract
Recently, pattern-recognition-based protein sensing has received considerable attention because it offers unique opportunities that complement more conventional antibody-based detection methods. Here, we report a multichannel pattern-recognition-based sensor using a set of fluorophore-conjugated single-stranded DNAs (ssDNAs), which can detect various proteins. Three different fluorophore-conjugated ssDNAs were placed into a single microplate well together with a target protein, and the generated optical response pattern that corresponds to each environment-sensitive fluorophore was read via multiple detection channels. Multivariate analysis of the resulting optical response patterns allowed an accurate detection of eight different proteases, indicating that fluorescence signal acquisition from a single compartment containing a mixture of ssDNAs is an effective strategy for the characterization of the target proteins. Additionally, the sensor could identify proteins, which are potential targets for disease diagnosis, in a protease and inhibitor mixture of different composition ratios. As our sensor benefits from simple construction and measurement procedures, and uses accessible materials, it offers a rapid and simple platform for the detection of proteins.
Collapse
|
5
|
Zhang H, Chan-Park MB, Wang M. Functional Polymers and Polymer-Dye Composites for Food Sensing. Macromol Rapid Commun 2020; 41:e2000279. [PMID: 32840324 DOI: 10.1002/marc.202000279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Indexed: 12/19/2022]
Abstract
The sensitive, safe, and portable detection of food spoilage is becoming unprecedentedly important because it is closely related to the public health and economic development, particularly given the globalization of food supply chain. However, the existing approaches for food monitoring are still limited to meet these requirements. To address this challenge, much research has been done to develop an ideal food sensor that can indicate food quality in real-time in a sensitive and reliable way. So far, many sensors such as time-temperature indicators, smart trademarks, colorimetric tags, electronic noses, and electronic tongues, have been developed and even commercialized. In this feature article, the recent progress of food sensors based on functional polymers, including the molecular design of polymer structures, sensing mechanisms, and relevant processing techniques to fabricate a variety of food sensor devices is reviewed.
Collapse
Affiliation(s)
- Hang Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
6
|
Tropp J, Ihde MH, Crater ER, Bell NC, Bhatta R, Johnson IC, Bonizzoni M, Azoulay JD. A Sensor Array for the Nanomolar Detection of Azo Dyes in Water. ACS Sens 2020; 5:1541-1547. [PMID: 32475110 DOI: 10.1021/acssensors.0c00342] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Azo dyes are ubiquitous pollutants that contaminate water supplies and threaten human, biota, and ecosystem health. Their detection and discrimination are a considerable challenge owing to the numerous structural, chemical, and optical similarities between dyes, complexity of the wastewater in which they are found, and low environmental concentrations. Here, we demonstrate that the inner filter effect (IFE), in combination with conjugated polymer array-based sensing, offers a rapid approach for the quantitative profiling of these pollutants. The array was constructed using three anionic conjugated polyelectrolytes whose varying spectroscopic properties led to distinct IFE patterns in the presence of various dyes. These unique fluorescence response patterns were identified and processed using linear discriminant analysis (LDA), enabling the individual identification of 12 closely related azo dyes. To demonstrate the potential for utility in the environment, the array was used to differentiate between these dyes at nanomolar concentrations in water.
Collapse
Affiliation(s)
- Joshua Tropp
- Center for Optoelectronic Materials and Devices, School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Michael H. Ihde
- Department of Chemistry and Biochemistry, The University of Alabama, P.O. Box 870336, Tuscaloosa, Alabama 35487, United States
| | - Erin R. Crater
- Center for Optoelectronic Materials and Devices, School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Noel C. Bell
- Center for Optoelectronic Materials and Devices, School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Rimsha Bhatta
- Center for Optoelectronic Materials and Devices, School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Ian C. Johnson
- Center for Optoelectronic Materials and Devices, School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Marco Bonizzoni
- Department of Chemistry and Biochemistry, The University of Alabama, P.O. Box 870336, Tuscaloosa, Alabama 35487, United States
- The Alabama Water Institute, P.O. Box 870206, Tuscaloosa, Alabama 35487, United States
| | - Jason D. Azoulay
- Center for Optoelectronic Materials and Devices, School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
7
|
Zhang H, Kotlear EA, Kushida S, Maier S, Rominger F, Freudenberg J, Bunz UHF. Linear and Star-Shaped Extended Di- and Tristyrylbenzenes: Synthesis, Characterization and Optical Response to Acid and Metal Ions. Chemistry 2020; 26:8137-8143. [PMID: 32220032 PMCID: PMC7383513 DOI: 10.1002/chem.202000893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/25/2020] [Indexed: 11/29/2022]
Abstract
Two linear 1,4-distyrylbenzenes and five star-shaped 1,3,5-tristyrylbenzene derivatives (L2a and L2b , Y0 -Y3 and YNBu ) were synthesized and spectroscopically characterized. The photophysical properties, optical response to acid and metal ions were investigated. Upon backbone extension of linear distyrylbenzenes or the introduction of dibutylanilines, the electronic spectra are redshifted. Incorporation of electron-deficient pyridyl units does not significantly affect the optical properties. Variation of the number of pyridine rings and substitution pattern tune the fluorescence response to acids and metal ions. The novel arenes discriminate Al3+ , Mn2+ , Fe3+ , Fe2+ , Cd2+ , Ag+ and Hg2+ .
Collapse
Affiliation(s)
- Hao Zhang
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Eugen A. Kotlear
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Soh Kushida
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Steffen Maier
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Jan Freudenberg
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Uwe H. F. Bunz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
8
|
Well-Defined Conjugated Macromolecules Based on Oligo(Arylene Ethynylene)s in Sensing. Processes (Basel) 2020. [DOI: 10.3390/pr8050539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Macromolecules with well-defined structures in terms of molar mass and monomer sequence became interesting building blocks for modern materials. The precision of the macromolecular structure makes fine-tuning of the properties of resulting materials possible. Conjugated macromolecules exhibit excellent optoelectronic properties that make them exceptional candidates for sensor construction. The importance of chain length and monomer sequence is particularly important in conjugated systems. The oligomer length, monomer sequence, and structural modification often influence the energy bang gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the molecules that reflect in their properties. Moreover, the supramolecular aggregation that is often observed in oligo-conjugated systems is usually strongly affected by even minor structural changes that are used for sensor designs. This review discusses the examples of well-defined conjugated macromolecules based on oligo(arylene ethynylene) skeleton used for sensor applications. Here, exclusively examples of uniform macromolecules are summarized. The sensing mechanisms and importance of uniformity of structure are deliberated.
Collapse
|
9
|
Tropp J, Ihde MH, Williams AK, White NJ, Eedugurala N, Bell NC, Azoulay JD, Bonizzoni M. A sensor array for the discrimination of polycyclic aromatic hydrocarbons using conjugated polymers and the inner filter effect. Chem Sci 2019; 10:10247-10255. [PMID: 32110311 PMCID: PMC7020785 DOI: 10.1039/c9sc03405f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/04/2019] [Indexed: 12/27/2022] Open
Abstract
The inner filter effect and multivariate array sensing using conjugated polymers are combined for the detection and challenging discrimination of closely related polycyclic aromatic hydrocarbons.
Natural and anthropogenic activities result in the production of polycyclic aromatic hydrocarbons (PAHs), persistent pollutants that negatively impact the environment and human health. Rapid and reliable methods for the detection and discrimination of these compounds remains a technological challenge owing to their relatively featureless properties, structural similarities, and existence as complex mixtures. Here, we demonstrate that the inner filter effect (IFE), in combination with conjugated polymer (CP) array-based sensing, offers a straightforward approach for the quantitative and qualitative profiling of PAHs. The sensor array was constructed from six fluorescent fluorene-based copolymers, which incorporate side chains with peripheral 2-phenylbenzimidazole substituents that provide spectral overlap with PAHs and give rise to a pronounced IFE. Subtle structural differences in copolymer structure result in distinct spectral signatures, which provide a unique “chemical fingerprint” for each PAH. The discriminatory power of the array was evaluated using linear discriminant analysis (LDA) and principal component analysis (PCA) in order to discriminate between 16 PAH compounds identified as priority pollutants by the US Environmental Protection Agency (EPA). This array is the first multivariate system reliant on the modulation of the spectral signatures of CPs through the IFE for the detection and discrimination of closely related polynuclear aromatic species.
Collapse
Affiliation(s)
- Joshua Tropp
- Center for Optoelectronic Materials and Devices , School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive #5050 , Hattiesburg , MS 39406 , USA .
| | - Michael H Ihde
- Department of Chemistry and Biochemistry , The University of Alabama , P.O. Box 870336 , Tuscaloosa , AL 35487 , USA .
| | - Abagail K Williams
- Center for Optoelectronic Materials and Devices , School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive #5050 , Hattiesburg , MS 39406 , USA .
| | - Nicholas J White
- Department of Chemistry and Biochemistry , The University of Alabama , P.O. Box 870336 , Tuscaloosa , AL 35487 , USA .
| | - Naresh Eedugurala
- Center for Optoelectronic Materials and Devices , School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive #5050 , Hattiesburg , MS 39406 , USA .
| | - Noel C Bell
- Center for Optoelectronic Materials and Devices , School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive #5050 , Hattiesburg , MS 39406 , USA .
| | - Jason D Azoulay
- Center for Optoelectronic Materials and Devices , School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive #5050 , Hattiesburg , MS 39406 , USA .
| | - Marco Bonizzoni
- Department of Chemistry and Biochemistry , The University of Alabama , P.O. Box 870336 , Tuscaloosa , AL 35487 , USA .
| |
Collapse
|
10
|
Geng Y, Peveler WJ, Rotello VM. Array-based "Chemical Nose" Sensing in Diagnostics and Drug Discovery. Angew Chem Int Ed Engl 2019; 58:5190-5200. [PMID: 30347522 PMCID: PMC6800156 DOI: 10.1002/anie.201809607] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 12/29/2022]
Abstract
Array-based sensor "chemical nose/tongue" platforms are inspired by the mammalian olfactory system. Multiple sensor elements in these devices selectively interact with target analytes, producing a distinct pattern of response and enabling analyte identification. This approach offers unique opportunities relative to "traditional" highly specific sensor elements such as antibodies. Array-based sensors excel at distinguishing small changes in complex mixtures, and this capability is being leveraged for chemical biology studies and clinical pathology, enabled by a diverse toolkit of new molecular, bioconjugate and nanomaterial technologies. Innovation in the design and analysis of arrays provides a robust set of tools for advancing biomedical goals, including precision medicine.
Collapse
Affiliation(s)
- Yingying Geng
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst MA 01003, U.S.A
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst MA 01003, U.S.A
| | - William J. Peveler
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst MA 01003, U.S.A
| |
Collapse
|
11
|
Geng Y, Peveler WJ, Rotello VM. Array‐basierte Sensorik mit der “chemischen Nase” in der Diagnostik und Wirkstoffentdeckung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201809607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yingying Geng
- Molecular and Cellular Biology ProgramUniversity of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
- Department of ChemistryUniversity of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - William J. Peveler
- Division of Biomedical EngineeringSchool of EngineeringUniversity of Glasgow Glasgow G12 8LT Großbritannien
- Department of ChemistryUniversity of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Kanada
| | - Vincent M. Rotello
- Department of ChemistryUniversity of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| |
Collapse
|
12
|
Huang W, Bender M, Seehafer K, Wacker I, Schröder RR, Bunz UHF. Novel Functional TPE Polymers: Aggregation‐Induced Emission, pH Response, and Solvatochromic Behavior. Macromol Rapid Commun 2018; 40:e1800774. [DOI: 10.1002/marc.201800774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/21/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Huang
- Organisch‐Chemisches InstitutRuprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Markus Bender
- Organisch‐Chemisches InstitutRuprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Kai Seehafer
- Organisch‐Chemisches InstitutRuprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Irene Wacker
- Cryo Electron MicroscopyUniversitatsklinikum Heidelberg, BioQuant Im Neuenheimer Feld 267 69120 Heidelberg Germany
- Centre for Advanced MaterialsRuprecht‐Karls‐Universitat Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Rasmus R. Schröder
- Cryo Electron MicroscopyUniversitatsklinikum Heidelberg, BioQuant Im Neuenheimer Feld 267 69120 Heidelberg Germany
- Centre for Advanced MaterialsRuprecht‐Karls‐Universitat Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch‐Chemisches InstitutRuprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced MaterialsRuprecht‐Karls‐Universitat Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
13
|
Wang B, Han J, Zhang H, Bender M, Biella A, Seehafer K, Bunz UHF. Detecting Counterfeit Brandies. Chemistry 2018; 24:17361-17366. [PMID: 30298635 DOI: 10.1002/chem.201804607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Indexed: 11/12/2022]
Abstract
A hypothesis-free sensor array (optoelectronic tongue) composed of an anionic, a cationic and two neutral poly(para-aryleneethynylene)s (PAE) at pH 3, 7 and 13 discriminate more than 30 spirits (including brandy, Branntwein, Cognac, Spirituose, and Weinbrand). Counterfeits (made by mixing of low-quality spirits and caramel colour) and different batches of identical brands of brandies are discriminated. The sensor array works without sample preparation or great instrumental cost, and is superior to conventional methods with respect to sample need (10-20 μL), time and effort. The discrimination stems from differential fluorescence quenching of the PAE-array by the complex mixture of the beverages' colourants, from the oak barrels or added caramel colour. The collected quenching data were analysed by linear discriminant analysis (LDA) and principal component analysis (PCA) to achieve successful discrimination.
Collapse
Affiliation(s)
- Benhua Wang
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jinsong Han
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hao Zhang
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Aike Biella
- Versuchs- und Lehranstalt für Brauerei in Berlin (VLB) e.V., Research Institute for Beer and Beverage, Seestrasse 13, 13353, Berlin, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Wang B, Han J, Bojanowski NM, Bender M, Ma C, Seehafer K, Herrmann A, Bunz UHF. An Optimized Sensor Array Identifies All Natural Amino Acids. ACS Sens 2018; 3:1562-1568. [PMID: 29896952 DOI: 10.1021/acssensors.8b00371] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wet-chemical discrimination of amino acids is still a challenge due to their structural similarity. Here, an optimized self-assembled eight-member sensor array is reported. The optimized sensor array stems from the combination of elements of different tongues, containing poly( para-phenyleneethynylene)s (PPE) and a supercharged green fluorescent protein (GFP) variant. The responsivity of the sensor dyes (PPEs and GFP) is enhanced in elements that contain adjuvants, such as metal salts but also cucurbit[7]uril (CB[7]) and acridine orange; a suitable and robust eight element array discriminates all of the 20 natural amino acids in water at 25 mM concentration with 100% accuracy. The results group well to the amino acid type, i.e., hydrophobic, polar, and aromatic ones.
Collapse
Affiliation(s)
- Benhua Wang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jinsong Han
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - N. Maximilian Bojanowski
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Chao Ma
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Andreas Herrmann
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Bender M, Bojanowski NM, Seehafer K, Bunz UHF. Immobilized Poly(aryleneethynylene) pH Strips Discriminate Different Brands of Cola. Chemistry 2018; 24:13102-13105. [PMID: 29968971 DOI: 10.1002/chem.201803103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/02/2018] [Indexed: 01/04/2023]
Abstract
Fluorescent, water-soluble poly(p-aryleneethynylene)s (PAE) were immobilized on commercially available nylon membranes by using a slot plotter, creating fluorescent, barcode-like sensor strips. Digital imaging by using a standard digital camera, before and after immersion of the strips in buffers of different pH, displays a unique color for each pH value. Statistical evaluation, multivariate analysis of variance (MANOVA) and principal component analysis (PCA), of the acquired data revealed that the immobilized PAEs are superior to the identical fluorophores when dissolved. The pH sensor array discriminates 20 different brands of commercial-cola soft drinks through differences in pH and colorant-PAE interactions.
Collapse
Affiliation(s)
- Markus Bender
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - N Maximilian Bojanowski
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Wang B, Han J, Bender M, Hahn S, Seehafer K, Bunz UHF. Poly(para-phenyleneethynylene)-Sensor Arrays Discriminate 22 Different Teas. ACS Sens 2018; 3:504-511. [PMID: 29301398 DOI: 10.1021/acssensors.7b00943] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two nine-element sensor arrays, consisting of either three cationic poly(para-phenyleneethynylene)s (PPE) or the same PPEs complexed by cucurbituril[8] (CB[8]) at pH 3, 7, and 13 in water, discriminate 22 different teas and some of their small molecule components, including caffeine, theobromine and theophylline. Both arrays distinguish all of the black, green and oolong teas. The discrimination occurs by differential fluorescence modulation of the components of the sensor array and the treatment of the collected data by linear discriminant analysis. The signal is generated by either simple quenching (PPE only array) or the disruption of the PPE/CB[8] complex and quenching of the complex's or the PPEs' fluorescence through the polyphenolic colorants of the teas. Added amino acids, theobromine, theophylline, and caffeine give a fluorescence turn on of the PPE-CB[8] array, due to the disruption of the self-assembled complex, while for the PPE-alone tongue only caffeine, theobromine, and theophylline elicited useful fluorescence response. Both tongues discriminate different teas without any problem.
Collapse
Affiliation(s)
- Benhua Wang
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jinsong Han
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Sebastian Hahn
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches
Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- CAM,
Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer
Feld 225, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Abstract
Successful discrimination of 14 representative liquors (including scotch, bourbon and rye whiskies, brandy, and vodka) was achieved using a 36-element colorimetric sensor array comprising multiple classes of cross-reactive, chemically responsive inks. In combination with a palm-sized image analyzer, the sensor array permits real-time identification of liquor products based on vapor analysis within 2 min. Changes in sensor spot colors before and after exposure to the vapors of the liquors that are partially oxidized as they are pumped over the sensor array provides a unique color difference pattern for each analyte. Facile identification of each liquor was demonstrated using several different multivariate analyses of the digital data library, including principal component, hierarchical cluster, and support vector machine analysis. The sensor array is also able to detect dilution (i.e., "watering") of liquors even down to 1% addition of water. This colorimetric sensor array is a promising portable adjunct to other available techniques for quality assurance of liquors and other alcoholic beverages.
Collapse
Affiliation(s)
- Zheng Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kenneth S. Suslick
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|