1
|
Ji Z, Yuan M, He Z, Wei H, Wang X, Song J, Jiang L. Construction of Porphyrin-Based Bimetallic Nanomaterials with Photocatalytic Properties. Molecules 2024; 29:708. [PMID: 38338452 PMCID: PMC10856655 DOI: 10.3390/molecules29030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The efficient synthesis of nanosheets containing two metal ions is currently a formidable challenge. Here, we attempted to dope lanthanide-based bimetals into porphyrin-based metal-organic skeleton materials (MOFs) by microwave-assisted heating. The results of the EDX, ICP, and XPS tests show that we have successfully synthesized porphyrin-based lanthanide bimetallic nanosheets (Tb-Eu-TCPP) using a household microwave oven. In addition, it is tested and experimentally evident that these nanosheets have a thinner thickness, a larger BET surface area, and higher photogenerated carrier separation efficiency than bulk porphyrin-based bimetallic materials, thus exhibiting enhanced photocatalytic activity and n-type semiconductor properties. Furthermore, the prepared Tb-Eu-TCPP nanomaterials are more efficient in generating single-linear state oxygen under visible light irradiation compared to pristine monometallic nanosheets due to the generation of bimetallic nodes. The significant increase in catalytic activity is attributed to the improved separation and transfer efficiency of photogenerated carriers. This study not only deepens our understanding of lanthanide bimetallic nanosheet materials but also introduces an innovative approach to improve the photocatalytic performance of MOFs.
Collapse
Affiliation(s)
- Zhiqiang Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China;
| | - Mengnan Yuan
- School of Civil Engineering, Yantai University, Yantai 264005, China;
| | - Zhaoqin He
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Hao Wei
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Xuemin Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Jianxin Song
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Lisha Jiang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| |
Collapse
|
2
|
Debruyne M, Borgmans S, Radhakrishnan S, Breynaert E, Vrielinck H, Leus K, Laemont A, De Vos J, Rawat KS, Vanlommel S, Rijckaert H, Salemi H, Everaert J, Vanden Bussche F, Poelman D, Morent R, De Geyter N, Van Der Voort P, Van Speybroeck V, Stevens CV. Engineering of Phenylpyridine- and Bipyridine-Based Covalent Organic Frameworks for Photocatalytic Tandem Aerobic Oxidation/Povarov Cyclization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35092-35106. [PMID: 37462114 DOI: 10.1021/acsami.3c07036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Covalent organic frameworks (COFs) are emerging as a new class of photoactive organic semiconductors, which possess crystalline ordered structures and high surface areas. COFs can be tailor-made toward specific (photocatalytic) applications, and the size and position of their band gaps can be tuned by the choice of building blocks and linkages. However, many types of building blocks are still unexplored as photocatalytic moieties and the scope of reactions photocatalyzed by COFs remains quite limited. In this work, we report the synthesis and application of two bipyridine- or phenylpyridine-based COFs: TpBpyCOF and TpPpyCOF. Due to their good photocatalytic properties, both materials were applied as metal-free photocatalysts for the tandem aerobic oxidation/Povarov cyclization and α-oxidation of N-aryl glycine derivatives, with the bipyridine-based TpBpyCOF exhibiting the highest activity. By expanding the range of reactions that can be photocatalyzed by COFs, this work paves the way toward the more widespread application of COFs as metal-free heterogeneous photocatalysts as a convenient alternative for commonly used homogeneous (metal-based) photocatalysts.
Collapse
Affiliation(s)
- Maarten Debruyne
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Sander Borgmans
- Department of Applied Physics, Ghent University, Technologiepark 46, Zwijnaarde 9052, Belgium
| | - Sambhu Radhakrishnan
- NMR/X-ray Platform for Convergence Research (NMRCoRe) & Centre for Surface Chemistry and Catalysis: Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200f─Box 2461, Leuven 3001, Belgium
| | - Eric Breynaert
- NMR/X-ray Platform for Convergence Research (NMRCoRe) & Centre for Surface Chemistry and Catalysis: Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200f─Box 2461, Leuven 3001, Belgium
| | - Henk Vrielinck
- Department of Solid State Sciences, Ghent University, Krijgslaan 281 (S1), Ghent 9000, Belgium
| | - Karen Leus
- Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 (B4), Ghent 9000, Belgium
| | - Andreas Laemont
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium
| | - Juul De Vos
- Department of Applied Physics, Ghent University, Technologiepark 46, Zwijnaarde 9052, Belgium
| | - Kuber Singh Rawat
- Department of Applied Physics, Ghent University, Technologiepark 46, Zwijnaarde 9052, Belgium
| | - Siebe Vanlommel
- Department of Applied Physics, Ghent University, Technologiepark 46, Zwijnaarde 9052, Belgium
| | - Hannes Rijckaert
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium
| | - Hadi Salemi
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Jonas Everaert
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Flore Vanden Bussche
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium
| | - Dirk Poelman
- Department of Solid State Sciences, Ghent University, Krijgslaan 281 (S1), Ghent 9000, Belgium
| | - Rino Morent
- Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 (B4), Ghent 9000, Belgium
| | - Nathalie De Geyter
- Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 (B4), Ghent 9000, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium
| | | | - Christian V Stevens
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
3
|
Guli M, Helmy ET, Schneider J, Lu G, Pan JH. Characterization Methodology and Activity Evaluation of Solar-Driven Catalysts for Environmental Remediation. Top Curr Chem (Cham) 2022; 380:39. [PMID: 35951266 DOI: 10.1007/s41061-022-00394-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/31/2022] [Indexed: 10/15/2022]
Abstract
Solar-driven photocatalysis mediated by semiconductors has been rapidly developed as a green and sustainable technology for environmental remediation. Continuous efforts have been devoted to novel semiconducting photocatalysts to boost the efficiency of the photocatalytic system. However, controversy has widely existed in materials characterization and photocatalytic activity evaluation. This review overviews the recent advances in characterization methodology and photocatalytic activity evaluation of solar-driven catalysts (SDCs) for environmental remediation. After a general and brief introduction of different SDCs, the compositional, structural, and optical characterizations of SDCs are summarized. Moreover, the characterization methods and challenges in the doped and coupled SDCs are discussed. Finally, the challenges in the evaluation of current evaluation methods for the photocatalytic activity of SDCs are highlighted.
Collapse
Affiliation(s)
- Mina Guli
- Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China
| | - Elsayed T Helmy
- Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China.,Environment Division, National Institute of Oceanography and Fisheries, KayetBey, Elanfoushy, Alexandria, Egypt
| | - Jenny Schneider
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU) München, Butenandtstraße 1 11, 81377, Munich, Germany
| | - Gui Lu
- Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China. .,School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Jia Hong Pan
- Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|