1
|
Yunus G, Singh R, Raveendran S, Kuddus M. Electrochemical biosensors in healthcare services: bibliometric analysis and recent developments. PeerJ 2023; 11:e15566. [PMID: 37397018 PMCID: PMC10312160 DOI: 10.7717/peerj.15566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Biosensors are nowadays being used in various fields including disease diagnosis and clinical analysis. The ability to detect biomolecules associated with disease is vital not only for accurate diagnosis of disease but also for drug discovery and development. Among the different types of biosensors, electrochemical biosensor is most widely used in clinical and health care services especially in multiplex assays due to its high susceptibility, low cost and small in size. This article includes comprehensive review of biosensors in medical field with special emphasis on electrochemical biosensors for multiplex assays and in healthcare services. Also, the publications on electrochemical biosensors are increasing rapidly; therefore, it is crucial to be aware of any latest developments or trends in this field of research. We used bibliometric analyses to summarize the progress of this research area. The study includes global publication counts on electrochemical biosensors for healthcare along with various bibliometric data analyses by VOSviewer software. The study also recognizes the top authors and journals in the related area, and determines proposal for monitoring research.
Collapse
Affiliation(s)
- Ghazala Yunus
- Department of Basic Science, University of Hail, Hail, Saudi Arabia
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, Uttar Pradesh, India
| | - Sindhu Raveendran
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala, India
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Ha’il, Hail, Saudi Arabia
| |
Collapse
|
2
|
Santos ACF, Martel F, Freire CSR, Ferreira BJML. Polymeric Materials as Indispensable Tools to Fight RNA Viruses: SARS-CoV-2 and Influenza A. Bioengineering (Basel) 2022; 9:816. [PMID: 36551022 PMCID: PMC9816944 DOI: 10.3390/bioengineering9120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Towards the end of 2019 in Wuhan, suspicions of a new dangerous virus circulating in the air began to arise. It was the start of the world pandemic coronavirus disease 2019 (COVID-19). Since then, considerable research data and review papers about this virus have been published. Hundreds of researchers have shared their work in order to achieve a better comprehension of this disease, all with the common goal of overcoming this pandemic. The coronavirus is structurally similar to influenza A. Both are RNA viruses and normally associated with comparable infection symptoms. In this review, different case studies targeting polymeric materials were appraised to highlight them as an indispensable tool to fight these RNA viruses. In particular, the main focus was how polymeric materials, and their versatile features could be applied in different stages of viral disease, i.e., in protection, detection and treatment.
Collapse
Affiliation(s)
- Ariana C. F. Santos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Martel
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- I3S-Institute of Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Carmen S. R. Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara J. M. L. Ferreira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Perera GS, Rahman MA, Blazevski A, Wood A, Walia S, Bhaskaran M, Sriram S. Rapid Conductometric Detection of SARS-CoV-2 Proteins and Its Variants Using Molecularly Imprinted Polymer Nanoparticles. ADVANCED MATERIALS TECHNOLOGIES 2022; 8:2200965. [PMID: 36718387 PMCID: PMC9877662 DOI: 10.1002/admt.202200965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/20/2022] [Indexed: 06/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biosensors have captured more attention than the conventional methodologies for SARS-CoV-2 detection due to having cost-effective platforms and fast detection. However, these reported SARS-CoV-2 biosensors suffer from drawbacks including issues in detection sensitivity, degradation of biomaterials on the sensor's surface, and incapability to reuse the biosensors. To overcome these shortcomings, molecularly imprinted polymer nanoparticles (nanoMIPs) incorporated conductometric biosensor for highly accurate, rapid, and selective detection of two model SARS-CoV-2 proteins: (i) receptor binding domain (RBD) of the spike (S) glycoprotein and (ii) full length trimeric spike protein are introduced. In addition, these biosensors successfully responded to several other SARS-CoV-2 RBD spike protein variants including Alpha, Beta, Gamma, and Delta. Our conductometric biosensor selectively detects the two model proteins and SARS-CoV-2 RBD spike protein variant samples in real-time with sensitivity to a detection limit of 7 pg mL-1 within 10 min of sample incubation. A battery-free, wireless near-field communication (NFC) interface is incorporated with the biosensor for fast and contactless detection of SARS-CoV-2 variants. The smartphone enabled real-time detection and on-screen rapid result for SARS-CoV-2 variants can curve the outbreak due to its ability to alert the user to infection in real time.
Collapse
Affiliation(s)
- Ganganath S. Perera
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | - Md. Ataur Rahman
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | - April Blazevski
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | | | - Sumeet Walia
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | - Madhu Bhaskaran
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| |
Collapse
|
4
|
Alamri AM, Alkhilaiwi FA, Ullah Khan N. Era of Molecular Diagnostics Techniques before and after the COVID-19 Pandemic. Curr Issues Mol Biol 2022; 44:4769-4789. [PMID: 36286040 PMCID: PMC9601158 DOI: 10.3390/cimb44100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the growth of molecular diagnosis from the era of Hippocrates, the emergence of COVID-19 is still remarkable. The previously used molecular techniques were not rapid enough to screen a vast population at home, in offices, and in hospitals. Additionally, these techniques were only available in advanced clinical laboratories.The pandemic outbreak enhanced the urgency of researchers and research and development companies to invent more rapid, robust, and portable devices and instruments to screen a vast community in a cost-effective and short time. There has been noteworthy progress in molecular diagnosing tools before and after the pandemic. This review focuses on the advancements in molecular diagnostic techniques before and after the emergence of COVID-19 and how the pandemic accelerated the implantation of molecular diagnostic techniques in most clinical laboratories towardbecoming routine tests.
Collapse
Affiliation(s)
- Ahmad M. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61413, Saudi Arabia
- Cancer Research Unit, King Khalid University, Abha 61413, Saudi Arabia
| | - Faris A. Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar 25130, Pakistan
| |
Collapse
|
5
|
Abdul Ghani MA, Nordin AN, Zulhairee M, Che Mohamad Nor A, Shihabuddin Ahmad Noorden M, Muhamad Atan MKF, Ab Rahim R, Mohd Zain Z. Portable Electrochemical Biosensors Based on Microcontrollers for Detection of Viruses: A Review. BIOSENSORS 2022; 12:666. [PMID: 36005062 PMCID: PMC9406062 DOI: 10.3390/bios12080666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
With the rise of zoonotic diseases in recent years, there is an urgent need for improved and more accessible screening and diagnostic methods to mitigate future outbreaks. The recent COVID-19 pandemic revealed an over-reliance on RT-PCR, a slow, costly and lab-based method for diagnostics. To better manage the pandemic, a high-throughput, rapid point-of-care device is needed for early detection and isolation of patients. Electrochemical biosensors offer a promising solution, as they can be used to perform on-site tests without the need for centralized labs, producing high-throughput and accurate measurements compared to rapid test kits. In this work, we detail important considerations for the use of electrochemical biosensors for the detection of respiratory viruses. Methods of enhancing signal outputs via amplification of the analyte, biorecognition of elements and modification of the transducer are also explained. The use of portable potentiostats and microfluidics chambers that create a miniature lab are also discussed in detail as an alternative to centralized laboratory settings. The state-of-the-art usage of portable potentiostats for detection of viruses is also elaborated and categorized according to detection technique: amperometry, voltammetry and electrochemical impedance spectroscopy. In terms of integration with microfluidics, RT-LAMP is identified as the preferred method for DNA amplification virus detection. RT-LAMP methods have shorter turnaround times compared to RT-PCR and do not require thermal cycling. Current applications of RT-LAMP for virus detection are also elaborated upon.
Collapse
Affiliation(s)
- Muhammad Afiq Abdul Ghani
- MEMS-VLSI Research Unit, Department of Electrical and Computer Engineering, Engineering Faculty, International Islamic University Malaysia, Kuala Lumpur 53100, Federal Territory of Kuala Lumpur, Malaysia
| | - Anis Nurashikin Nordin
- MEMS-VLSI Research Unit, Department of Electrical and Computer Engineering, Engineering Faculty, International Islamic University Malaysia, Kuala Lumpur 53100, Federal Territory of Kuala Lumpur, Malaysia
| | - Munirah Zulhairee
- Electrochemical Material and Sensor (EMaS) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Adibah Che Mohamad Nor
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | | | - Muhammad Khairul Faisal Muhamad Atan
- MEMS-VLSI Research Unit, Department of Electrical and Computer Engineering, Engineering Faculty, International Islamic University Malaysia, Kuala Lumpur 53100, Federal Territory of Kuala Lumpur, Malaysia
| | - Rosminazuin Ab Rahim
- MEMS-VLSI Research Unit, Department of Electrical and Computer Engineering, Engineering Faculty, International Islamic University Malaysia, Kuala Lumpur 53100, Federal Territory of Kuala Lumpur, Malaysia
| | - Zainiharyati Mohd Zain
- Electrochemical Material and Sensor (EMaS) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| |
Collapse
|
6
|
Rana MM. Polymer-based nano-therapies to combat COVID-19 related respiratory injury: progress, prospects, and challenges. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:1219-1249. [PMID: 33787467 PMCID: PMC8054481 DOI: 10.1080/09205063.2021.1909412] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The recent coronavirus disease-2019 (COVID-19) outbreak has increased at an alarming rate, representing a substantial cause of mortality worldwide. Respiratory injuries are major COVID-19 related complications, leading to poor lung circulation, tissue scarring, and airway obstruction. Despite an in-depth investigation of respiratory injury's molecular pathogenesis, effective treatments have yet to be developed. Moreover, early detection of viral infection is required to halt the disease-related long-term complications, including respiratory injuries. The currently employed detection technique (quantitative real-time polymerase chain reaction or qRT-PCR) failed to meet this need at some point because it is costly, time-consuming, and requires higher expertise and technical skills. Polymer-based nanobiosensing techniques can be employed to overcome these limitations. Polymeric nanomaterials have the potential for clinical applications due to their versatile features like low cytotoxicity, biodegradability, bioavailability, biocompatibility, and specific delivery at the targeted site of action. In recent years, innovative polymeric nanomedicine approaches have been developed to deliver therapeutic agents and support tissue growth for the inflamed organs, including the lung. This review highlights the most recent advances of polymer-based nanomedicine approaches in infectious disease diagnosis and treatments. This paper also focuses on the potential of novel nanomedicine techniques that may prove to be therapeutically efficient in fighting against COVID-19 related respiratory injuries.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Mallakpour S, Azadi E, Hussain CM. Fight against COVID-19 pandemic with the help of carbon-based nanomaterials. NEW J CHEM 2021. [DOI: 10.1039/d1nj01333e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have considered the newest momentous outcomes in carbon-based nanomaterials for utility in controlling and fighting the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
8
|
Hussein HA, Hassan RYA, Chino M, Febbraio F. Point-of-Care Diagnostics of COVID-19: From Current Work to Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4289. [PMID: 32752043 PMCID: PMC7435936 DOI: 10.3390/s20154289] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023]
Abstract
Coronaviruses have received global concern since 2003, when an outbreak caused by SARS-CoV emerged in China. Later on, in 2012, the Middle-East respiratory syndrome spread in Saudi Arabia, caused by MERS-CoV. Currently, the global crisis is caused by the pandemic SARS-CoV-2, which belongs to the same lineage of SARS-CoV. In response to the urgent need of diagnostic tools, several lab-based and biosensing techniques have been proposed so far. Five main areas have been individuated and discussed in terms of their strengths and weaknesses. The cell-culture detection and the microneutralization tests are still considered highly reliable methods. The genetic screening, featuring the well-established Real-time polymerase chain reaction (RT-PCR), represents the gold standard for virus detection in nasopharyngeal swabs. On the other side, immunoassays were developed, either by screening/antigen recognition of IgM/IgG or by detecting the whole virus, in blood and sera. Next, proteomic mass-spectrometry (MS)-based methodologies have also been proposed for the analysis of swab samples. Finally, virus-biosensing devices were efficiently designed. Both electrochemical immunosensors and eye-based technologies have been described, showing detection times lower than 10 min after swab introduction. Alternative to swab-based techniques, lateral flow point-of-care immunoassays are already commercially available for the analysis of blood samples. Such biosensing devices hold the advantage of being portable for on-site testing in hospitals, airports, and hotspots, virtually without any sample treatment or complicated lab precautions.
Collapse
Affiliation(s)
- Heba A. Hussein
- Virology Department, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza 12619, Egypt;
| | - Rabeay Y. A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt;
- Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”. Via Cintia 21, 80126 Napoli, Italy;
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
9
|
Agrawal A, Singh SG. PREFACE on the Special Issue 'Technologies for Fighting COVID-19'. TRANSACTIONS OF THE INDIAN NATIONAL ACADEMY OF ENGINEERING : AN INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY 2020; 5:91-95. [PMID: 38624410 PMCID: PMC7381859 DOI: 10.1007/s41403-020-00156-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India
| |
Collapse
|