1
|
Chuiko V, Ayers PW. Inferring the existence of hydrogen bonds directly from statistical analysis of molecular dynamics trajectories. J Chem Phys 2024; 161:174116. [PMID: 39498885 DOI: 10.1063/5.0231711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
As a demonstration of how fundamental chemical concepts can be gleaned from data using machine learning methods, we demonstrate the automated detection of hydrogen bonds by statistical analysis of molecular dynamics trajectories. In particular, we infer the existence and nature of electrostatically driven noncovalent interactions by examining the relative probability of supramolecular configurations with and without electrostatic interactions. Then, using Laplacian eigenmaps clustering, we identify hydrogen bonding motifs in hydrogen fluoride, water, and methanol. The hydrogen bonding motifs that we identify support traditional geometric criteria.
Collapse
Affiliation(s)
- Valerii Chuiko
- Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Paul W Ayers
- Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
2
|
Zhu JY, Liu Q, Jiang XN, Zheng XH, Wang L, Hao Q, Wang CS. From bonds to interactions: comprehensive molecular characterization via polarizable bond-dipole approach. Phys Chem Chem Phys 2023; 25:29867-29880. [PMID: 37888898 DOI: 10.1039/d3cp04060g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Accurately characterizing molecular interactions stands as a pivotal requirement for ensuring the reliability of molecular dynamics simulations. In line with our bond-dipole-based interaction model proposed by Gao et al. [X.-C. Gao, Q. Hao and C.-S. Wang, J. Chem. Theory Comput., 2017, 13, 2730-2741.], we have implemented an efficient and concise approach to compute electrostatic potential. This methodology capitalizes on the polarizable nature of chemical bond dipoles, resulting in a model of remarkable simplicity. In this study, we have revised the polarizable bond-dipole-based force field (PBFF) through the meticulous curation of quantum chemical data sets. These data sets encompass a comprehensive collection of 40 000 conformations, including those of water, methylamine, methanol, and N-methylacetamide. Additionally, we incorporate 520 hydrogen-bonded dimers into our data sets. In pursuit of enhanced accuracy in molecular dynamics simulations and a more faithful representation of potential energy landscapes, we undertook the re-optimization of the nonbonded parameters within the PBFF framework. Concurrently, we intricately fine-tuned the bonded parameters. The results of our comprehensive evaluation denote that this newly optimized force field method adeptly and efficiently computes structural characteristics, harmonic frequencies, and interaction energies. Overall, this study provides further validation for the applicability of PBFF in molecular dynamics simulations.
Collapse
Affiliation(s)
- Jia-Yi Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China.
| | - Qi Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China.
| | - Xiao-Nan Jiang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China.
| | - Xiao-Han Zheng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China.
| | - Qiang Hao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China.
| | - Chang-Sheng Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China.
| |
Collapse
|
3
|
Liu S, Wang S, Xu D, Pan B, Chen L, Zhao S, Xu Z, Zhou W. Novel ester tethered dihydroartemisinin-3-(oxime/thiosemicarbazide)isatin hybrids as potential anti-breast cancer agents: Synthesis, in vitro cytotoxicity and structure-activity relationship. Drug Dev Res 2023; 84:1175-1182. [PMID: 37165798 DOI: 10.1002/ddr.22078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
A series of ester tethered dihydroartemisinin-3-(oxime/thiosemicarbazide)isatin hybrids 7a-p were designed, synthesized, and assessed for their antiproliferative activity against MCF-7, MDA-MB-231, MCF-7/ADR, and MDA-MB-231/ADR breast cancer cell lines. Among them, hybrids 7a,f (IC50 : 1.33-3.84 µM) showed potent activity against triple-negative (MDA-MB-231 and MDA-MB-231/ADR) breast cancer cell lines, and hybrid 7f (IC50 : 3.90 and 10.18 µM) also demonstrated promising activity against estrogen receptor-positive breast cancer cells (MCF-7 and MCF-7/ADR), and the activity was superior to these of artemisinin, dihydroartemisinin, and ADR, revealing their potential to fight against both drug-sensitive and drug-resistant breast cancers. The enriched structure-activity relationships may facilitate further design of more active candidates.
Collapse
Affiliation(s)
- Shaohuan Liu
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan Province, China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shu Wang
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang Guizhou, People's Republic of China
| | - Bowen Pan
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang Guizhou, People's Republic of China
| | - Linzhi Chen
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang Guizhou, People's Republic of China
| | - Shijia Zhao
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhi Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang Guizhou, People's Republic of China
| | - Wei Zhou
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
4
|
Parra RD. Hydrogen-Bond-Driven Peptide Nanotube Formation: A DFT Study. Molecules 2023; 28:6217. [PMID: 37687047 PMCID: PMC10488343 DOI: 10.3390/molecules28176217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
DFT calculations were carried out to examine geometries and binding energies of H-bond-driven peptide nanotubes. A bolaamphiphile molecule, consisting of two N-α amido glycylglycine head groups linked by either one CH2 group or seven CH2 groups, is used as a building block for nanotube self-assembly. In addition to hydrogen bonds between adjacent carboxy or amide groups, nanotube formation is also driven by weak C-H· · ·O hydrogen bonds between a methylene group and the carboxy OH group, and between a methylene group and an amide O=C group. The intratubular O-H· · ·O=C hydrogen bonds account for approximately a third of the binding energies. Binding energies calculated with the wB97XD/DGDZVP method show that the hydrocarbon chains play a stabilizing role in nanotube self-assembly. The shortest nanotube has the length of a single monomer and a diameter than increases with the number of monomers. Lengthening of the tubular structure occurs through intertubular O-H· · ·O=C hydrogen bonds. The average intertubular O-H· · ·O=C hydrogen bond binding energy is estimated to change with the size of the nanotubes, decreasing slightly towards some plateau value near 15 kcal/mol according to the wB97XD/DGDZVP method.
Collapse
Affiliation(s)
- Rubén D Parra
- Department of Chemistry and Biochemistry, DePaul University, Chicago, IL 60614, USA
| |
Collapse
|
5
|
Ding F, Chen X, Cao W, Dong T, Wang P. The anti-breast cancer potential of dihydroartemisinin-isatin hybrids with hydrogen bond donors at C-3 position of isatin moiety. Fitoterapia 2023; 165:105426. [PMID: 36608710 DOI: 10.1016/j.fitote.2023.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Hydrogen bond effect plays a pivotal role in protein-ligand interaction and represents one of the fundamental bases in pharmaceutical design. To evaluate the influence of hydrogen bond interaction on the anti-breast cancer activity, fifteen dihydroartemisinin-isatin hybrids 7a-o with hydrogen bond donors at C-3 position of isatin moiety were designed, synthesized and evaluated for their antiproliferative activity against MCF-7, MDA-MB-231, MCF-7/ADR and MDA-MB-231/ADR breast cancer cell lines. The preliminary results illustrated that introduction of hydrogen bond donors especially thiosemicarbazide into C-3 position of isatin moiety was beneficial for the activity, and substituents at C-5 position of isatin fragment as well as the length of the carbon spacers between dihydroartemisinin and isatin moieties also have significant influence on the activity. The enriched structure-activity relationships may provide useful information for further rational design of the candidates with higher activity.
Collapse
Affiliation(s)
- Feng Ding
- Department of General Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250012, China
| | - Xiao Chen
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250021, China
| | - Wei Cao
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Shandong 250014, China
| | - Tianyi Dong
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250021, China.
| | - Peng Wang
- Department of Critical Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250021, China.
| |
Collapse
|
6
|
Intramolecular interactions (O-H∙∙∙O, C-H∙∙∙N, N-H∙∙∙π) in isomers of neutral, cation, and anion dopamine molecules: A DFT study on the influence of solvents (water and ethanol). J Mol Model 2023; 29:67. [PMID: 36773132 DOI: 10.1007/s00894-023-05466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
CONTEXT Dopamine (DA) is one of the most important neurotransmitters associated with numerous neural disorders. This investigation reports the intramolecular interactions present in the isomers of neutral (DA0), anionic (DA-), and cationic (DA+) dopamine isomers in gas, water, and ethanol mediums. Neutral and anion isomers have O-H∙∙∙O, C-H∙∙∙N intramolecular hydrogen bonds and N-H∙∙∙π interactions. All the interactions are electrostatic in nature. Isomers of cation dopamine show no intramolecular interactions in the solvent. Natural charges from natural bond orbital (NBO) analysis show that O-H∙∙∙O bonds and the N-H∙∙∙π interactions are the most and least polar, respectively. 1H NMR study reveals the inverse linear correlation between shielding constant and electron density in a solvent medium. HOMO-LUMO energy gap indicates higher stability for neutral and cationic forms of dopamine isomers in water and ethanol medium. METHODS We have optimized all the structural forms of dopamine molecule using the Becke three hybrid exchange and Lee-Yang-Parr correlation functional with Grimme's dispersion correction, B3LYP-D3(BJ), and aug-cc-pVTZ basis set using the Gaussian16 software. Vibrational frequency analysis with no imaginary frequencies confirms the nature of global minima. The solvent studies (water and ethanol) were carried out using the SCRF keyword and the polarisable continuum model (PCM) of Miertus and Tomasi. NBO analysis and NMR studies were also performed for all conformers. Topology analysis was explored using the software Multiwfn.
Collapse
|
7
|
Camiruaga A, Saragi RT, Torres-Hernández F, Juanes M, Usabiaga I, Lesarri A, Fernández JA. The evolution towards cyclic structures in the aggregation of aromatic alcohols: the dimer, trimer and tetramer of 2-phenylethanol. Phys Chem Chem Phys 2022; 24:24800-24809. [PMID: 36214363 DOI: 10.1039/d2cp03485a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gas-phase spectroscopic studies of alcohol clusters offer accurate information on the influence of non-covalent interactions on molecular recognition, and are of paramount importance to model supramolecular and biological chemical processes. Here, we examine the role of the aliphatic side chain in the self-aggregation of aromatic alcohols, using a multi-methodological gas-phase approach which combines microwave spectroscopy and mass-resolved electronic and vibrational laser spectroscopy. Spectroscopic and electronic structure computations were carried out for the dimer, trimer and tetramer of 2-phenylethanol, extending previous investigations on smaller aromatic alcohols. While the conformational flexibility of the ethyl group anticipates a variety of torsional isomers, the intra- and inter-molecular interactions restrict molecular conformations and favour particularly stable isomers. The conformational landscape of the clusters is very shallow and multiple competing isomers were rotationally and/or vibrationally detected, including three dimer species, two trimers and two tetramers. Cluster growth is associated with a tendency to form cyclic hydrogen bond structures.
Collapse
Affiliation(s)
- Ander Camiruaga
- Dep. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Bo̲ Sarriena S/N, Leioa, 48940, Spain.
| | - Rizalina Tama Saragi
- Dep. of Physical Chemistry and Inorganic Chemistry, Fac. of Sciences - I.U. CINQUIMA, University of Valladolid, Paseo de Belén, 7, 47011, Valladolid, Spain
| | - Fernando Torres-Hernández
- Dep. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Bo̲ Sarriena S/N, Leioa, 48940, Spain.
| | - Marcos Juanes
- Dep. of Physical Chemistry and Inorganic Chemistry, Fac. of Sciences - I.U. CINQUIMA, University of Valladolid, Paseo de Belén, 7, 47011, Valladolid, Spain
| | - Imanol Usabiaga
- Dep. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Bo̲ Sarriena S/N, Leioa, 48940, Spain.
| | - Alberto Lesarri
- Dep. of Physical Chemistry and Inorganic Chemistry, Fac. of Sciences - I.U. CINQUIMA, University of Valladolid, Paseo de Belén, 7, 47011, Valladolid, Spain
| | - José A Fernández
- Dep. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Bo̲ Sarriena S/N, Leioa, 48940, Spain.
| |
Collapse
|
8
|
Fang G, Wang H, Zheng C, Pan L, Zhao G. Enantioselectivity switch in asymmetric Michael addition reactions using phosphonium salts. Org Biomol Chem 2021; 19:6334-6340. [PMID: 34231639 DOI: 10.1039/d1ob01027a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient access to two enantiomers of one chiral compound is critical for the discovery of drugs. However, it is still a challenging problem owing to the difficulty in obtaining two enantiomers of one chiral catalyst. Here, we report a general method to obtain both enantiomeric products via fine tuning the hydrogen-bonding interactions of phosphonium salts. Amino acid derived phosphonium salts and dipeptide derived phosphonium salts exhibited different properties for controlling the transition state, which could efficiently promote the Michael addition reaction to give opposite configurations of products with high yields and enantioselectivities. Preliminary investigations on the mechanism of the reaction and applications of the products were also performed.
Collapse
Affiliation(s)
- Guosheng Fang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Hongyu Wang
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Changwu Zheng
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Lu Pan
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Gang Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China. and Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| |
Collapse
|
9
|
Liu L, Wang X, Zhu S, Li L. Different Surface Interactions between Fluorescent Conjugated Polymers and Biological Targets. ACS APPLIED BIO MATERIALS 2021; 4:1211-1220. [PMID: 35014474 DOI: 10.1021/acsabm.0c01567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorescent conjugated polymers (CPs) have attracted considerable interest in biosensing owing to their high fluorescence, tunable bandgap, and good biocompatibility. Aiming at acquiring the desired optical responses of CPs for bioapplications, it is essential that the CPs bind to biological targets with high efficacy and affinity. However, the efficient binding of CPs is largely driven by their effective interaction with target surfaces. In this Review, we will focus on the different surface interactions that pervade between CPs and biological targets. The multiple surface interactions can lead to changes in spatial conformation and distribution of CPs, which manifest alterable optical properties of CPs based on accumulation of target-directed CPs, Förster resonance energy transfer mechanism, and metal-enhanced fluorescence mechanism. Then, we display diverse bioapplications applying CPs-based surface interactions, such as cell imaging, imaging-guided detection, and photodynamic therapy. Finally, the challenges and future developments to control the efficient attachment of CPs to biological targets are discussed. We expect that the understanding of surface interactions between CPs and biological targets benefits the CPs-based system design and expands their applications in biological detections and therapies.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Shuxian Zhu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
10
|
Usabiaga I, Camiruaga A, Calabrese C, Veloso A, D'mello VC, Wategaonkar S, Fernández JA. Exploration of the theobromine-water dimer: comparison with DNA microhydration. Phys Chem Chem Phys 2020; 22:15759-15768. [PMID: 32627788 DOI: 10.1039/d0cp02397c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Understanding the molecular basis of the appearance of life on Earth is an exciting research field. Many factors may have influenced the election of the molecules used by living beings and evolution may have modified those original compounds. In an attempt to understand the role played by intermolecular interactions in the election of CGAT as the alphabet of life, we present here a thorough experimental and computational study on the interaction of theobromine with water. Theobromine is a xanthine derivative, structurally related to the nucleobases, and also present in many living beings. The experimental results demonstrate that the most stable isomer of theobromine-water was formed and detected in supersonic expansions. This isomer very well resembles the structure of the dimers between nucleobases and water, offering similar values of binding energy. A comparison between the results obtained for theobromine-water with those reported in the literature for monohydrates of nucleobases is also offered.
Collapse
Affiliation(s)
- Imanol Usabiaga
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940, Leioa, Spain.
| | | | | | | | | | | | | |
Collapse
|