1
|
Bio-nanocomposites and their potential applications in physiochemical properties of cheese: an updated review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2
|
Characterization of Antimicrobial Composite Edible Film Formulated from Fermented Cheese Whey and Cassava Peel Starch. MEMBRANES 2022; 12:membranes12060636. [PMID: 35736343 PMCID: PMC9230007 DOI: 10.3390/membranes12060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023]
Abstract
Antimicrobial composite edible film can be a solution for environmentally friendly food packaging, which can be made from fermented cheese whey containing an antimicrobial agent and cassava peel waste that contains starch. The research aims to determine the formulation of fermented cheese whey and cassava peel waste starch, resulting in an antimicrobial composite edible film with the best physical, mechanical, and water vapour permeability (WVP) properties, as well as with high antimicrobial activity. This research was conducted using experimental methods with nine composite edible film formulation treatments with three replications. Three variations in the fermented cheese whey and cassava peel starch ratio (v/v) (1:3, 1:1, 3:1) were combined with variations in the addition of glycerol (20%, 33%, 45%) (w/w) in the production of the composite edible film. Then, the physical characteristics such as elongation at break, tensile strength, WVP, colour, and antimicrobial effect of its film-forming solution were observed. The results showed that 24 h of whey fermentation with Candida tropicalis resulted in an 18.50 mm inhibition zone towards Pseudomonas aeruginosa. The best characteristic of the film was obtained from the formulation of a whey:starch ratio of 1:3 and 33% glycerol, which resulted in a thickness value of 0.21 mm, elongation at break of 19.62%, tensile strength of 0.81 N/mm2, WVP of 3.41 × 10−10·g/m·s·Pa at a relative humidity (RH) of 100%–35%, and WVP of 9.84 × 10−10·g/m·s·Pa at a RH of 75%–35%, with an antimicrobial activity towards P. aeruginosa of 5.11 mm.
Collapse
|
3
|
Tamošaitis A, JaruševičienĖ A, StrykaitĖ M, Damašius J. Analysis of antimicrobial whey protein‐based biocomposites with lactic acid, tea tree (
Melaleuca alternifolia
) and garlic (
Allium sativum
) essential oils for Edam cheese coating. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Almantas Tamošaitis
- Department of Food Science and Technology Faculty of Chemical Technology Kaunas University of Technology Radvilenu Road 19 Kaunas LT‐50254 Lithuania
| | - AušrinĖ JaruševičienĖ
- Department of Food Science and Technology Faculty of Chemical Technology Kaunas University of Technology Radvilenu Road 19 Kaunas LT‐50254 Lithuania
| | - Monika StrykaitĖ
- Department of Food Science and Technology Faculty of Chemical Technology Kaunas University of Technology Radvilenu Road 19 Kaunas LT‐50254 Lithuania
| | - Jonas Damašius
- Department of Food Science and Technology Faculty of Chemical Technology Kaunas University of Technology Radvilenu Road 19 Kaunas LT‐50254 Lithuania
| |
Collapse
|
4
|
Promoting the appreciation and marketability of artisanal Kochkäse (traditional German cheese): A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Food forensics: techniques for authenticity determination of food products. Forensic Sci Int 2022; 333:111243. [DOI: 10.1016/j.forsciint.2022.111243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
|
6
|
Florit F, Fiorati A, Ghisoni F, Pozzoli G, Rota R, De Nardo L. Development of a generalised equilibrium modified atmosphere model and its application to the Taleggio cheese. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Application of Furcellaran Nanocomposite Film as Packaging of Cheese. Polymers (Basel) 2021; 13:polym13091428. [PMID: 33925252 PMCID: PMC8124633 DOI: 10.3390/polym13091428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022] Open
Abstract
There is a serious need to develop and test new biodegradable packaging which could at least partially replace petroleum-based materials. Therefore, the objective of this work was to examine the influence of the recently developed furcellaran nanocomposite film with silver nanoparticles (obtained by an in situ method) on the quality properties of two cheese varieties: a rennet-curd (gouda) and an acid-curd (quark) cheese. The water content, physicochemical properties, microbiological and organoleptic quality of cheese, and migration of silver nanoparticles were examined. Both the number of Lactococcus and total bacteria count did not differ during storage of gouda regardless of the packaging applied. The number of Lactococcus decreased in analogous quark samples. The use of the film slowed down and inhibited the growth of yeast in gouda and quark, respectively. An inhibitory effect of this film on mold count was also observed; however, only regarding gouda. The level of silver migration was found to be lower in quark than in gouda. The film improved the microbiological quality of cheeses during storage. Consequently, it is worth continuing research for the improvement of this film in order to enable its use in everyday life.
Collapse
|
8
|
Characterization of Furcellaran-Whey Protein Isolate Films with Green Tea or Pu-erh Extracts and Their Application as Packaging of an Acid-Curd Cheese. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02570-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Mileriene J, Serniene L, Henriques M, Gomes D, Pereira C, Kondrotiene K, Kasetiene N, Lauciene L, Sekmokiene D, Malakauskas M. Effect of liquid whey protein concentrate-based edible coating enriched with cinnamon carbon dioxide extract on the quality and shelf life of Eastern European curd cheese. J Dairy Sci 2020; 104:1504-1517. [PMID: 33309377 DOI: 10.3168/jds.2020-18732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/12/2020] [Indexed: 01/09/2023]
Abstract
Fresh unripened curd cheese has long been a well-known Eastern European artisanal dairy product; however, due to possible cross-contamination from manual production steps, high moisture content (50-60%), and metabolic activity of present lactic acid bacteria, the shelf life of curd cheese is short (10-20 d). Therefore, the aim of this study was to improve the shelf life of Eastern European acid-curd cheese by applying an antimicrobial protein-based (5%, wt/wt) edible coating. The bioactive edible coating was produced from liquid whey protein concentrate (a cheese production byproduct) and fortified with 0.3% (wt/wt, solution basis) Chinese cinnamon bark (Cinnamomum cassia) CO2 extract. The effect of coating on the cheese was evaluated within package-free (group 1) and additionally vacuum packaged (group 2) conditions to represent types of cheeses sold by small and big scale manufacturers. The cheese samples were examined over 31 d of storage for changes of microbiological (total bacterial count, lactic acid bacteria, yeasts and molds, coliforms, enterobacteria, Staphylococcus spp.), physicochemical (pH, lactic acid, protein, fat, moisture, color change, rheological, and sensory properties). The controlled experiment revealed that in group 1, applied coating affected appearance and color by preserving moisture and decreasing growth of yeasts and molds during prolonged package-free cheese storage. In group 2, coating did not affect moisture, color, or texture, but had a strong antimicrobial effect, decreasing the counts of yeasts and molds by 0.79 to 1.55 log cfu/g during 31 d of storage. In both groups, coating had no effect on pH, lactic acid, protein, and fat contents. Evaluated sensory properties (appearance, odor, taste, texture, and overall acceptability) of all samples were similar, indicating no effect of the coating on the flavor of curd cheese. The edible coating based on liquid whey protein concentrate with the incorporation of cinnamon extract was demonstrated to efficiently extend the shelf life of perishable fresh curd cheese, enhance its functional value, and contribute to a more sustainable production process.
Collapse
Affiliation(s)
- Justina Mileriene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania.
| | - Loreta Serniene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania
| | - Marta Henriques
- Department of Food Science and Technology, College of Agriculture, Polytechnic Institute of Coimbra, Bencanta, PT-3045-601 Coimbra, Portugal; Research Center for Natural Resources, Environment and Society (CERNAS), College of Agriculture, Polytechnic Institute of Coimbra, Bencanta, PT-3045-601 Coimbra, Portugal
| | - David Gomes
- Department of Food Science and Technology, College of Agriculture, Polytechnic Institute of Coimbra, Bencanta, PT-3045-601 Coimbra, Portugal
| | - Carlos Pereira
- Department of Food Science and Technology, College of Agriculture, Polytechnic Institute of Coimbra, Bencanta, PT-3045-601 Coimbra, Portugal; Research Center for Natural Resources, Environment and Society (CERNAS), College of Agriculture, Polytechnic Institute of Coimbra, Bencanta, PT-3045-601 Coimbra, Portugal
| | - Kristina Kondrotiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania
| | - Neringa Kasetiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania
| | - Lina Lauciene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania
| | - Dalia Sekmokiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
10
|
A Review of Polysaccharide-Zinc Oxide Nanocomposites as Safe Coating for Fruits Preservation. COATINGS 2020. [DOI: 10.3390/coatings10100988] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Safe coating formulated from biopolymer can be an alternative for better packaging for fruits. Among biopolymers used for safe coating, polysaccharides attracted more attention due to its biocompatibility and edibility. However, polysaccharide-based materials have weaknesses such as low water barrier and mechanical properties which result in lower capability on preserving the coated fruits. Hence, the incorporation of nanoparticles (NPs) such as zinc oxide (ZnO) is expected to increase the ability of polysaccharide-based coating for the enhancement of fruit shelf life. In this review paper, the basic information and the latest updates on the incorporation of ZnO NPs into the polysaccharide-based safe coating for fruit are presented. Various research has investigated polysaccharide-ZnO nanocomposite safe coating to prolong the shelf life of fruits. The polysaccharides used include chitosan, alginate, carrageenan, cellulose, and pectin. Overall, polysaccharide-ZnO nanocomposites can improve the shelf life of fruits by reducing weight loss, maintaining firmness, reducing the ripening process, reducing respiration, reducing the oxidation process, and inhibiting microbial growth. Finally, the challenges and potential of ZnO NPs as an active agent in the safe coating application are also discussed.
Collapse
|
11
|
Mahcene Z, Khelil A, Hasni S, Bozkurt F, Goudjil MB, Tornuk F. Home-made cheese preservation using sodium alginate based on edible film incorporating essential oils. Journal of Food Science and Technology 2020; 58:2406-2419. [PMID: 33967337 DOI: 10.1007/s13197-020-04753-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/02/2020] [Accepted: 08/21/2020] [Indexed: 01/19/2023]
Abstract
The objective of the present study is developing a new technique for the preservation of natural cheese by the use of an edible biofilm based on sodium alginate in order to evaluate the effect of the essential oils (O. basilicum L, R. officinalis L. A. herba alba Asso. M. pulegium L.) incorporated in the film on the oxidation stability, microbial spoilage, physicochemical characteristics and sensory criteria. The cheese samples coated with sodium alginate incorporated by the oils showed moderate stability in terms of oxidative stabilities of proteins and lipids during storage. In addition, poor microbial growth (total aerobic mesophilic flora, yeasts and fecal coliforms) was observed in cheese samples coated with biofilm, also, the growth of Staphylococci Salmonella and Molds for all types of cheese were completely inhibited. Additionally, it was observed that the biofilm coating reduced the weight loss and hardness of the cheese comparing with the uncoated sample. The results of sensory analysis revealed that uncoated cheese, coated with sodium alginate and sodium alginate composed of oil of O. basilicum were the most preferred by panelists, in comparison with others. Therefore, it was concluded that this technique of coating cheese with edible film activated with essential oils is preferred and favorable by virtue of the effect of oils preserving the cheese without seriously affecting their organoleptic properties.
Collapse
Affiliation(s)
- Zineb Mahcene
- Lab of Protecting Ecosystems in Arid and Semi Arid Areas, Biological Sciences Department, Natural Sciences and Life Sciences Faculty, Kasdi Merbah University Ouargla, 30000 Ouargla, Algeria
| | - Aminata Khelil
- Lab of Protecting Ecosystems in Arid and Semi Arid Areas, Biological Sciences Department, Natural Sciences and Life Sciences Faculty, Kasdi Merbah University Ouargla, 30000 Ouargla, Algeria
| | - Sara Hasni
- Lab of Protecting Ecosystems in Arid and Semi Arid Areas, Biological Sciences Department, Natural Sciences and Life Sciences Faculty, Kasdi Merbah University Ouargla, 30000 Ouargla, Algeria
| | - Fatih Bozkurt
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Davutpasa Campus, 34210 Istanbul, Turkey
- Food Engineering Department, Enginneering and Architecture Faculty, Mus Alparslan University, 49100 Mus, Turkey
| | - Mohamed Bilal Goudjil
- Lab. Process Engineering, Process Engineering Department, Applied Sciences Faculty, Kasdi Merbah University Ouargla, Ouargla, 30000 Algeria
| | - Fatih Tornuk
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Davutpasa Campus, 34210 Istanbul, Turkey
| |
Collapse
|
12
|
Gheorghita (Puscaselu) R, Amariei S, Norocel L, Gutt G. New Edible Packaging Material with Function in Shelf Life Extension: Applications for the Meat and Cheese Industries. Foods 2020; 9:E562. [PMID: 32370262 PMCID: PMC7278805 DOI: 10.3390/foods9050562] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 01/25/2023] Open
Abstract
Nowadays, biopolymer films have gained notoriety among the packaging materials. Some studies clearly test their effectiveness for certain periods of time, with applicability in the food industry. This research has been carried out in two directions. Firstly, the development and testing of the new edible material: general appearance, thickness, retraction ratio, color, transmittance, microstructure, roughness, and porosity, as well as mechanical and solubility tests. Secondly, testing of the packaged products-slices of cheese and prosciutto-in the new material and their maintenance at refrigeration conditions for 5 months; thus, the peroxide index, color, and water activity index were evaluated for the packaged products. The results emphasize that the packaging is a lipophilic one and does not allow wetting or any changes in the food moisture. The results indicate the stability of the parameters within three months and present the changes occurring within the fourth and fifth months. Microbiological tests indicated an initial microbial growth, both for cheese slices and ham slices. Time testing indicated a small increase in the total count number over the 5-month period: 23 cfu/g were found of fresh slices of prosciutto and 27 cfu/g in the case of the packaged ones; for slices of cheese, the total count of microorganisms indicated 7 cfu/g in the initial stage and 11 cfu/g after 5 months. The results indicate that the film did not facilitate the growth of the existing microorganisms, and highlight the need to purchase food from safe places, especially in the case of raw-dried products that have not undergone heat treatment, which may endanger the health of the consumer. The new material tested represents a promising substitute for commercial and unsustainable plastic packaging.
Collapse
Affiliation(s)
| | - Sonia Amariei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (S.A.); (G.G.)
| | - Liliana Norocel
- Department of Human and Health Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Gheorghe Gutt
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (S.A.); (G.G.)
| |
Collapse
|
13
|
Nascimento da Silva M, de Matos Fonseca J, Feldhaus HK, Soares LS, Valencia GA, Maduro de Campos CE, Di Luccio M, Monteiro AR. Physical and morphological properties of hydroxypropyl methylcellulose films with curcumin polymorphs. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105217] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Youssef H, El-Naggar ME, Fouda F, Youssef AM. Antimicrobial packaging film based on biodegradable CMC/PVA-zeolite doped with noble metal cations. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100378] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|