1
|
Sun J, Tang C, Li H, Kang Z, Zhu G, Du A, Zhang H. Anthracite-Derived Porous Carbon@MoS 2 Heterostructure for Elevated Lithium Storage Regulated by the Middle TiO 2 Layer. CHEMSUSCHEM 2024:e202401396. [PMID: 39140626 DOI: 10.1002/cssc.202401396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
The rational design of MoS2/carbon composites have been widely used to improve the lithium storage capability. However, their deep applications remain a big challenge due to the slow electrochemical reaction kinetics of MoS2 and weak bonding between MoS2 and carbon substrates. In this work, anthracite-derived porous carbon (APC) is sequential coated by TiO2 nanoparticles and MoS2 nanosheets via a chemical activation and two-step hydrothermal method, forming the unique APC@TiO2@MoS2 ternary composite. The dynamic analysis, in-situ electrochemical impedance spectroscopy as well as theoretical calculation together demonstrate that this innovative design effectively improves the ion/electron transport behavior and alleviates the large volume expansion during cycles. Furthermore, the introduction of middle TiO2 layer in the composite significantly strengthens the mechanical stability of the entire electrode. As expected, the as-prepared APC@TiO2@MoS2 anode displays a high lithium storage capacity with a reversible capacity of 655.8 mAh g-1 after 150 cycles at 200 mA g-1, and robust cycle stability. Impressively, even at a high current density of 2 A g-1, the electrode maintains a superior reversible capacity of 597.7 mAh g-1 after 1100 cycles. This design highlights a feasibility for the development of low-cost anthracite-derived porous carbon-based electrodes.
Collapse
Affiliation(s)
- Jie Sun
- School of Environmental and Chemical Engineering, Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
| | - Cheng Tang
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Haitao Li
- School of Environmental and Chemical Engineering, Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
| | - Zizhuo Kang
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai, 201209, P. R. China
| | - Guanjia Zhu
- School of Environmental and Chemical Engineering, Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Haijiao Zhang
- School of Environmental and Chemical Engineering, Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
2
|
Xu Y, Liu X, Jiang M, Chi B, Lu Y, Guo J, Wang Z, Cui S. Achieving high selectivity and activity of CO 2 electroreduction to formate by in-situ synthesis of single atom Pb doped Cu catalysts. J Colloid Interface Sci 2024; 665:365-375. [PMID: 38537585 DOI: 10.1016/j.jcis.2024.03.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Exploring highly selective and stable electrocatalysts is of great significance for the electrochemical conversion of CO2 into fuel. Herein, a three-dimensional (3D) nanostructure catalyst was developed by doping Pb single-atom (PbSA) in-situ on carbon paper (PbSA100-Cu/CP) through a low-energy and economical method. The designed catalyst exhibited abundant active sites and was beneficial to CO2 adsorption, activation, and subsequent conversion to fuel. Interestingly, PbSA100-Cu/CP showed a prominent Faraday efficiency (FE) of 97 % at -0.9 V versus reversible hydrogen electrode (vs. RHE) and a high partial current density of 27.9 mA·cm-2 for formate. Also, the catalyst remained significantly stable for 60 h during the durability test. The reaction mechanism was investigated by density functional theory (DFT), demonstrating that the doping PbSA induced the electrons redistribution, promoted the formate generation, reduced the rate-determining step (RDS) energy barrier, and inhibited the hydrogen evolution reaction. The study aims to provide a new strategy for developing of single-atom catalysts with high selectivity and stability, which will help reduce environmental pressure and alleviate energy problems.
Collapse
Affiliation(s)
- Yurui Xu
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China; Institute of Disaster Prevention, Sanhe 065201, China
| | - Xiao Liu
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Minghui Jiang
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Bichuan Chi
- China Institute of Building Standard Design and Research, Beijing 100048, China
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jin Guo
- State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Ziming Wang
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Suping Cui
- College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Liang M, Zhang H, Chen B, Meng X, Zhou J, Ma L, He F, Hu W, He C, Zhao N. A Universal Cross-Synthetic Strategy for Sub-10 nm Metal-Based Composites with Excellent Ion Storage Kinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307209. [PMID: 37729880 DOI: 10.1002/adma.202307209] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The sub-10 nm metal-based nanomaterials (SMNs) show great potential for the electrochemical energy storage field. However, their ion storage capacity and stability suffer from severe agglomeration and interface problems. Herein, a universal strategy is reported to synthesize a wide range of SMNs (e.g., metal, nitride, oxide, and sulfides) embedded in free-standing carbon foam (SMN/FC-F) composite electrodes by crossing the interfacial confinement of NaCl self-assembly with the thermal-mechanical coupling of powder metallurgy. The pressure-enhanced NaCl self-assembly interfacial confinement is greatly beneficial to preventing SMN agglomeration and promoting SMNs embedded in FC-F which originate from the welding of carbon nanosheets. They are confirmed via a series of advanced characterizations including X-ray photoelectron spectroscopy, and spherical aberration-corrected scanning transmission electron microscopy, with theoretical computations. Benefiting from the unique structure, SMNs/FC-F delivers ultrafast and stable ion-storage kinetics. As a proof-of-concept demonstration, the MoS2 /FC-F shows excellent ion storage kinetics and superior long-term cycling performance for ion storage (e.g., Na3 V2 (PO4 )2 O2 F/C//MoS2 /FC-F sodium-ion batteries exhibit a high reversible capacity of 185 mAh g-1 at 0.5 A g-1 with a decay rate of 0.05% per cycle.). This work provides a new opportunity to design and fabricate promising SMN-based free-standing working electrodes for electrochemical energy storage and conversion applications.
Collapse
Affiliation(s)
- Ming Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Hanwen Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Xiao Meng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Liying Ma
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| |
Collapse
|
4
|
Georgantzinos SK, Siampanis SG, Rogkas N, Spitas V. The Effect of Hole Geometry on the Nonlinear Nanomechanics of γ-Graphyne Structures: A Finite Element Analysis. Int J Mol Sci 2023; 24:14524. [PMID: 37833972 PMCID: PMC10572330 DOI: 10.3390/ijms241914524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Graphyne is a material that has unique mechanical properties, but little is known about how these properties change when the material has holes. In this work, the effect of hole geometry, considering circular, triangle, and rhombus hole configurations, on the mechanical nonlinear response of γ-graphyne structures is studied. Graphyne, graphdiyne, graphyne-3, and graphyne-4 structures are under investigation. An efficient nonlinear finite element analysis (FEA) method is adequately implemented under large deformations for this purpose. The study varied the size and shape of the holes to understand how these changes affect the nanostructure's mechanical response. The results indicate that the hole geometry significantly impacts the mechanical nonlinear response of γ-graphyne structures. The holes' size and shape affect the structures' elastic behavior, deformation, and strength. The findings can be used to optimize the design of γ-graphyne structures for specific mechanical applications. The study highlights the importance of considering the hole geometries in the design and fabrication of these materials.
Collapse
Affiliation(s)
- Stelios K. Georgantzinos
- Laboratory for Advanced Materials, Structures and Digitalization, Department of Aerospace Science and Technology, National and Kapodistrian University of Athens, 34400 Psachna, Greece;
- General Department, National and Kapodistrian University of Athens, 34400 Psachna, Greece
| | - Sotirios G. Siampanis
- Laboratory for Advanced Materials, Structures and Digitalization, Department of Aerospace Science and Technology, National and Kapodistrian University of Athens, 34400 Psachna, Greece;
- General Department, National and Kapodistrian University of Athens, 34400 Psachna, Greece
| | - Nikolaos Rogkas
- Machine Design Laboratory, School of Mechanical Engineering, National Technical University of Athens, 15772 Athens, Greece; (N.R.); (V.S.)
| | - Vasilios Spitas
- Machine Design Laboratory, School of Mechanical Engineering, National Technical University of Athens, 15772 Athens, Greece; (N.R.); (V.S.)
| |
Collapse
|
5
|
Liu Y, Zhou B, Zhang Y, Xiao W, Li B, Wu Z, Wang L. In situ synthesis of two-dimensional graphene-like nickel-molybdenum nitride as efficient electrocatalyst towards water-splitting under large-current density. J Colloid Interface Sci 2023; 637:104-111. [PMID: 36689796 DOI: 10.1016/j.jcis.2023.01.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Transition metal nitride (TMNs) electrocatalysts have attracted tremendous attentions for their unique electron structure, high activity, and excellent stability. Herein, a two-dimensional (2D) graphene-like structured nickel-molybdenum nitride (Ni-MoN) on nickel foam (NF), is prepared via facile hydrothermal and following nitridation process. The as-prepared Ni-MoN-450 (pyrolysis at 450 °C) displays good hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances in alkaline media. Only 22 mV and 117 mV are needed to achieve current densities of 10 mA cm-2 and 500 mA cm-2 in 1.0 M KOH, respectively, toward HER. The assembled two-electrode system, with the synthesized Ni-MoN-450 as the anode and cathode, exhibits good performance to achieve 1000 mA cm-2 in 1.0 M KOH + 25 °C and 6.0 M KOH + 80 °C. Moreover, it also presents long-term stability under large-current density, which verified its robust property.
Collapse
Affiliation(s)
- Yibing Liu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Bowen Zhou
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, PR China
| | - Yubing Zhang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Bin Li
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
6
|
Wu Q. A new iron(II) complex as bi-functional electrocatalyst for hydrogen evolution reaction and hydrogen peroxide sensing. J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2183126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Qing Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Liu H, Liu C, Zong X, Wang Y, Hu Z, Zhang Z. Role of the Support Effects in Single-Atom Catalysts. Chem Asian J 2023; 18:e202201161. [PMID: 36635222 DOI: 10.1002/asia.202201161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
In recent years, single-atom catalysts (SACs) have received a significant amount of attention due to their high atomic utilization, low cost, high reaction activity, and selectivity for multiple catalytic reactions. Unfortunately, the high surface free energy of single atoms leads them easily migrated and aggregated. Therefore, support materials play an important role in the preparation and catalytic performance of SACs. Aiming at understanding the relationship between support materials and the catalytic performance of SACs, the support effects in SACs are introduced and reviewed herein. Moreover, special emphasis is placed on exploring the influence of the type and structure of supports on SAC catalytic performance through advanced characterization and theoretical research. Future research directions for support materials are also proposed, providing some insight into the design of SACs with high efficiency and high loading.
Collapse
Affiliation(s)
- Huimin Liu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Chang Liu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Xing Zong
- School of Materials and Metallurgy, University of Science and Technology Liaoning Anshan, Liaoning, 114051, P. R. China
| | - Yongfei Wang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China.,School of Materials and Metallurgy, University of Science and Technology Liaoning Anshan, Liaoning, 114051, P. R. China
| | - Zhizhi Hu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| |
Collapse
|
8
|
Liu X, Liu X, Li C, Yang B, Wang L. Defect engineering of electrocatalysts for metal-based battery. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Deng K, Zhou T, Mao Q, Wang S, Wang Z, Xu Y, Li X, Wang H, Wang L. Surface Engineering of Defective and Porous Ir Metallene with Polyallylamine for Hydrogen Evolution Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110680. [PMID: 35263473 DOI: 10.1002/adma.202110680] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The design of defects and porous structures into metallene with functional surfaces is highly desired to improve its permeability, surface area, and active sites, but remains a great challenge. In this work, polyallylamine-encapsulated Ir metallene with defects and porous structure (Ir@PAH metallene) is easily fabricated by a one-step wet chemical reduction method. The Ir@PAH metallene exhibits excellent hydrogen evolution reaction (HER) performance with an overpotential of only 14 mV at 10 mA cm-2 , a low Tafel slope of 31.2 mV dec-1 , and almost no activity decay after stability test. The abundant defects and pores as well as several-atomic-layer nanosheet structures of Ir@PAH metallene provide a large specific surface area, high conductivity, and efficient mass transport/diffusion. In addition, surface-functionalized PAH molecules can modulate the electronic structure through strong Ir-N interaction and act as proton carriers to capture hydrogen ions, which is very beneficial for the HER in acidic media. This work provides a useful strategy for the synthesis of the defective and porous metallene with functionalized surfaces for various catalytic applications.
Collapse
Affiliation(s)
- Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tongqing Zhou
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Shengqi Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
10
|
Zhang G, Tang F, Wang X, Wang L, Liu YN. Atomically Dispersed Co–S–N Active Sites Anchored on Hierarchically Porous Carbon for Efficient Catalytic Hydrogenation of Nitro Compounds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guangji Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Feiying Tang
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Foshan 528010, Guangdong, P. R. China
| | - Xin Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
11
|
|
12
|
Jahandideh H, Macairan JR, Bahmani A, Lapointe M, Tufenkji N. Fabrication of graphene-based porous materials: traditional and emerging approaches. Chem Sci 2022; 13:8924-8941. [PMID: 36091205 PMCID: PMC9365090 DOI: 10.1039/d2sc01786e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
The anisotropic nature of ‘graphenic’ nanosheets enables them to form stable three-dimensional porous materials. The use of these porous structures has been explored in several applications including electronics and batteries, environmental remediation, energy storage, sensors, catalysis, tissue engineering, and many more. As method of fabrication greatly influences the final pore architecture, and chemical and mechanical characteristics and performance of these porous materials, it is essential to identify and address the correlation between property and function. In this review, we report detailed analyses of the different methods of fabricating porous graphene-based structures – with a focus on graphene oxide as the base material – and relate these with the resultant morphologies, mechanical responses, and common applications of use. We discuss the feasibility of the synthesis approaches and relate the GO concentrations used in each methodology against their corresponding pore sizes to identify the areas not explored to date. Due to their anisotropic nature, graphene nanosheets can be used to form 3-dimensional porous materials using template-free and template-directed methodologies. These fabrication strategies are found to influence the properties of the final structure.![]()
Collapse
Affiliation(s)
- Heidi Jahandideh
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
- McGill Institute for Advanced Materials (MIAM), McGill University, Montreal, Quebec, Canada
| | - Jun-Ray Macairan
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Aram Bahmani
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Mathieu Lapointe
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
- McGill Institute for Advanced Materials (MIAM), McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Direct Observation of Induced Graphene and SiC Strengthening in Al–Ni Alloy via the Hot Pressing Technique. CRYSTALS 2021. [DOI: 10.3390/cryst11091142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, Al/5 Ni/0.2 GNPs/x SiC (x = 5, 10, 15, and 20 wt%) nanocomposites were constituted using the powder metallurgy–hot pressing technique. The SiC particles and GNPs were coated with 3 wt% Ag using the electroless deposition technique then mixed with an Al matrix and 5% Ni using ball milling. The investigated powders were hot-pressed at 550 °C and 600 °C and 800 Mpa. The produced samples were evaluated by studying their densification, microstructure, phase, chemical composition, hardness, compressive strength, wear resistance, and thermal expansion. A new intermetallic compound formed between Al and Ni, which is aluminum nickel (Al3Ni). Graphene reacted with the Ni and formed the nickel carbide Ni3C. Additionally, it reacted with the SiC and formed the nickel–silicon composite Ni31Si12 at different percentages. A proper distribution for Ni, GNs, and SiC particles and excellent adhesion were observed. No grain boundaries between the Al matrix particles were discovered. Slight increases in the density values and quite high convergence were revealed. The addition of 0.2 wt% GNs to Al-5Ni increased the hardness value by 47.38% and, by adding SiC-Ag to the Al-5Ni-0.2GNs, the hardness increased gradually. The 20 wt% sample recorded 121.6 HV with a 56.29% increment. The 15 wt% SiC sample recorded the highest compressive strength, and the 20 wt% SiC sample recorded the lowest thermal expansion at the different temperatures. The five Al-Ni-Gr-SiC samples were tested as an electrode for electro-analysis processes. A zinc oxide thin film was successfully prepared by electrodeposition onto samples using a zinc nitrate aqueous solution at 25 °C. The electrodeposition was performed using the linear sweep voltammetric and potentiostatic technique. The effect of the substrate type on the deposition current was fully studied. Additionally, the ohmic resistance polarization values were recorded for the tested samples in a zinc nitrate medium. The results show that the sample containing the Al-5 Ni-0.2 GNs-10% SiC composite is the most acceptable sample for these purposes.
Collapse
|
14
|
Lithium-induced amorphization of Ni–Fe layered-double-hydroxide for highly efficient oxygen evolution. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Maji S, Shrestha LK, Ariga K. Nanoarchitectonics for Hierarchical Fullerene Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2146. [PMID: 34443975 PMCID: PMC8400563 DOI: 10.3390/nano11082146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Nanoarchitectonics is a universal concept to fabricate functional materials from nanoscale building units. Based on this concept, fabrications of functional materials with hierarchical structural motifs from simple nano units of fullerenes (C60 and C70 molecules) are described in this review article. Because fullerenes can be regarded as simple and fundamental building blocks with mono-elemental and zero-dimensional natures, these demonstrations for hierarchical functional structures impress the high capability of the nanoarchitectonics approaches. In fact, various hierarchical structures such as cubes with nanorods, hole-in-cube assemblies, face-selectively etched assemblies, and microstructures with mesoporous frameworks are fabricated by easy fabrication protocols. The fabricated fullerene assemblies have been used for various applications including volatile organic compound sensing, microparticle catching, supercapacitors, and photoluminescence systems.
Collapse
Affiliation(s)
- Subrata Maji
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
16
|
Xie K, Wang J, Yu S, Wang P, Sun C. Tunable electronic properties of free-standing Fe-doped GaN nanowires as high-capacity anode of lithium-ion batteries. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Dong L, Chen C, Wang J, Li H, Zheng H, Yan W, Chung-Yen Jung J, Zhang J. Acid-treated multi-walled carbon nanotubes as additives for negative active materials to improve high-rate-partial-state-of-charge cycle-life of lead-acid batteries. RSC Adv 2021; 11:15273-15283. [PMID: 35424039 PMCID: PMC8698719 DOI: 10.1039/d1ra02208c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
In this work, a trace amount of acid-treated multi-walled carbon nanotubes (a-MWCNTs) is introduced into the negative active materials (NAMs) of a lead acid battery (LAB) by simply dispersing a-MWCNTs in the water, which is then added into the dry mixture of lead oxide powder, expanders and carbon black for lead paste preparation. The abundant oxygen-containing groups on the a-MWCNTs show significant influence on the chemical reactions happening during the curing process, leading to the improved properties of NAMs. Specifically, after formation, the NAMs containing 100 ppm a-MWCNTs display a spongy-like structure comprised of interconnected domino-like Pb slices, giving favorable porosity and electroactive surface area of the NAMs. Moreover, the quasi-rod structure of Pb slices provides the channels for fast electron transfer. These two features greatly accelerate the electrochemical reaction between Pb and PbSO4, and hence hinder the accumulation of PbSO4 crystals. As a result, the high-rate partial-state-of-charge (HRPSoC) cycle-life of the simulated cell constructed from the a-MWCNTs-containing negative plate achieves a HRPSoC cycle-life more than 1.5 times longer than the cell constructed when the negative plate contains only carbon black. Since our method is of great convenience and low-cost, it is expected to have a great feasibility in the LAB industry. 100 ppm aMWCNTs were incorporated into the NAMs of LABs. The oxygen-containing groups on the aMWCNTs induced the formation of interconnected domino-like Pb slices in the NAMs. Thus, the HRPSoC cycle-life of the simulated cell was improved by 50%.![]()
Collapse
Affiliation(s)
- Li Dong
- Institute for Sustainable Energy, College of Sciences, Shanghai University Shanghai 200444 P.R. China .,Zhaoqing Leoch Battery Technology Co. Ltd. Guangdong Province 518000 China
| | - Chunhua Chen
- Institute for Sustainable Energy, College of Sciences, Shanghai University Shanghai 200444 P.R. China
| | - Jiejie Wang
- Institute for Sustainable Energy, College of Sciences, Shanghai University Shanghai 200444 P.R. China
| | - Hongwei Li
- Institute for Sustainable Energy, College of Sciences, Shanghai University Shanghai 200444 P.R. China
| | - Hui Zheng
- Institute for Sustainable Energy, College of Sciences, Shanghai University Shanghai 200444 P.R. China
| | - Wei Yan
- Institute for Sustainable Energy, College of Sciences, Shanghai University Shanghai 200444 P.R. China
| | - Joey Chung-Yen Jung
- Institute for Sustainable Energy, College of Sciences, Shanghai University Shanghai 200444 P.R. China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University Shanghai 200444 P.R. China
| |
Collapse
|
18
|
Han L, Li Z, Yang F, Xiao Z, Yu Y, Ning G, Jia X. Enhancing capacitive storage of carbonaceous anode by surface doping and structural modulation for high-performance sodium-ion battery. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
|
20
|
Qi Y, Yang Y, Hou Q, Zhang K, Zhao H, Su H, Zhou L, Liu X, Shen C, Xie K. Uniform-dispersed ZnS quantum dots loading on graphene as a promising anode for potassium-ion batteries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Sajjad M. Recent Advances in SiO2 Based Composite Electrodes for Supercapacitor Applications. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01899-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
|
23
|
Peng Q, Lei Y, Tang Z, Sun C, Li J, Wu G, Wang T, Yin Z, Liu H. Electron density modulation of GaN nanowires by manganese incorporation for highly high-rate Lithium-ion storage. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Ding J, Xu R, Yan C, Xiao Y, Xu L, Peng H, Park HS, Liang J, Huang J. Review on nanomaterials for next‐generation batteries with lithium metal anodes. NANO SELECT 2020. [DOI: 10.1002/nano.202000003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jun‐Fan Ding
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 China
| | - Rui Xu
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 China
| | - Chong Yan
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 China
| | - Ye Xiao
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 China
| | - Lei Xu
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 China
| | - Hong‐Jie Peng
- Department of Chemical EngineeringStanford University Stanford California 94305 USA
| | - Ho Seok Park
- School of Chemical EngineeringSungkyunkwan University (SKKU) Jangan‐gu Suwon 440–746 Republic of Korea
| | - Ji Liang
- Institute for Superconducting & Electronic MaterialsUniversity of Wollongong North Wollongong NSW 2500 Australia
| | - Jia‐Qi Huang
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 China
| |
Collapse
|
25
|
Tang C, Jiao Y, Shi B, Liu J, Xie Z, Chen X, Zhang Q, Qiao S. Coordination Tunes Selectivity: Two‐Electron Oxygen Reduction on High‐Loading Molybdenum Single‐Atom Catalysts. Angew Chem Int Ed Engl 2020; 59:9171-9176. [DOI: 10.1002/anie.202003842] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Cheng Tang
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yan Jiao
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Bingyang Shi
- School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Jia‐Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Zhenhua Xie
- Chemistry Division Brookhaven National Laboratory Upton NY 11973 USA
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Shi‐Zhang Qiao
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
26
|
Tang C, Jiao Y, Shi B, Liu J, Xie Z, Chen X, Zhang Q, Qiao S. Coordination Tunes Selectivity: Two‐Electron Oxygen Reduction on High‐Loading Molybdenum Single‐Atom Catalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003842] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Cheng Tang
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yan Jiao
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Bingyang Shi
- School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Jia‐Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Zhenhua Xie
- Chemistry Division Brookhaven National Laboratory Upton NY 11973 USA
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Shi‐Zhang Qiao
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
27
|
Ong CC, Siva Sangu S, Illias NM, Chandra Bose Gopinath S, Saheed MSM. Iron nanoflorets on 3D-graphene-nickel: A ‘Dandelion’ nanostructure for selective deoxynivalenol detection. Biosens Bioelectron 2020; 154:112088. [DOI: 10.1016/j.bios.2020.112088] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
|
28
|
Li Z, Liu R, Tang C, Wang Z, Chen X, Jiang Y, Wang C, Yuan Y, Wang W, Wang D, Chen S, Zhang X, Zhang Q, Jiang J. Cobalt Nanoparticles and Atomic Sites in Nitrogen-Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902860. [PMID: 31468709 DOI: 10.1002/smll.201902860] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/05/2019] [Indexed: 06/10/2023]
Abstract
In situ monitoring of hydrogen peroxide (H2 O2 ) during its production process is needed. Here, an electrochemical H2 O2 sensor with a wide linear current response range (concentration: 5 × 10-8 to 5 × 10-2 m), a low detection limit (32.4 × 10-9 m), and a high sensitivity (568.47 µA mm-1 cm-2 ) is developed. The electrocatalyst of the sensor consists of cobalt nanoparticles and atomic Co-Nx moieties anchored on nitrogen doped carbon nanotube arrays (Co-N/CNT), which is obtained through the pyrolysis of the sandwich-like urea@ZIF-67 complex. More cobalt nanoparticles and atomic Co-Nx as active sites are exposed during pyrolysis, contributing to higher electrocatalytic activity. Moreover, a portable screen-printed electrode sensor is constructed and demonstrated for rapidly detecting (cost ≈40 s) H2 O2 produced in microbial fuel cells with only 50 µL solution. Both the synthesis strategy and sensor design can be applied to other energy and environmental fields.
Collapse
Affiliation(s)
- Zehui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Rongji Liu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng Tang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhuoya Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing, Beijing, 100083, P. R. China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuheng Jiang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chizhong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Yi Yuan
- School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing, Beijing, 100083, P. R. China
| | - Wenbo Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dongbin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuning Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
29
|
Zhang X, Wang Q, Tang C, Wang HF, Liang P, Huang X, Zhang Q. High-Power Microbial Fuel Cells Based on a Carbon-Carbon Composite Air Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905240. [PMID: 31755227 DOI: 10.1002/smll.201905240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Microbial fuel cells (MFCs) can convert organics in wastewater directly to electricity, and improving oxygen reduction reaction (ORR) performance is critical to their development and future applications. Electrocatalytic ORR performance is determined by the intrinsic activity and accessible amounts of active sites. A surface nitrogen-enriched carbon coaxial nanocable (NCCN) is applied as an ORR electrocatalyst and combined with activated carbon (AC) with 80 wt% addition as a carbon-carbon composite air cathode in MFCs. The fully exposed nitrogen active sites of NCCN contribute to the enhanced ORR activity, while the graphitized core affords a rapid pathway for electron transportation. AC serves as a spacer to construct a porous framework with interconnected ion diffusion channels. This cathode thus exhibits a maximum power density of 2090 mW m-2 , 120% higher than commercial Pt/C electrocatalysts, and also 6% higher than the pure NCCN, indicating a synergistic effect between NCCN and AC. A high-performance NCCN-AC air cathode with a great promise for future MFC applications is reported and an effective strategy to bridge the electrocatalytic performance from nanomaterials to practical devices is presented.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiuying Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Cheng Tang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Hao-Fan Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
30
|
Lou S, Zhao Y, Wang J, Yin G, Du C, Sun X. Ti-Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904740. [PMID: 31778036 DOI: 10.1002/smll.201904740] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Titanium-based oxides including TiO2 and M-Ti-O compounds (M = Li, Nb, Na, etc.) family, exhibit advantageous structural dynamics (2D ion diffusion path, open and stable structure for ion accommodations) for practical applications in energy storage systems, such as lithium-ion batteries, sodium-ion batteries, and hybrid pseudocapacitors. Further, Ti-based oxides show high operating voltage relative to the deposition of alkali metal, ensuring full safety by avoiding the formation of lithium and sodium dendrites. On the other hand, high working potential prevents the decomposition of electrolyte, delivering excellent rate capability through the unique pseudocapacitive kinetics. Nevertheless, the intrinsic poor electrical conductivity and reaction dynamics limit further applications in energy storage devices. Recently, various work and in-depth understanding on the morphologies control, surface engineering, bulk-phase doping of Ti-based oxides, have been promoted to overcome these issues. Inspired by that, in this review, the authors summarize the fundamental issues, challenges and advances of Ti-based oxides in the applications of advanced electrochemical energy storage. Particularly, the authors focus on the progresses on the working mechanism and device applications from lithium-ion batteries to sodium-ion batteries, and then the hybrid pseudocapacitors. In addition, future perspectives for fundamental research and practical applications are discussed.
Collapse
Affiliation(s)
- Shuaifeng Lou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, N6A 5B9, Canada
| | - Yang Zhao
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, N6A 5B9, Canada
| | - Jiajun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, N6A 5B9, Canada
| |
Collapse
|
31
|
Hou CC, Zou L, Xu Q. A Hydrangea-Like Superstructure of Open Carbon Cages with Hierarchical Porosity and Highly Active Metal Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904689. [PMID: 31517402 DOI: 10.1002/adma.201904689] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/28/2019] [Indexed: 05/25/2023]
Abstract
Carbon micro-/nanocages have attracted great attention owing to their wide potential applications. Herein, a self-templated strategy is presented for the synthesis of a hydrangea-like superstructure of open carbon cages through morphology-controlled thermal transformation of core@shell metal-organic frameworks (MOFs). Direct pyrolysis of core@shell zinc (Zn)@cobalt (Co)-MOFs produces well-defined open-wall nitrogen-doped carbon cages. By introducing guest iron (Fe) ions into the core@shell MOF precursor, the open carbon cages are self-assembled into a hydrangea-like 3D superstructure interconnected by carbon nanotubes, which are grown in situ on the Fe-Co alloy nanoparticles formed during the pyrolysis of Fe-introduced Zn@Co-MOFs. Taking advantage of such hierarchically porous superstructures with excellent accessibility, synergetic effects between the Fe and the Co, and the presence of catalytically active sites of both metal nanoparticles and metal-Nx species, this superstructure of open carbon cages exhibits efficient bifunctional catalysis for both oxygen evolution reaction and oxygen reduction reaction, achieving a great performance in Zn-air batteries.
Collapse
Affiliation(s)
- Chun-Chao Hou
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto, 606-8501, Japan
| | - Lianli Zou
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto, 606-8501, Japan
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
32
|
Zhang Y, Wan Q, Yang N. Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903780. [PMID: 31663294 DOI: 10.1002/smll.201903780] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π-π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self-assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Qijin Wan
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Nianjun Yang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
| |
Collapse
|
33
|
Li Q, Zhang Y, Zhang X, Wang H, Li Q, Sheng J, Yi J, Liu Y, Zhang J. Novel Bi, BiSn, Bi2Sn, Bi3Sn, and Bi4Sn Catalysts for Efficient Electroreduction of CO2 to Formic Acid. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qingqing Li
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yanxing Zhang
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xurui Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Jiawei Sheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Jin Yi
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yuyu Liu
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
34
|
Liao Y, Zhang R, Qian J. Printed electronics based on inorganic conductive nanomaterials and their applications in intelligent food packaging. RSC Adv 2019; 9:29154-29172. [PMID: 35702365 PMCID: PMC9116116 DOI: 10.1039/c9ra05954g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
The diverse demands of consumers for packaging functions and increasingly complex product circulation systems have spurred the development of intelligent food packaging (IFP).
Collapse
Affiliation(s)
- Yu Liao
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
- Chemical & Environmental Engineering
| | - Rui Zhang
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
| | - Jun Qian
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
| |
Collapse
|