1
|
Wang H, Cui L, Luo Y, Chen H, Liu X, Shi Q. Inflammation-responsive PCL/gelatin microfiber scaffold with sustained nitric oxide generation and heparin release for blood-contacting implants. Int J Biol Macromol 2024; 281:136544. [PMID: 39414218 DOI: 10.1016/j.ijbiomac.2024.136544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Delayed endothelialization, the excessive proliferation of smooth muscle cells (SMCs), and persistent inflammation are the main reasons for the implantation failure of blood-contacting materials. To overcome this problem, an inflammation-responsive, core-shell structured microfiber scaffold is developed using polycaprolactone (PCL), selenocystamine-modified gelatin (Gel-Se), L-ascorbyl 6-palmitate (AP), and dexamethasone as the fiber shell, with poly (l-lysine) (PLL) and heparin incorporated in the fiber core. Superhydrophilic microfiber scaffolds exhibit antifouling properties that inhibit protein adsorption and blood cell adhesion, thereby effectively mitigating the risk of acute thrombosis. The continuous release of heparin and sustained generation of nitric oxide (NO) through the catalytic decomposition of S-nitrosothiols by selenocystamine lead to a biomimetic endothelial function for the enhancement of blood compatibility. The inflammation-responsive compound AP can detoxify excess reactive oxygen species (ROS) while controlling the release of dexamethasone to reduce chronic inflammation. We demonstrate the ability of microfiber scaffolds to reduce thrombotic and inflammatory complications, inhibit SMC proliferation, and promote rapid endothelialization both in vitro and ex vivo. Hence, microfiber scaffolds are robust and promising for blood-contacting implants with enhanced antithrombogenicity and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China.
| | - Lei Cui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated the Third Center Hospital, Tianjin, China
| | - Honghong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoju Liu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
2
|
Hosty L, Heatherington T, Quondamatteo F, Browne S. Extracellular matrix-inspired biomaterials for wound healing. Mol Biol Rep 2024; 51:830. [PMID: 39037470 PMCID: PMC11263448 DOI: 10.1007/s11033-024-09750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Diabetic foot ulcers (DFU) are a debilitating and life-threatening complication of Diabetes Mellitus. Ulceration develops from a combination of associated diabetic complications, including neuropathy, circulatory dysfunction, and repetitive trauma, and they affect approximately 19-34% of patients as a result. The severity and chronic nature of diabetic foot ulcers stems from the disruption to normal wound healing, as a result of the molecular mechanisms which underly diabetic pathophysiology. The current standard-of-care is clinically insufficient to promote healing for many DFU patients, resulting in a high frequency of recurrence and limb amputations. Biomaterial dressings, and in particular those derived from the extracellular matrix (ECM), have emerged as a promising approach for the treatment of DFU. By providing a template for cell infiltration and skin regeneration, ECM-derived biomaterials offer great hope as a treatment for DFU. A range of approaches exist for the development of ECM-derived biomaterials, including the use of purified ECM components, decellularisation and processing of donor/ animal tissues, or the use of in vitro-deposited ECM. This review discusses the development and assessment of ECM-derived biomaterials for the treatment of chronic wounds, as well as the mechanisms of action through which ECM-derived biomaterials stimulate wound healing.
Collapse
Affiliation(s)
- Louise Hosty
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Thomas Heatherington
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Fabio Quondamatteo
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÙRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
3
|
Li Z, Giarto J, Zhang J, Gim J, Chen E, Enriquez E, Jafuta L, Mahalingam E, Turng LS. Design and Synthesis of P(AAm-co-NaAMPS)-Alginate-Xanthan Hydrogels and the Study of Their Mechanical and Rheological Properties in Artificial Vascular Graft Applications. Gels 2024; 10:319. [PMID: 38786235 PMCID: PMC11121731 DOI: 10.3390/gels10050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the number one cause of mortality among non-communicable diseases worldwide. Expanded polytetrafluoroethylene (ePTFE) is a widely used material for making artificial vascular grafts to treat CVDs; however, its application in small-diameter vascular grafts is limited by the issues of thrombosis formation and intimal hyperplasia. This paper presents a novel approach that integrates a hydrogel layer on the lumen of ePTFE vascular grafts through mechanical interlocking to efficiently facilitate endothelialization and alleviate thrombosis and restenosis problems. This study investigated how various gel synthesis variables, including N,N'-Methylenebisacrylamide (MBAA), sodium alginate, and calcium sulfate (CaSO4), influence the mechanical and rheological properties of P(AAm-co-NaAMPS)-alginate-xanthan hydrogels intended for vascular graft applications. The findings obtained can provide valuable guidance for crafting hydrogels suitable for artificial vascular graft fabrication. The increased sodium alginate content leads to increased equilibrium swelling ratios, greater viscosity in hydrogel precursor solutions, and reduced transparency. Adding more CaSO4 decreases the swelling ratio of a hydrogel system, which offsets the increased swelling ratio caused by alginate. Increased MBAA in the hydrogel system enhances both the shear modulus and Young's modulus while reducing the transparency of the hydrogel system and the pore size of freeze-dried samples. Overall, Hydrogel (6A12M) with 2.58 mg/mL CaSO4 was the optimal candidate for ePTFE-hydrogel vascular graft applications due to its smallest pore size, highest shear storage modulus and Young's modulus, smallest swelling ratio, and a desirable precursor solution viscosity that facilitates fabrication.
Collapse
Affiliation(s)
- Zhutong Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (Z.L.); (E.C.); (E.E.); (L.J.)
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; (J.G.); (E.M.)
| | - Joshua Giarto
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; (J.G.); (E.M.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Jue Zhang
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA;
| | - Jinsu Gim
- Dongnam Division, Korea Institute of Industrial Technology (KITECH), Jinju 52845, Republic of Korea;
| | - Edward Chen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (Z.L.); (E.C.); (E.E.); (L.J.)
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; (J.G.); (E.M.)
| | - Eduardo Enriquez
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (Z.L.); (E.C.); (E.E.); (L.J.)
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Lauren Jafuta
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (Z.L.); (E.C.); (E.E.); (L.J.)
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; (J.G.); (E.M.)
| | - Esha Mahalingam
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; (J.G.); (E.M.)
- College of Letters and Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (Z.L.); (E.C.); (E.E.); (L.J.)
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; (J.G.); (E.M.)
| |
Collapse
|
4
|
Laowpanitchakorn P, Zeng J, Piantino M, Uchida K, Katsuyama M, Matsusaki M. Biofabrication of engineered blood vessels for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2330339. [PMID: 38633881 PMCID: PMC11022926 DOI: 10.1080/14686996.2024.2330339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
To successfully engineer large-sized tissues, establishing vascular structures is essential for providing oxygen, nutrients, growth factors and cells to prevent necrosis at the core of the tissue. The diameter scale of the biofabricated vasculatures should range from 100 to 1,000 µm to support the mm-size tissue while being controllably aligned and spaced within the diffusion limit of oxygen. In this review, insights regarding biofabrication considerations and techniques for engineered blood vessels will be presented. Initially, polymers of natural and synthetic origins can be selected, modified, and combined with each other to support maturation of vascular tissue while also being biocompatible. After they are shaped into scaffold structures by different fabrication techniques, surface properties such as physical topography, stiffness, and surface chemistry play a major role in the endothelialization process after transplantation. Furthermore, biological cues such as growth factors (GFs) and endothelial cells (ECs) can be incorporated into the fabricated structures. As variously reported, fabrication techniques, especially 3D printing by extrusion and 3D printing by photopolymerization, allow the construction of vessels at a high resolution with diameters in the desired range. Strategies to fabricate of stable tubular structures with defined channels will also be discussed. This paper provides an overview of the many advances in blood vessel engineering and combinations of different fabrication techniques up to the present time.
Collapse
Affiliation(s)
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Wu Y, Qin M, Yang X. Organ bioprinting: progress, challenges and outlook. J Mater Chem B 2023; 11:10263-10287. [PMID: 37850299 DOI: 10.1039/d3tb01630g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Bioprinting, as a groundbreaking technology, enables the fabrication of biomimetic tissues and organs with highly complex structures, multiple cell types, mechanical heterogeneity, and diverse functional gradients. With the growing demand for organ transplantation and the limited number of organ donors, bioprinting holds great promise for addressing the organ shortage by manufacturing completely functional organs. While the bioprinting of complete organs remains a distant goal, there has been considerable progress in the development of bioprinted transplantable tissues and organs for regenerative medicine. This review article recapitulates the current achievements of organ 3D bioprinting, primarily encompassing five important organs in the human body (i.e., the heart, kidneys, liver, pancreas, and lungs). Challenges from cellular techniques, biomanufacturing technologies, and organ maturation techniques are also deliberated for the broad application of organ bioprinting. In addition, the integration of bioprinting with other cutting-edge technologies including machine learning, organoids, and microfluidics is envisioned, which strives to offer the reader the prospect of bioprinting in constructing functional organs.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Minghao Qin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Xue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Li Z, Giarto J, Zhang J, Kulkarni N, Mahalingam E, Klipstine W, Turng LS. Anti-thrombotic poly(AAm-co-NaAMPS)-xanthan hydrogel-expanded polytetrafluoroethylene (ePTFE) vascular grafts with enhanced endothelialization and hemocompatibility properties. BIOMATERIALS ADVANCES 2023; 154:213625. [PMID: 37722163 PMCID: PMC10841274 DOI: 10.1016/j.bioadv.2023.213625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death among all non-communicable diseases globally. Although expanded polytetrafluoroethylene (ePTFE) has been widely used for larger-diameter vascular graft transplantation, the persistent thrombus formation and intimal hyperplasia of small-diameter vascular grafts (SDVGs) made of ePTFE to treat severe CVDs remain the biggest challenges due to lack of biocompatibility and endothelium. In this study, bi-layered poly(acrylamide-co-2-Acrylamido-2-methyl-1-propanesulfonic acid sodium)-xanthan hydrogel-ePTFE (poly(AAm-co-NaAMPS)-xanthan hydrogel-ePTFE) vascular grafts capable of promoting endothelialization and prohibiting thrombosis were synthesized and fabricated. While the external ePTFE layer of the vascular grafts provided the mechanical stability, the inner hydrogel layer offered much-needed cytocompatibility, hemocompatibility, and endothelialization functions. The interface morphology between the inner hydrogel layer and the outer ePTFE layer was observed by scanning electron microscope (SEM), which revealed that the hydrogel was well attached to the porous ePTFE through mechanical interlocking. Among all the hydrogel compositions tested with cell culture using human umbilical vein endothelial cells (HUVECs), the hydrogel with the molar ratio of 40:60 (NaAMPS/AAm) composition (i.e., Hydrogel 40:60) exhibited the best endothelialization function, as it produced the largest endothelialization area that was three times more than of that of plain ePTFE on day 14, maintained the highest average cell viability, and had the best cell morphology. Hydrogel 40:60 also showed excellent hemocompatibility, prolonged activated partial thromboplastin time (aPTT), and good mechanical properties. Overall, bi-layered poly(AAm-co-NaAMPS)-xanthan hydrogel-ePTFE vascular grafts with the Hydrogel 40:60 composition could potentially solve the critical challenge of thrombus formation in vascular graft transplantation applications.
Collapse
Affiliation(s)
- Zhutong Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Joshua Giarto
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jue Zhang
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Neha Kulkarni
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Esha Mahalingam
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; College of Letters and Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Will Klipstine
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan.
| |
Collapse
|
7
|
Mazloomnejad R, Babajani A, Kasravi M, Ahmadi A, Shariatzadeh S, Bahrami S, Niknejad H. Angiogenesis and Re-endothelialization in decellularized scaffolds: Recent advances and current challenges in tissue engineering. Front Bioeng Biotechnol 2023; 11:1103727. [PMID: 36873356 PMCID: PMC9978201 DOI: 10.3389/fbioe.2023.1103727] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Decellularization of tissues and organs has recently become a promising approach in tissue engineering and regenerative medicine to circumvent the challenges of organ donation and complications of transplantations. However, one main obstacle to reaching this goal is acellular vasculature angiogenesis and endothelialization. Achieving an intact and functional vascular structure as a vital pathway for supplying oxygen and nutrients remains the decisive challenge in the decellularization/re-endothelialization procedure. In order to better understand and overcome this issue, complete and appropriate knowledge of endothelialization and its determining variables is required. Decellularization methods and their effectiveness, biological and mechanical characteristics of acellular scaffolds, artificial and biological bioreactors, and their possible applications, extracellular matrix surface modification, and different types of utilized cells are factors affecting endothelialization consequences. This review focuses on the characteristics of endothelialization and how to optimize them, as well as discussing recent developments in the process of re-endothelialization.
Collapse
Affiliation(s)
- Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, United States
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Biomimetic and Bioactive Small Diameter Tubular Scaffolds for Vascular Tissue Engineering. Biomimetics (Basel) 2022; 7:biomimetics7040199. [PMID: 36412727 PMCID: PMC9680506 DOI: 10.3390/biomimetics7040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The present work aimed at the production and characterization of small caliber biomimetic and bioactive tubular scaffolds, which are able to favor the endothelialization process, and therefore potentially be suitable for vascular tissue engineering. The tubular scaffolds were produced using a specially designed mold, starting from a gelatin/gellan/elastin (GGE) blend, selected to mimic the composition of the extracellular matrix of native blood vessels. GGE scaffolds were obtained through freeze-drying and subsequent cross-linking. To obtain systems capable of promoting endothelization, the scaffolds were functionalized using two different bioactive peptides, Gly-Arg-Gly-Asp-Ser-Pro (GRGSDP) and Arg-Glu-Asp-Val (REDV). A complete physicochemical, mechanical, functional, and biological characterization of the developed scaffolds was performed. GGE scaffolds showed a good porosity, which could promote cell infiltration and proliferation and a dense external surface, which could avoid bleeding. Moreover, developed scaffolds showed good hydrophilicity, an elastic behavior similar to natural vessels, suitability for sterilization by an ISO accepted treatment, and an adequate suture retention strength. In vitro cell culture tests showed no cytotoxic activity against 3T3 fibroblasts. The functionalization with the REDV peptide favored the adhesion and growth of endothelial cells, while GRGDSP-modified scaffolds represented a better substrate for fibroblasts.
Collapse
|
9
|
Shuai C, Zhong S, Shuai Y, Yang W, Peng S, He C. Accelerated anode and cathode reaction due to direct electron uptake and consumption by manganese dioxide and titanium dioxide composite cathode in degradation of iron composite. J Colloid Interface Sci 2022; 632:95-107. [DOI: 10.1016/j.jcis.2022.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
|
10
|
Zizhou R, Wang X, Houshyar S. Review of Polymeric Biomimetic Small-Diameter Vascular Grafts to Tackle Intimal Hyperplasia. ACS OMEGA 2022; 7:22125-22148. [PMID: 35811906 PMCID: PMC9260943 DOI: 10.1021/acsomega.2c01740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Small-diameter artificial vascular grafts (SDAVG) are used to bypass blood flow in arterial occlusive diseases such as coronary heart or peripheral arterial disease. However, SDAVGs are plagued by restenosis after a short while due to thrombosis and the thickening of the neointimal wall known as intimal hyperplasia (IH). The specific causes of IH have not yet been deduced; however, thrombosis formation due to bioincompatibility as well as a mismatch between the biomechanical properties of the SDAVG and the native artery has been attributed to its initiation. The main challenges that have been faced in fabricating SDAVGs are facilitating rapid re-endothelialization of the luminal surface of the SDAVG and replicating the complex viscoelastic behavior of the arteries. Recent strategies to combat IH formation have been mostly based on imitating the natural structure and function of the native artery (biomimicry). Thus, most recently, developed grafts contain a multilayered structure with a designated function for each layer. This paper reviews the current polymeric, biomimetic SDAVGs in preventing the formation of IH. The materials used in fabrication, challenges, and strategies employed to tackle IH are summarized and discussed, and we focus on the multilayered structure of current SDAVGs. Additionally, the future aspects in this area are pointed out for researchers to consider in their endeavor.
Collapse
Affiliation(s)
- Rumbidzai Zizhou
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Xin Wang
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Shadi Houshyar
- School
of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
11
|
Bian Q, Chen J, Weng Y, Li S. Endothelialization strategy of implant materials surface: The newest research in recent 5 years. J Appl Biomater Funct Mater 2022; 20:22808000221105332. [PMID: 35666145 DOI: 10.1177/22808000221105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, more and more metal or non-metal materials have been used in the treatment of cardiovascular diseases, but the vascular complications after transplantation are still the main factors restricting the clinical application of most grafts, such as acute thrombosis and graft restenosis. Implant materials have been extensively designed and surface optimized by researchers, but it is still too difficult to avoid complications. Natural vascular endodermis has excellent function, anti-coagulant and anti-intimal hyperplasia, and it is also the key to maintaining the homeostasis of normal vascular microenvironment. Therefore, how to promote the adhesion of endothelial cells (ECs) on the surface of cardiovascular materials to achieve endothelialization of the surface is the key to overcoming the complications after implant materialization. At present, the surface endothelialization design of materials based on materials surface science, bioactive molecules, and biological function intervention and feedback has attracted much attention. In this review, we summarize the related research on the surface modification of materials by endothelialization in recent years, and analyze the advantages and challenges of current endothelialization design ideas, explain the relationship between materials, cells, and vascular remodeling in order to find a more ideal endothelialization surface modification strategy for future researchers to meet the requirements of clinical biocompatibility of cardiovascular materials.
Collapse
Affiliation(s)
- Qihao Bian
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
12
|
Feng LA, Shi J, Guo J, Wang S. Recent strategies for improving hemocompatibility and endothelialization of cardiovascular devices and inhibition of intimal hyperplasia. J Mater Chem B 2022; 10:3781-3792. [DOI: 10.1039/d2tb00478j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiovascular diseases have become one of the leading causes of mortality worldwide. Stents and artificial grafts have been used to treat cardiovascular diseases. Thrombosis and restenosis seriously impact clinical outcome...
Collapse
|
13
|
Zhang Y, Wang X, Zhang Y, Liu Y, Wang D, Yu X, Wang H, Bai Z, Jiang YC, Li X, Zheng W, Li Q. Endothelial Cell Migration Regulated by Surface Topography of Poly(ε-caprolactone) Nanofibers. ACS Biomater Sci Eng 2021; 7:4959-4970. [PMID: 34543012 DOI: 10.1021/acsbiomaterials.1c00951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The study of cell migration on biomaterials is of great significance in tissue engineering and regenerative medicine. In recent years, there has been increasing evidence that the physical properties of the extracellular matrix (ECM), such as surface topography, affect various cellular behaviors such as proliferation, adhesion, and migration. However, the biological mechanism of surface topography influencing cellular behavior is still unclear. In this study, we prepared polycaprolactone (PCL) fibrous materials with different surface microstructures by solvent casting, electrospinning, and self-induced crystallization. The corresponding topographical structure obtained is a two-dimensional (2D) flat surface, 2.5-dimensional (2.5D) fibers, and three-dimensional (3D) fibers with a multilevel microstructure. We then investigated the effects of the complex topographical structure on endothelial cell migration. Our study demonstrates that cells can sense the changes of micro- and nanomorphology on the surface of materials, adapt to the physical environment through biochemical reactions, and regulate actin polymerization and directional migration through Rac1 and Cdc42. The cells on the nanofibers are elongated spindles, and the positive feedback of cell adhesion and actin polymerization along the fiber direction makes the plasma membrane continue to protrude, promoting cell polarization and directional migration. This study might provide new insights into the biomaterial design, especially those used for artificial vascular grafts.
Collapse
Affiliation(s)
- Yang Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yajing Liu
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Dongfang Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xueke Yu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Haonan Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiyuan Bai
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yong-Chao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Zheng
- Engineering and Technology Department, University of Wisconsin-STOUT, Menomonie, Wisconsin 54751, United States
| | - Qian Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|