1
|
Pan G, Xu Y, Li W, Zan L, Wang X. Claroideglomus etunicatum enhances Pteris vittata L. arsenic resistance and accumulation by mediating the rapid reduction and transport of arsenic in roots. FRONTIERS IN PLANT SCIENCE 2024; 15:1464547. [PMID: 39606667 PMCID: PMC11598345 DOI: 10.3389/fpls.2024.1464547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been widely shown to significantly promote the growth and recovery of Pteris vittata L. growth and repair under arsenic stress; however, little is known about the molecular mechanisms by which AMF mediate the efficient uptake of arsenic in this species. To understand how AMF mediate P. vittata arsenic metabolism under arsenic stress, we performed P. vittata root transcriptome analysis before and after Claroideglomus etunicatum (C. etunicatum) colonization. The results showed that after C. etunicatum colonization, P. vittata showed greater arsenic resistance and enrichment, and its dry weight and arsenic accumulation increased by 2.01-3.36 times. This response is attributed to the rapid reduction and upward translocation of arsenic. C. etunicatum enhances arsenic uptake by mediating the MIP, PHT, and NRT transporter families, while also increasing arsenic reduction (PvACR2 direct reduction and vesicular PvGSTF1 reduction). In addition, it downregulates the expression of ABC and P-type ATPase protein families, which inhibits the compartmentalization of arsenic in the roots and promotes its translocation to the leaves. This study revealed the mechanism of C. etunicatum-mediated arsenic hyperaccumulation in P. vittata, providing guidance for understanding the regulatory mechanism of P. vittata.
Collapse
Affiliation(s)
| | | | | | | | - Xueli Wang
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key
Laboratory for Conservation and Utilization of Subtropical Agri–Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Rout Y, Swain SS, Ghana M, Dash D, Nayak S. Perspectives of pteridophytes microbiome for bioremediation in agricultural applications. Open Life Sci 2024; 19:20220870. [PMID: 38840895 PMCID: PMC11151392 DOI: 10.1515/biol-2022-0870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 06/07/2024] Open
Abstract
The microbiome is the synchronised congregation of millions of microbial cells in a particular ecosystem. The rhizospheric, phyllospheric, and endospheric microbial diversity of lower groups of plants like pteridophytes, which includes the Ferns and Fern Allies, have also given numerous alternative opportunities to achieve greener and sustainable agriculture. The broad-spectrum bioactivities of these microorganisms, including bioremediation of heavy metals (HMs) in contaminated soil, have been drawing the attention of agricultural researchers for the preparation of bioformulations for applications in climate-resilient and versatile agricultural production systems. Pteridophytes have an enormous capacity to absorb HMs from the soil. However, their direct application in the agricultural field for HM absorption seems infeasible. At the same time, utilisation of Pteridophyte-associated microbes having the capacity for bioremediation have been evaluated and can revolutionise agriculture in mining and mineral-rich areas. In spite of the great potential, this group of microbiomes has been less studied. Under these facts, this prospective review was carried out to summarise the basic and applied research on the potential of Pteridophyte microbiomes for soil bioremediation and other agricultural applications globally. Gaps have also been indicated to present scopes for future research programmes.
Collapse
Affiliation(s)
- Yasaswinee Rout
- Central National Herbarium, Botanical Survey of India, 711103, Howrah, West Bengal, India
| | | | - Madhusmita Ghana
- Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015, India
| | - Debabrata Dash
- Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015, India
| | - Shubhransu Nayak
- Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015, India
| |
Collapse
|
3
|
Gracia-Rodriguez C, Lopez-Ortiz C, Flores-Iga G, Ibarra-Muñoz L, Nimmakayala P, Reddy UK, Balagurusamy N. From genes to ecosystems: Decoding plant tolerance mechanisms to arsenic stress. Heliyon 2024; 10:e29140. [PMID: 38601600 PMCID: PMC11004893 DOI: 10.1016/j.heliyon.2024.e29140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Lizbeth Ibarra-Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| |
Collapse
|
4
|
Ivy N, Mukherjee T, Bhattacharya S, Ghosh A, Sharma P. Arsenic contamination in groundwater and food chain with mitigation options in Bengal delta with special reference to Bangladesh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1261-1287. [PMID: 35841495 DOI: 10.1007/s10653-022-01330-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Bangladesh, situated in Bengal delta, is one of the worst affected countries by arsenic contamination in groundwater. Most of the people in the country are dependent on groundwater for domestic and irrigation purposes. Currently, 61 districts out of 64 districts of Bangladesh are affected by arsenic contamination. Drinking arsenic contaminated groundwater is the main pathway of arsenic exposure in the population. Additionally, the use of arsenic-contaminated groundwater for irrigation purpose in crop fields in Bangladesh has elevated arsenic concentration in surface soil and in the plants. In many arsenic-affected countries, including Bangladesh, rice is reported to be one of the significant sources of arsenic contamination. This review discussed scenario of groundwater arsenic contamination and transmission of arsenic through food chain in Bangladesh. The study further highlighted the human health perspectives of arsenic exposure in Bangladesh with possible mitigation and remediation options employed in the country.
Collapse
Affiliation(s)
- Nishita Ivy
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India
| | | | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India.
| |
Collapse
|
5
|
Wang S, Zhou E, Wei X, Liu R, Li C, Pan L, Zheng Y, Xing N. Collaborative Construction of a Silver Nanocluster Fluorescent Probe Using the Pyridinium-Based Ionic Liquid [C 4py][DCA]. ACS OMEGA 2022; 7:20241-20249. [PMID: 35722004 PMCID: PMC9201884 DOI: 10.1021/acsomega.2c02172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
A silver nanocluster fluorescent probe was synthesized by using the pyridinium-based ionic liquid [C4py][DCA] as the protective agent, AgNO3 as the precursor, and NaBH4 as the reducing agent. The presence of pyridine group enhanced the fluorescence intensity of Ag nanoclusters and facilitated the coordination interaction between Ag nanoclusters and AsO3 3-. Therefore, the collaborative construction of a silver nanocluster probe using the pyridinium-based ionic liquid [C4py][DCA] offered outstanding selectivity and sensitivity to detect AsO3 3- in water. More interestingly, the fluorescent probe quenched by AsO3 3- could be recovered with the addition of H2O2. This fluorescent probe provided a rapid and superior method for the detection of As(III) in the linear concentration range of 0-60 ppb with the lowest detection limit of 0.60 ppb. The mechanism of fluorescence quenching was a static quenching, considered to be due to electron migration between functional groups on the surface of Ag nanoclusters constructed with [C4py][DCA] and AsO3 3-.
Collapse
|
6
|
Endofungal Rhizobium species enhance arsenic tolerance in colonized host plant under arsenic stress. Arch Microbiol 2022; 204:375. [PMID: 35674927 DOI: 10.1007/s00203-022-02972-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Arsenic (As) is a toxic metalloid that is present in natural surroundings in many forms with severe consequences to sustainable agriculture and human health. Plant growth-promoting Rhizobia have been found involved in the induction of plant tolerance under various biotic and abiotic stresses. An endofungal Rhizobium species associated with arbuscular mycorrhizal fungi (AMF) Serendipita indica deploy beneficial role in the promotion of plant growth and tolerance against various biotic and abiotic stresses. In the current study, we have determined the role of endofungal Rhizobium species in protection of host plant growth under As stress. We observed that endofungal Rhizobium species strain Si001 tolerate AsV up to 25 mM and its inoculation enhances tomato seed germination and seedling growth. A hyper-colonization of Rhizobium species Si001 in tomato roots was observed under As stress and results in modulation of GSH and proline content with reduced ROS. Rhizobium species Si001 colonization in host plant recovered pigment contents (chlorophyll-a and chlorophyll-b up to 189.5% and 192%, respectively), photosynthesis (157%), and water use efficiency (166%) compared to As-treated plants. Interestingly, bacterial colonization results in 40% increased As accumulation in the root, while a reduction in As translocation from root to shoot up to 89% was observed as compared to As treated plants. In conclusion, endofungal Rhizobium species Si001 association with the host plant may improve plant health and tolerance against As stress with reduced As accumulation in the crop produce.
Collapse
|
7
|
Gulzar ABM, Mazumder PB. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40319-40341. [PMID: 35316490 DOI: 10.1007/s11356-022-19756-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals (HMs) are not destroyable or degradable and persist in the environment for a long duration. Thus, eliminating and counteracting the HMs pollution of the soil environment is an urgent task to develop a safe and sustainable environment. Plants are in close contact with the soil and can play an important role in soil clean-up, and the process is known as phytoremediation. However, under HM contaminated conditions, plants suffer from several complications, like nutrient and mineral deficiencies, alteration of various physiological and biological processes, which reduces the plant's growth rate. On the other hand, the bioavailability of HMs is another factor for reduced phytoremediation, as most of the HMs are not bioavailable to plants for efficient phytoremediation. The altered plant growth and reduced bioavailability of HMs could be overcome and enhance the phytoremediation efficiency by incorporating either nanotechnology, i.e., nanoparticles (NPs) or plant growth promoting rhizobacteria (PGPR) along with phytoremediation. Single incorporation of NPs and PGPR might improve the growth rate in plants by enhancing nutrient availability and uptake and also by regulating plant growth regulators under HM contaminated conditions. However, there are certain limitations, like a high dose of NPs that might have toxic effects on plants. Thus, the combination of two techniques such as PGPR and NPs-based remediation can conquer the limitations of individual techniques and consequently enhance phytoremediation efficiency. Considering the negative impacts of HMs on the environment and living organisms, this review is aimed at highlighting the concept of phytoremediation, the single or combined integration of NPs and PGPR to help plants deal with HMs and their basic mechanisms involved in the process of phytoremediation. Additionally, the complications of using NPs and PGPR in the phytoremediation process are discussed to determine future research questions and this will assist to stimulate further research in this field and increase its effectiveness in practical application.
Collapse
Affiliation(s)
- Abu Barkat Md Gulzar
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Pranab Behari Mazumder
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India.
| |
Collapse
|
8
|
Fasani E, Li M, Varotto C, Furini A, DalCorso G. Metal Detoxification in Land Plants: From Bryophytes to Vascular Plants. STATE of the Art and Opportunities. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030237. [PMID: 35161218 PMCID: PMC8837986 DOI: 10.3390/plants11030237] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 05/05/2023]
Abstract
Potentially toxic elements are a widespread concern due to their increasing diffusion into the environment. To counteract this problem, the relationship between plants and metal(loid)s has been investigated in the last 30 years. In this field, research has mainly dealt with angiosperms, whereas plant clades that are lower in the evolutive scale have been somewhat overlooked. However, recent studies have revealed the potential of bryophytes, pteridophytes and gymnosperms in environmental sciences, either as suitable indicators of habitat health and elemental pollution or as efficient tools for the reclamation of degraded soils and waters. In this review, we summarize recent research on the interaction between plants and potentially toxic elements, considering all land plant clades. The focus is on plant applicability in the identification and restoration of polluted environments, as well as on the characterization of molecular mechanisms with a potential outlet in the engineering of element tolerance and accumulation.
Collapse
Affiliation(s)
- Elisa Fasani
- Department Biotechnology, University of Verona, Str. Le Grazie 15, 37131 Verona, Italy;
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’ Adige, Italy; (M.L.); (C.V.)
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’ Adige, Italy; (M.L.); (C.V.)
| | - Antonella Furini
- Department Biotechnology, University of Verona, Str. Le Grazie 15, 37131 Verona, Italy;
- Correspondence: (A.F.), (G.D.)
| | - Giovanni DalCorso
- Department Biotechnology, University of Verona, Str. Le Grazie 15, 37131 Verona, Italy;
- Correspondence: (A.F.), (G.D.)
| |
Collapse
|
9
|
Abou-Shanab RAI, Santelli CM, Sadowsky MJ. Bioaugmentation with As-transforming bacteria improves arsenic availability and uptake by the hyperaccumulator plant Pteris vittata (L). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:420-428. [PMID: 34334062 DOI: 10.1080/15226514.2021.1951654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inorganic arsenic (As) is a toxic and carcinogenic pollutant that has long-term impacts on environmental quality and human health. Pteris vittata plants hyperaccumulate As from soils. Soil bacteria are critical for As-uptake by P. vittata. We examined the use of taxonomically diverse soil bacteria to modulate As speciation in soil and their effect on As-uptake by P. vittata. Aqueous media inoculated with Pseudomonas putida MK800041, P. monteilii MK344656, P. plecoglossicida MK345459, Ochrobactrum intermedium MK346993 or Agrobacterium tumefaciens MK346997 resulted in the oxidation of 5-30% As(III) and a 49-79% reduction of As(V). Soil inoculated with P. monteilii increased extractable As(III) and As(V) from 0.5 and 0.09 in controls to 0.9 and 0.39 mg As kg-1 soil dry weight, respectively. Moreover, and P. vittata plants inoculated with P. monteilii, P. plecoglossicida, O. intermedium strains, and A. tumefaciens strains MK344655, MK346994, MK346997, significantly increased As-uptake by 43, 32, 12, 18, 16, and 14%, respectively, compared to controls. The greatest As-accumulation (1.9 ± 0.04 g kg-1 frond Dwt) and bioconcentration factor (16.3 ± 0.35) was achieved in plants inoculated with P. monteilii. Our findings indicate that the tested bacterial strains can increase As-availability in soils, thus enhancing As-accumulation by P. vittata. Novelty statement Pteris vittata, a well-known As-hyperaccumulator, has the remarkable ability to accumulate higher levels of As in their above-ground biomass. The As-tolerant bacteria-plant interactions play a significant role in bioremediation by mediating As-redox and controlling As-availability and uptake by P. vittata. Our studies indicated that most of the tested bacterial strains isolated from As-impacted soil significantly enhanced As-uptake by P. vittata. P. monteilii oxidized 20% of As(III) and reduced 50% of As(V), increased As-extraction from soils, and increased As-uptake by 43% greater compared with control. Therefore, these strains associated with P. vittata can be used in large-scale field applications to remediate As-contaminated soil.
Collapse
Affiliation(s)
| | - Cara M Santelli
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
- Department of Soil, Water & Climate, University of Minnesota, St. Paul, MN, USA
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|