1
|
Comes J, Islamovic E, Lizandara-Pueyo C, Seto J. Improvements in the utilization of calcium carbonate in promoting sustainability and environmental health. Front Chem 2024; 12:1472284. [PMID: 39421606 PMCID: PMC11484102 DOI: 10.3389/fchem.2024.1472284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Calcium carbonate (CaCO3) is an incredibly abundant mineral on Earth, with over 90% of it being found in the lithosphere. To address the CO2 crisis and combat ocean acidification, it is essential to produce more CaCO3 using various synthetic methods. Additionally, this approach can serve as a substitute for energy-intensive processes like cement production. By doing so, we have the potential to not only reverse the damage caused by climate change but also protect biological ecosystems and the overall environment. The key lies in maximizing the utilization of CaCO3 in various human activities, paving the way for a more sustainable future for our planet.
Collapse
Affiliation(s)
- Jackson Comes
- School for the Engineering of Matter, Transport, and Energy, Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | | | | | - Jong Seto
- School for the Engineering of Matter, Transport, and Energy, Center for Biological Physics, Arizona State University, Tempe, AZ, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
2
|
El-Bayoumy FI, Osman AI, Rooney DW, Roushdy MH. Utilization of iron fillings solid waste for optimum biodiesel production. Front Chem 2024; 12:1404107. [PMID: 38873404 PMCID: PMC11169888 DOI: 10.3389/fchem.2024.1404107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
This study explores the innovative application of iron filings solid waste, a byproduct from mechanical workshops, as a heterogeneous catalyst in the production of biodiesel from waste cooking oil. Focusing on sustainability and waste valorization, the research presents a dual-benefit approach: addressing the environmental issue of solid waste disposal while contributing to the renewable energy sector. Particle size distribution analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), Thermal analysis (TG-DTA), and FTIR analysis were used to characterize the iron filings. The response surface methodology (RSM) was used to guide a series of experiments that were conducted to identify the optimum transesterification settings. Important factors that greatly affect the production of biodiesel are identified by the study, including catalyst loading, reaction time, methanol-to-oil ratio, reaction temperature, and stirring rate. The catalyst proved to be successful as evidenced by the 96.4% biodiesel conversion efficiency attained under ideal conditions. The iron filings catalyst's reusability was evaluated, demonstrating its potential for numerous applications without noticeably decreasing activity. This work offers a road towards more environmentally friendly and sustainable chemical processes in energy production by making a strong argument for using industrial solid waste as a catalyst in the biodiesel manufacturing process.
Collapse
Affiliation(s)
- Fady I. El-Bayoumy
- Chemical Engineering Department, Faculty of Engineering, The British University in Egypt (BUE), El-Sherouk City, Egypt
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, United Kingdom
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, United Kingdom
| | - Mai H. Roushdy
- Chemical Engineering Department, Faculty of Engineering, The British University in Egypt (BUE), El-Sherouk City, Egypt
| |
Collapse
|
3
|
Senusi W, Ahmad MI, Binhweel F, Shalfoh E, Alsaedi S, Shakir MA. Biodiesel production and characteristics from waste frying oils: sources, challenges, and circular economic perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33239-33258. [PMID: 38696017 DOI: 10.1007/s11356-024-33533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/27/2024] [Indexed: 05/31/2024]
Abstract
Biodiesel serves as a viable alternative to traditional diesel due to its non-toxicity, biodegradability, and lower environmental footprint. Among the diverse edible and inedible feedstocks, waste frying oil emerges as a promising and affordable feedstock for biodiesel production. Commonly waste frying oils include those derived from palm, corn, sunflower, soybean, rapeseed, and canola. The primary challenge related to biodiesel production technologies is the high production cost, which poses a significant barrier to its widespread adoption. Thus, refining the production techniques is essential to enhance yield, reduce capital expenditure, and curtail raw material expenses. An examination of the research focusing on feedstock availability, production, hurdles, operational expenditures, and future potential is pivotal for identifying the most economically and technically viable solutions. This paper critically reviews such research by exploring feedstock availability, production techniques, challenges, and costs intrinsic to biodiesel synthesis. It also underscores the economic feasibility of biodiesel production, shedding light on the pivotal factors that influence profitability, especially when leveraging waste frying oils. Through an in-depth understanding of these considerations, optimal production and feedstock choices for biodiesel production can be identified. Addressing cost and production bottlenecks could potentially enhance the economic viability of waste frying oil-based biodiesel, thus fostering both environmental sustainability and more extensive adoption of biodiesel as an environmental-friendly fuel in the future.
Collapse
Affiliation(s)
- Wardah Senusi
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Fozy Binhweel
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Ehsan Shalfoh
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Sami Alsaedi
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mohammad Aliff Shakir
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
4
|
Mekonnen KD, Yesuf AY. OH-Impregnated Household Bleach-Making Sediments for the Catalysis of Waste Cooking Oil Transesterification: Parameter Optimization. ACS OMEGA 2024; 9:4613-4626. [PMID: 38313485 PMCID: PMC10832008 DOI: 10.1021/acsomega.3c07810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024]
Abstract
Industrial and academic societies have been bothered with the generation and subsequent management of residues settled out from household bleach, due to its corrosive properties. Therefore, the aim of this research was to introduce a NaOH-impregnated calcium-based solid catalyst from the aforementioned sediments for waste cooking oil transesterification. To prepare the catalyst (RC-ITB), the wet impregnation technique was followed and successfully characterized via X-ray diffraction (XRD), X-ray fluorescence(XRF), differential scanning calorimetry (DSC), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) methods. The study findings suggested that RC-ITB has a BET surface area of 9.312 m2 g-1 and is largely made up of calcium with its compound forms such as carbonates, hydroxides, and oxides. The evaluation of pH values verified that RC-ITB is more alkaline (i.e., pH = 12.65) relative to its precursor RC (pH = 10.66), largely attributable to OH impregnation. To study the catalytic performance, three numeric factors with three levels of treatment were used, and their influences were analyzed through a response surface approach. Accordingly, the optimal yield of biodiesel was found to be 80.04% at a reaction temperature of 61 ± 2 °C, catalyst weight of 6.33 wt %, and a molar ratio of 23.94. Moreover, FTIR analysis verified that the glycerol part of triglycerides had been replaced with a methoxyl unit. Also, the fuel quality parameters of the FAME product were examined, including density, kinematic viscosity, acid value, density, cetane number, cloud point, saponification value, and pour point; all of these values fall within the ASTM D6751-accepted limits. Thus, the findings showed that the sediments of household bleach production could be a candidate source to explore heterogeneous basic catalysts.
Collapse
Affiliation(s)
- Kedir Derbie Mekonnen
- School of Mechanical and
Chemical Engineering, Kombolcha Institute of Technology, Wollo University, Wollo 208, Ethiopia
| | - Anwar Yimer Yesuf
- School of Mechanical and
Chemical Engineering, Kombolcha Institute of Technology, Wollo University, Wollo 208, Ethiopia
| |
Collapse
|
5
|
Mekonnen KD, Hailemariam K. Valorization of calcium hypochlorite precipitate as a new source of heterogeneous catalyst development for biodiesel production: A preliminary experiment. Heliyon 2023; 9:e21959. [PMID: 38053885 PMCID: PMC10694178 DOI: 10.1016/j.heliyon.2023.e21959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
One of the main problem related with liquid bleach production from calcium hypochlorite is the amount of precipitates generated and its consequent management. As a result, academic and industrial communities have been challenged with searching of a means for its valorization. Therefore, this research explores the application of the precipitate as a viable source of Ca-based heterogeneous catalyst development for the production of waste cooking oil methyl esters for the first-time. The catalyst was prepared by dividing the precipitates into three forms, viz. raw untreated (RC), heat treated (RC-TB), and NaOH impregnated plus thermally activated (RC-ITB). The prepared catalysts were efficiently characterized by XRF, XRD, FTIR, SEM, and BET techniques. The characterization results indicated that the catalysts are mainly composed of calcium metal in the form of oxides (CaO), calcite (CaCO3) and Portlandite (Ca(OH)2), which are the promising constituents of basic catalysts. The BET inspection of RC, RC-TB, and RC-ITB revealed the specific surface area of 8.509, 9.089, and 9.312 m2/g, respectively. At the same reaction conditions, the maximum biodiesel yield of 76.05 % was achieved by RC-ITB compared to RC-TB (62.57 %) and RC (19.74 %), because it's larger specific surface area and highest basic nature (pH = 12.65 at 1:5 w/v) improves the reaction catalysis through better catalyst-substrates interactions. The lower biodiesel yield was attained through the RC catalyst due to its untreated surface, lower specific area, and weak alkaline nature (pH value = 10.66 at 1:5 w/v). Furthermore, regardless of the amount of yield, almost similar fuel properties and functional groups of the products over the coded catalysts were observed. Generally, the possibility of calcium hypochlorite precipitate as a precursor of Ca-based heterogeneous catalyst has been effectively proven in this research, which could be very important for environmental safety and industrial resource integration.
Collapse
Affiliation(s)
- Kedir Derbie Mekonnen
- School of Mechanical and Chemical Engineering, Kombolcha Institute of Technology-Wollo University, Wollo, Ethiopia
| | - Kefyalew Hailemariam
- School of Mechanical, Chemical, and Materials Engineering, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
6
|
Zamri MFMA, Shamsuddin AH, Ali S, Bahru R, Milano J, Tiong SK, Fattah IMR, Raja Shahruzzaman RMH. Recent Advances of Triglyceride Catalytic Pyrolysis via Heterogenous Dolomite Catalyst for Upgrading Biofuel Quality: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1947. [PMID: 37446463 DOI: 10.3390/nano13131947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 07/15/2023]
Abstract
This review provides the recent advances in triglyceride catalytic pyrolysis using heterogeneous dolomite catalysts for upgrading biofuel quality. The production of high-quality renewable biofuels through catalytic cracking pyrolysis has gained significant attention due to their high hydrocarbon and volatile matter content. Unlike conventional applications that require high operational costs, long process times, hazardous material pollution, and enormous energy demand, catalytic cracking pyrolysis has overcome these challenges. The use of CaO, MgO, and activated dolomite catalysts has greatly improved the yield and quality of biofuel, reducing the acid value of bio-oil. Modifications of the activated dolomite surface through bifunctional acid-base properties also positively influenced bio-oil production and quality. Dolomite catalysts have been found to be effective in catalyzing the pyrolysis of triglycerides, which are a major component of vegetable oils and animal fats, to produce biofuels. Recent advances in the field include the use of modified dolomite catalysts to improve the activity and selectivity of the catalytic pyrolysis process. Moreover, there is also research enhancement of the synthesis and modification of dolomite catalysts in improving the performance of biofuel yield conversion. Interestingly, this synergy contribution has significantly improved the physicochemical properties of the catalysts such as the structure, surface area, porosity, stability, and bifunctional acid-base properties, which contribute to the catalytic reaction's performance.
Collapse
Affiliation(s)
- Mohd Faiz Muaz Ahmad Zamri
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Abd Halim Shamsuddin
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Salmiaton Ali
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raihana Bahru
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Jassinnee Milano
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Sieh Kiong Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Islam Md Rizwanul Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | | |
Collapse
|
7
|
Nganda A, Srivastava P, Lamba BY, Pandey A, Kumar M. Advances in the fabrication, modification, and performance of biochar, red mud, calcium oxide, and bentonite catalysts in waste-to-fuel conversion. ENVIRONMENTAL RESEARCH 2023:116284. [PMID: 37270078 DOI: 10.1016/j.envres.2023.116284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Various catalysts are being used in fuel production from biomass and polymeric waste for the obtention of an alternative energy source with both environmental friendliness and economic viability. Biochar, red mud bentonite, and calcium oxide have been shown to play a pertinent role as catalysts in waste-to-fuel conversion processes, such as transesterification and pyrolysis. In this line of thought, this paper has provided a compendium of the fabrication and modification technologies of bentonite, red mud calcium oxide, and biochar, together with their various performances in their application in the waste-to-fuel processes. Additionally, an overview of the structural and chemical attributes of these components is discussed regarding their efficiency. Ultimately, research trends and future points of focus are evaluated, and it is observed that techno-economic optimization of catalyst synthetic routes and investigation of new catalytic formulations, such as biochar and red mud-based nanocatalysts, are potential prospects. This report also offers future research directions that are anticipated to contribute to the development of sustainable green fuel generation systems.
Collapse
Affiliation(s)
- Armel Nganda
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Pankaj Srivastava
- Energy Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Bhawna Yadav Lamba
- Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Ashok Pandey
- CSIR-Indian Institute for Toxicology Research, Lucknow, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| |
Collapse
|
8
|
Mahdi HI, Ramlee NN, da Silva Duarte JL, Cheng YS, Selvasembian R, Amir F, de Oliveira LH, Wan Azelee NI, Meili L, Rangasamy G. A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA. CHEMOSPHERE 2023; 319:138003. [PMID: 36731678 DOI: 10.1016/j.chemosphere.2023.138003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/24/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Biodiesel is an alternative to fossil-derived diesel with similar properties and several environmental benefits. Biodiesel production using conventional catalysts such as homogeneous, heterogeneous, or enzymatic catalysts faces a problem regarding catalysts deactivation after repeated reaction cycles. Heterogeneous nanocatalysts and nanobiocatalysts (enzymes) have shown better advantages due to higher activity, recyclability, larger surface area, and improved active sites. Despite a large number of studies on this subject, there are still challenges regarding its stability, recyclability, and scale-up processes for biodiesel production. Therefore, the purpose of this study is to review current modifications and role of nanocatalysts and nanobiocatalysts and also to observe effect of various parameters on biodiesel production. Nanocatalysts and nanobiocatalysts demonstrate long-term stability due to strong Brønsted-Lewis acidity, larger active spots and better accessibility leading to enhancethe biodiesel production. Incorporation of metal supporting positively contributes to shorten the reaction time and enhance the longer reusability. Furthermore, proper operating parameters play a vital role to optimize the biodiesel productivity in the commercial scale process due to higher conversion, yield and selectivity with the lower process cost. This article also analyses the relationship between different types of feedstocks towards the quality and quantity of biodiesel production. Crude palm oil is convinced as the most prospective and promising feedstock due to massive production, low cost, and easily available. It also evaluates key factors and technologies for biodiesel production in Indonesia, Malaysia, Brazil, and the USA as the biggest biodiesel production supply.
Collapse
Affiliation(s)
- Hilman Ibnu Mahdi
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan; Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan.
| | - Nurfadhila Nasya Ramlee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
| | - José Leandro da Silva Duarte
- Laboratory of Applied Electrochemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, 57072-900, Brazil
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan; College of Future, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India.
| | - Faisal Amir
- Department of Mechanical Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan; Department of Mechanical Engineering, Universitas Mercu Buana (UMB), Jl. Raya, RT.4/RW.1, Meruya Sel., Kec. Kembangan, Jakarta, Daerah Khusus Ibukota Jakarta, 11650, Indonesia
| | - Leonardo Hadlich de Oliveira
- Laboratory of Adsorption and Ion Exchange (LATI), Chemical Engineering Department (DEQ), State University of Maringá, Maringá (UEM), 5790 Colombo Avenue, Zone 7, 87020-900, Maringá, PR, Brazil
| | - Nur Izyan Wan Azelee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), UTM Skudai, 81310, Skudai Johor Bahru, Johor, Malaysia.
| | - Lucas Meili
- Laboratory of Processes (LAPRO), Center of Technology, Federal University of Alagoas, Campus A. C. Simões, Lourival Melo Mota Avenue, Tabuleiro Dos Martins, 57072-970, Maceió, AL, Brazil.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
9
|
Mechanochemical Synthesized CaO/ZnCo2O4 Nanocomposites for Biodiesel Production. Catalysts 2023. [DOI: 10.3390/catal13020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Biodiesel has been recognized as an environmentally friendly, renewable alternative to fossil fuels. In this work, CaO/ZnCo2O4 nanocomposites were successfully synthesized via simple mechanochemical reaction between ZnCo2O4 and CaO powders by varying the CaO loading from 5 to 20 wt.%. The synthesized materials were found to be highly efficient heterogeneous catalysts for transesterification of tributyrin with methanol to produce biodiesel. The nanocomposite, which contained 20 wt.% CaO and 80 wt.% ZnCo2O4 (CaO/ZnCo2O4-20), exhibited superior and stable transesterification activity (98% conversion) under optimized reaction conditions (1:12 TBT to methanol molar ratio, 5 wt.% catalyst and 180 min. reaction time). The experimental results revealed that the reaction mechanism on the CaO/ZnCo2O4 composite followed pseudo first-order kinetics. The physicochemical characteristics of the synthesized nanocomposites were measured using X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Fourier-transformed infrared spectroscopy (FTIR), X-ray photoelectron spectrometer (XPS), N2-physisorption, and CO2- temperature-programmed desorption (CO2-TPD) techniques. The results indicated the existence of coalescence between the CaO and ZnCo2O4 particles, Additionally, the CaO/ZnCo2O4-20 catalyst was found to possess the greater number of highly basic sites and high porosity, which are the key factors affecting catalytic performance in transesterification reactions.
Collapse
|
10
|
Hanif S, Alsaiari M, Ahmad M, Sultana S, Zafar M, Harraz FA, Alharbi AF, Abahussain AAM, Ahmad Z. Membrane reactor based synthesis of biodiesel from Toona ciliata seed oil using barium oxide nano catalyst. CHEMOSPHERE 2022; 308:136458. [PMID: 36122747 DOI: 10.1016/j.chemosphere.2022.136458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Membrane technology has been embraced as a feasible and promising substitute to the traditional technologies employed for biodiesel synthesis which are energy and time consuming. It needs less energy, has high stability, is environmentally friendly, and is simple to operate and control. Therefore, in our current study membrane technology was employed to synthesize biodiesel from Toona ciliate novel and non-edible seed oil. Since Toona ciliata has affluent oil content (33.8%) and is effortlessly and extensively available. In fact, we intended to scrutinize the effects of green synthesized barium oxide nanoparticles for one step transesterification of biodiesel production using membrane technology followed by characterization of prepared catalyst via innovative techniques. Optimal yield of biodiesel attained was 94% at 90 °C for 150 min with methanol to oil molar ratio of 9:1 and amount of about 0.39 wt %. Quantitative analysis of synthesized Toona ciliata oil biodiesel was carried out by advance techniques of Gas chromatography mass spectrometry (GC-MS), Fourier-transform infrared (FTIR) spectroscopy and Nuclear magnetic resonance (NMR) which authorize the synthesis of fatty acid methyl ester compounds using oil from Toona ciliata seeds. Values of Toona ciliata fuel properties for instance flash point (70°C), density (0.89 kg/m3), viscosity (5.25 mm2/s), cloud point (-8°C) and pour point (-11°C) met the specifications of international standards i. e American (ASTM D-6751), European (EN-14214) and China (GB/T 20,828). Subsequently, it is concluded that membrane technology is environmentally friendly and efficient technique for mass-production of sustainable biodiesel using green nano catalyst of barium oxide.
Collapse
Affiliation(s)
- Saman Hanif
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia.
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan.
| | - Shazia Sultana
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan, Cairo, 11421, Egypt
| | | | | | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
11
|
ZrO2-based catalysts for biodiesel production: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Khalil KD, Ahmed HA, Bashal AH, Bräse S, Nayl AA, Gomha SM. Efficient, Recyclable, and Heterogeneous Base Nanocatalyst for Thiazoles with a Chitosan-Capped Calcium Oxide Nanocomposite. Polymers (Basel) 2022; 14:polym14163347. [PMID: 36015604 PMCID: PMC9416520 DOI: 10.3390/polym14163347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Calcium oxide (CaO) nanoparticles have recently gained much interest in recent research due to their remarkable catalytic activity in various chemical transformations. In this article, a chitosan calcium oxide nanocomposite was created by the solution casting method under microwave irradiation. The microwave power and heating time were adjusted to 400 watts for 3 min. As it suppresses particle aggregation, the chitosan (CS) biopolymer acted as a metal oxide stabilizer. In this study, we aimed to synthesize, characterize, and investigate the catalytic potency of chitosan–calcium oxide hybrid nanocomposites in several organic transformations. The produced CS–CaO nanocomposite was analyzed by applying different analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). In addition, the calcium content of the nanocomposite film was measured using energy-dispersive X-ray spectroscopy (EDS). Fortunately, the CS–CaO nanocomposite (15 wt%) was demonstrated to be a good heterogeneous base promoter for high-yield thiazole production. Various reaction factors were studied to maximize the conditions of the catalytic technique. High reaction yields, fast reaction times, and mild reaction conditions are all advantages of the used protocol, as is the reusability of the catalyst; it was reused multiple times without a significant loss of potency.
Collapse
Affiliation(s)
- Khaled D. Khalil
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu 46423, Saudi Arabia
- Correspondence: (K.D.K.); (S.B.); (S.M.G.)
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ali H. Bashal
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu 46423, Saudi Arabia
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: (K.D.K.); (S.B.); (S.M.G.)
| | - AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia or
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Correspondence: (K.D.K.); (S.B.); (S.M.G.)
| |
Collapse
|
13
|
Ghorbani-Choghamarani A, Taherinia Z, Tyula YA. Efficient biodiesel production from oleic and palmitic acid using a novel molybdenum metal-organic framework as efficient and reusable catalyst. Sci Rep 2022; 12:10338. [PMID: 35725895 PMCID: PMC9209509 DOI: 10.1038/s41598-022-14341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
In this study, metal-organic framework based on molybdenum and piperidine-4-carboxylic acid, was synthesized through a simple solvothermal method and employed as an effective catalyst for biodiesel production from oleic acid and palmitic acid via esterification reaction. The prepared catalyst was characterized by XRD, FTIR, TGA, DSC, BET, SEM, TEM, ICP-OES, X-ray mapping and EDX analysis. The resulting Mo-MOF catalyst exhibit a rod-like morphology, specific surface area of 56 m2/g, and thermal stability up to 300 °C. The solid catalyst exhibited high activities for esterification of oleic acid and palmitic acid. Moreover, the catalyst could be simply recovered and efficiently reutilized for several times without significant loss in its activity, also obtained results revealed that metal-organic framework could be used for the appropriate and rapid biodiesel production.
Collapse
Affiliation(s)
| | - Zahra Taherinia
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Yunes Abbasi Tyula
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| |
Collapse
|
14
|
Sanitary Ware Waste as a Source for a Valuable Biodiesel Catalyst. J CHEM-NY 2022. [DOI: 10.1155/2022/1232110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biofuel is a type of fuel that is made from biomass using modern techniques rather than the relatively slow geological processes that lead to the development of fossil fuels. In Europe, biodiesel is the most widely used biofuel. The sanitary ware industry generates a lot of hazardous waste, such as waste gypsum molds. These molds are broken, pulverized, and reacted with NaCO3 to make CaCO3, which is then heated to produce CaO. The resulting CaO catalyzes the reaction between waste frying oil and methanol for biodiesel synthesis. To evaluate the effect of reaction parameters on the production of biodiesel, the independent reaction parameters that were chosen are as follows: reaction temperature in the range 50–70°C, methanol to oil (M:O) molar ratio in the range 9–15, catalyst loading in the range 1–5%, and time in the range 2–6 hrs. The influence of the independent factors on the reaction-dependent responses was evaluated and it was found that reaction temperature and methanol-to-oil ratio have a major effect on the biodiesel yield. Reaction condition optimization has been studied to maximize biodiesel yield at minimum reaction conditions. The optimum process conditions are 93.4% biodiesel yield at an M:O molar ratio of 15 : 1, catalyst loading of 1%, reaction temperature of 53.6°C, and reaction time of 2 h. The results showed that resulted biodiesel catalyst (CaO) can be used one time; then, a fresh catalyst will be used.
Collapse
|
15
|
Heterogeneous Biodiesel Catalyst from Steel Slag Resulting from an Electric Arc Furnace. Processes (Basel) 2022. [DOI: 10.3390/pr10030465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Biodiesel is one of the most environmentally friendly and renewable fuels, as it is a non-polluting fuel and is made from living resources, such as vegetable oils. The steel industry generates a variety of solid wastes, including electric arc furnace slag (EAFS). The synthesis of biodiesel from waste sunflower cooking oil was examined in this study, utilizing EAFS as a catalyst, which mainly contains ferric and ferrous oxides, calcium oxide, and silica. To evaluate their impact on biodiesel production, four independent variables were chosen: temperature (50–70 °C), catalyst loading (1–5%), methanol-to-oil (M:O) molar ratio (5–20), and time (1–4 h). The response surface methodology (RSM) was used to examine the impact of independent variables on reaction response, which is the biodiesel yield. This process was carried out using a design expert program by central composite design (CCD). A model was constructed, and showed that the biodiesel yield was directly proportional to all independent reaction parameters. The predicted model’s adequacy was investigated using analysis of variance (ANOVA), which showed that it is an excellent representative of the results. The optimization of reaction conditions was investigated in order to maximize biodiesel yield at minimal reaction temperature and time, achieving a 94% biodiesel yield at a 20:1 M:O molar ratio, 5% catalyst loading, 55.5 °C reaction temperature, and 1 h reaction time.
Collapse
|
16
|
An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective. ENERGIES 2021. [DOI: 10.3390/en14133950] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biodiesel is a clean, renewable, liquid fuel that can be used in existing diesel engines without modification as pure or blend. Transesterification (the primary process for biodiesel generation) via heterogeneous catalysis using low-cost waste feedstocks for catalyst synthesis improves the economics of biodiesel production. Heterogeneous catalysts are preferred for the industrial generation of biodiesel due to their robustness and low costs due to the easy separation and relatively higher reusability. Calcium oxides found in abundance in nature, e.g., in seashells and eggshells, are promising candidates for the synthesis of heterogeneous catalysts. However, process improvements are required to design productive calcium oxide-based catalysts at an industrial scale. The current work presents an overview of the biodiesel production advancements using calcium oxide-based catalysts (e.g., pure, supported, and mixed with metal oxides). The review discusses different factors involved in the synthesis of calcium oxide-based catalysts, and the effect of reaction parameters on the biodiesel yield of calcium oxide-based catalysis are studied. Further, the common reactor designs used for the heterogeneous catalysis using calcium oxide-based catalysts are explained. Moreover, the catalytic activity mechanism, challenges and prospects of the application of calcium oxide-based catalysts in biodiesel generation are discussed. The study of calcium oxide-based catalyst should continue to be evaluated for the potential of their application in the commercial sector as they remain the pivotal goal of these studies.
Collapse
|
17
|
State of Art of Alkaline Earth Metal Oxides Catalysts Used in the Transesterification of Oils for Biodiesel Production. ENERGIES 2021. [DOI: 10.3390/en14041031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biodiesel produced through catalytic transesterification of triglycerides from edible and non-edible oils and alcohol is considered an alternative to traditional petro-diesel. The interest in the use of alkaline earth metal oxides as heterogeneous basic catalysts has increased due to their availability, non-toxicity, the capacity to be reused, low cost, and high concentration of surface basic sites that provide the activity. This work is a compilation of the strategies to understand the effect of the source, synthesis, and thermal treatment of MgO, CaO, SrO, and BaO on the improvement of the surface basic sites density and strength, the morphology of the solid structure, stability during reaction and reusability. These parameters are commonly modified or enhanced by mixing these oxides or with alkaline metals. Also, the improvement of the acid-base properties and to avoid the lixiviation of catalysts can be achieved by supporting the alkaline earth metal oxides on another oxide. Additionally, the effect of the most relevant operation conditions in oil transesterification reactions such as methanol to oil ratio, temperature, agitation method, pressure, and catalysts concentration are reviewed. This review attempts to elucidate the optimum parameters of reaction and their application in different oils.
Collapse
|
18
|
Lee DJ, Lu JS, Chang JS. Pyrolysis synergy of municipal solid waste (MSW): A review. BIORESOURCE TECHNOLOGY 2020; 318:123912. [PMID: 32741699 DOI: 10.1016/j.biortech.2020.123912] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The synergistic pyrolysis of municipal solid waste (MSW) were recently explored. This review aims to provide an overview on the synergistic pyrolysis studies of MSW, focusing on the synergy occurred during co-pyrolysis of different constituents of MSW. The interactions of intermediates released during pyrolysis can shift end product distributions, accelerate pyrolysis rates, and preferred production of specific compounds, which were categorized into four basic types with discussions. The pyrolysis synergy is proposed to be the key for success of pyrolytic practice of MSW that can handle the waste with maximal resource recovery and minimal carbon emission.
Collapse
Affiliation(s)
- Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; College of Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Jia-Shun Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan
| |
Collapse
|
19
|
Awogbemi O, Inambao F, Onuh EI. Modification and characterization of chicken eggshell for possible catalytic applications. Heliyon 2020; 6:e05283. [PMID: 33102874 PMCID: PMC7569345 DOI: 10.1016/j.heliyon.2020.e05283] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
Abstract
Researchers have shown considerable interest in finding a sustainable, low cost, and readily available substitute for the commercial calcium oxide (CaO) catalyst. In this work, raw chicken eggshell was modified by boiling and calcination at 900 °C for 3 h. The x-ray diffraction characterization revealed that while the proportion of CaCO3 in the raw and boiled samples was found to be 79.3 % and 99.2 % respectively, the CaCO3 had been converted to 63.8 % CaO and CO2 in the calcined sample. This was due to the thermal decomposition during calcination. The outcome of the infrared spectroscopy showed that the raw and boiled chicken eggshell presented a similar absorption profile with peaks at 1 394 cm-1, 873 cm-1, and 712 cm-1, which were as a result of the presence of asymmetric stretch, out-of-plane bend, and in-plane bend vibration modes. The major peaks presented by the calcined sample at 3642 cm-1 can be attributed to the OAH stretching vibration and bending hydroxyl groups present in Ca(OH)2. The Brunauer-Emmett-Teller surface areas for the raw, boiled and calcined chicken eggshell were found to be 2.33 m2/g, 3.26 m2/g, and 4.6 m2/g respectively, indicating increased catalytic activity of the calcined sample. Overall, boiling was found to have a negligible effect on the chicken eggshell, while high-temperature calcination greatly affected the pore size, surface area, composition, and thermal decomposition profile of the chicken eggshell sample.
Collapse
Affiliation(s)
- Omojola Awogbemi
- Discipline of Mechanical Engineering, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Freddie Inambao
- Discipline of Mechanical Engineering, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Emmanuel I Onuh
- Discipline of Mechanical Engineering, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|