1
|
Mariello M, Eş I, Proctor CM. Soft and Flexible Bioelectronic Micro-Systems for Electronically Controlled Drug Delivery. Adv Healthc Mater 2024; 13:e2302969. [PMID: 37924224 DOI: 10.1002/adhm.202302969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The concept of targeted and controlled drug delivery, which directs treatment to precise anatomical sites, offers benefits such as fewer side effects, reduced toxicity, optimized dosages, and quicker responses. However, challenges remain to engineer dependable systems and materials that can modulate host tissue interactions and overcome biological barriers. To stay aligned with advancements in healthcare and precision medicine, novel approaches and materials are imperative to improve effectiveness, biocompatibility, and tissue compliance. Electronically controlled drug delivery (ECDD) has recently emerged as a promising approach to calibrated drug delivery with spatial and temporal precision. This article covers recent breakthroughs in soft, flexible, and adaptable bioelectronic micro-systems designed for ECDD. It overviews the most widely reported operational modes, materials engineering strategies, electronic interfaces, and characterization techniques associated with ECDD systems. Further, it delves into the pivotal applications of ECDD in wearable, ingestible, and implantable medical devices. Finally, the discourse extends to future prospects and challenges for ECDD.
Collapse
Affiliation(s)
- Massimo Mariello
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
2
|
Ly KL, Hu P, Raub CB, Luo X. Programmable Physical Properties of Freestanding Chitosan Membranes Electrofabricated in Microfluidics. MEMBRANES 2023; 13:294. [PMID: 36984680 PMCID: PMC10052736 DOI: 10.3390/membranes13030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microfluidic-integrated freestanding membranes with suitable biocompatibility and tunable physicochemical properties are in high demand for a wide range of life science and biological studies. However, there is a lack of facile and rapid methods to integrate such versatile membranes into microfluidics. A recently invented interfacial electrofabrication of chitosan membranes offers an in-situ membrane integration strategy that is flexible, controllable, simple, and biologically friendly. In this follow-up study, we explored the ability to program the physical properties of these chitosan membranes by varying the electrofabrication conditions (e.g., applied voltage and pH of alginate). We found a strong association between membrane growth rate, properties, and fabrication parameters: high electrical stimuli and pH of alginate resulted in high optical retardance and low permeability, and vice versa. This suggests that the molecular alignment and density of electrofabricated chitosan membranes could be actively tailored according to application needs. Lastly, we demonstrated that this interfacial electrofabrication could easily be expanded to produce chitosan membrane arrays with higher uniformity than the previously well-established flow assembly method. This study demonstrates the tunability of the electrofabricated membranes' properties and functionality, thus expanding the utility of such membranes for broader applications in the future.
Collapse
Affiliation(s)
- Khanh L. Ly
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC 20064, USA
| | - Piao Hu
- Department of Mechanical Engineering, School of Engineering, Catholic University of America, Washington, DC 20064, USA
| | - Christopher B. Raub
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC 20064, USA
| | - Xiaolong Luo
- Department of Mechanical Engineering, School of Engineering, Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
3
|
Shafique H, de Vries J, Strauss J, Khorrami Jahromi A, Siavash Moakhar R, Mahshid S. Advances in the Translation of Electrochemical Hydrogel-Based Sensors. Adv Healthc Mater 2023; 12:e2201501. [PMID: 36300601 DOI: 10.1002/adhm.202201501] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Indexed: 02/03/2023]
Abstract
Novel biomaterials for bio- and chemical sensing applications have gained considerable traction in the diagnostic community with rising trends of using biocompatible and lowly cytotoxic material. Hydrogel-based electrochemical sensors have become a promising candidate for their swellable, nano-/microporous, and aqueous 3D structures capable of immobilizing catalytic enzymes, electroactive species, whole cells, and complex tissue models, while maintaining tunable mechanical properties in wearable and implantable applications. With advances in highly controllable fabrication and processability of these novel biomaterials, the possibility of bio-nanocomposite hydrogel-based electrochemical sensing presents a paradigm shift in the development of biocompatible, "smart," and sensitive health monitoring point-of-care devices. Here, recent advances in electrochemical hydrogels for the detection of biomarkers in vitro, in situ, and in vivo are briefly reviewed to demonstrate their applicability in ideal conditions, in complex cellular environments, and in live animal models, respectively, to provide a comprehensive assessment of whether these biomaterials are ready for point-of-care translation and biointegration. Sensors based on conductive and nonconductive polymers are presented, with highlights of nano-/microstructured electrodes that provide enhanced sensitivity and selectivity in biocompatible matrices. An outlook on current challenges that shall be addressed for the realization of truly continuous real-time sensing platforms is also presented.
Collapse
Affiliation(s)
- Houda Shafique
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Justin de Vries
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Julia Strauss
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | | | | | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| |
Collapse
|
4
|
Abstract
The growing trend of intelligent devices ranging from wearables and soft robots to artificial intelligence has set a high demand for smart batteries. Hydrogels provide opportunities for smart batteries to self-adjust their functions according to the operation conditions. Despite the progress in hydrogel-based smart batteries, a gap remains between the designable functions of diverse hydrogels and the expected performance of batteries. In this Perspective, we first briefly introduce the fundamentals of hydrogels, including formation, structure, and characteristics of the internal water and ions. Batteries that operate under unusual mechanical and temperature conditions enabled by hydrogels are highlighted. Challenges and opportunities for further development of hydrogels are outlined to propose future research in smart batteries toward all-climate power sources and intelligent wearables.
Collapse
Affiliation(s)
- Peihua Yang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Jin-Lin Yang
- School of Physical and Mathematical Science, Nanyang Technological University, Singapore 637371
| | - Kang Liu
- MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Hong Jin Fan
- School of Physical and Mathematical Science, Nanyang Technological University, Singapore 637371
| |
Collapse
|
5
|
Utagawa Y, Ino K, Kumagai T, Hiramoto K, Takinoue M, Nashimoto Y, Shiku H. Electrochemical Glue for Binding Chitosan–Alginate Hydrogel Fibers for Cell Culture. MICROMACHINES 2022; 13:mi13030420. [PMID: 35334714 PMCID: PMC8952256 DOI: 10.3390/mi13030420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Three-dimensional organs and tissues can be constructed using hydrogels as support matrices for cells. For the assembly of these gels, chemical and physical reactions that induce gluing should be induced locally in target areas without causing cell damage. Herein, we present a novel electrochemical strategy for gluing hydrogel fibers. In this strategy, a microelectrode electrochemically generated HClO or Ca2+, and these chemicals were used to crosslink chitosan–alginate fibers fabricated using interfacial polyelectrolyte complexation. Further, human umbilical vein endothelial cells were incorporated into the fibers, and two such fibers were glued together to construct “+”-shaped hydrogels. After gluing, the hydrogels were embedded in Matrigel and cultured for several days. The cells spread and proliferated along the fibers, indicating that the electrochemical glue was not toxic toward the cells. This is the first report on the use of electrochemical glue for the assembly of hydrogel pieces containing cells. Based on our results, the electrochemical gluing method has promising applications in tissue engineering and the development of organs on a chip.
Collapse
Affiliation(s)
- Yoshinobu Utagawa
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan; (Y.U.); (T.K.); (K.H.)
| | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan;
- Correspondence: (K.I.); (H.S.)
| | - Tatsuki Kumagai
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan; (Y.U.); (T.K.); (K.H.)
| | - Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan; (Y.U.); (T.K.); (K.H.)
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama 226-8502, Japan;
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan;
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan;
- Correspondence: (K.I.); (H.S.)
| |
Collapse
|
6
|
Patterson C, Dietrich B, Wilson C, Mount AR, Adams DJ. Electrofabrication of large volume di- and tripeptide hydrogels via hydroquinone oxidation. SOFT MATTER 2022; 18:1064-1070. [PMID: 35022641 DOI: 10.1039/d1sm01626a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fabrication of protected peptide-based hydrogels on electrode surfaces can be achieved by employing the electrochemical oxidation of hydroquinone to benzoquinone, liberating protons at the electrode-solution interface. The localised reduction in pH below the dipeptide gelator molecules pKa initiates the neutralisation, self-assembly and formation of self-supporting hydrogels exclusively at the electrode surface. Previous examples have been on a nanometre to millimetre scale, using deposition times ranging from seconds to minutes. However, the maximum size to which these materials can grow and their subsequent mechanical properties have not yet been investigated. Here, we report the fabrication of the largest reported di- and tri-peptide based hydrogels using this electrochemical method, employing deposition times of two to five hours. To overcome the oxidation of hydroquinone in air, the fabrication process was performed under an inert nitrogen atmosphere. We show that this approach can be used to form multilayer gels, with the mechanical properties of each layer determined by gelator composition. We also describe examples where gel-to-crystal transitions and syneresis occur within the material.
Collapse
Affiliation(s)
| | - Bart Dietrich
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| | - Andrew R Mount
- EastCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
7
|
Kaniewska K, Karbarz M. Electrochemical devices based on conducting surfaces modified with smart hydrogels: Outlook and perspective. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Klaudia Kaniewska
- Faculty of Chemistry, Biological and Chemical Research Center University of Warsaw Warsaw Poland
| | - Marcin Karbarz
- Faculty of Chemistry, Biological and Chemical Research Center University of Warsaw Warsaw Poland
| |
Collapse
|
8
|
Nordin N, Bordonali L, Davoodi H, Ratnawati ND, Gygli G, Korvink JG, Badilita V, MacKinnon N. Real‐Time NMR Monitoring of Spatially Segregated Enzymatic Reactions in Multilayered Hydrogel Assemblies**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nurdiana Nordin
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
- Department of Chemistry Faculty of Science University of Malaya Kuala Lumpur Malaysia
| | - Lorenzo Bordonali
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Hossein Davoodi
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Novindi Dwi Ratnawati
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Gudrun Gygli
- Institute of Biological Interfaces-1 Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Jan G. Korvink
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Vlad Badilita
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| |
Collapse
|
9
|
Nordin N, Bordonali L, Davoodi H, Ratnawati ND, Gygli G, Korvink JG, Badilita V, MacKinnon N. Real-Time NMR Monitoring of Spatially Segregated Enzymatic Reactions in Multilayered Hydrogel Assemblies*. Angew Chem Int Ed Engl 2021; 60:19176-19182. [PMID: 34132012 PMCID: PMC8457052 DOI: 10.1002/anie.202103585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Compartmentalized chemical reactions at the microscale are important in biotechnology, yet monitoring the molecular content at these small scales is challenging. To address this challenge, we integrate a compact, reconfigurable reaction cell featuring electrochemical functionality with high‐resolution NMR spectroscopy. We demonstrate the operation of this system by monitoring the activity of enzymes immobilized in chemically distinct layers within a multi‐layered chitosan hydrogel assembly. As a benchmark, we observed the parallel activities of urease (Urs), catalase (Cat), and glucose oxidase (GOx) by monitoring reagent and product concentrations in real‐time. Simultaneous monitoring of an independent enzymatic process (Urs) together with a cooperative process (GOx + Cat) was achieved, with chemical conversion modulation of the GOx + Cat process demonstrated by varying the order in which the hydrogel was assembled.
Collapse
Affiliation(s)
- Nurdiana Nordin
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Lorenzo Bordonali
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Hossein Davoodi
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Novindi Dwi Ratnawati
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Gudrun Gygli
- Institute of Biological Interfaces-1, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Vlad Badilita
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Khodeir M, Jia H, Vlad A, Gohy JF. Application of Redox-Responsive Hydrogels Based on 2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate and Oligo(Ethyleneglycol) Methacrylate in Controlled Release and Catalysis. Polymers (Basel) 2021; 13:1307. [PMID: 33923527 PMCID: PMC8073720 DOI: 10.3390/polym13081307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Hydrogels have reached momentum due to their potential application in a variety of fields including their ability to deliver active molecules upon application of a specific chemical or physical stimulus and to act as easily recyclable catalysts in a green chemistry approach. In this paper, we demonstrate that the same redox-responsive hydrogels based on polymer networks containing 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radicals and oligoethylene glycol methyl ether methacrylate (OEGMA) can be successfully used either for the electrochemically triggered release of aspirin or as catalysts for the oxidation of primary alcohols into aldehydes. For the first application, we take the opportunity of the positive charges present on the oxoammonium groups of oxidized TEMPO to encapsulate negatively charged aspirin molecules. The further electrochemical reduction of oxoammonium groups into nitroxide radicals triggers the release of aspirin molecules. For the second application, our hydrogels are swelled with benzylic alcohol and tert-butyl nitrite as co-catalyst and the temperature is raised to 50 °C to start the oxidation reaction. Interestingly enough, benzaldehyde is not miscible with our hydrogels and phase-separate on top of them allowing the easy recovery of the reaction product and the recyclability of the hydrogel catalyst.
Collapse
Affiliation(s)
| | | | | | - Jean-François Gohy
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Place L. Pasteur 1, B-1348 Louvain-la-Neuve, Belgium; (M.K.); (H.J.); (A.V.)
| |
Collapse
|
11
|
Mąkiewicz M, Wach RA, Nawrotek K. Investigation of Parameters Influencing Tubular-Shaped Chitosan-Hydroxyapatite Layer Electrodeposition. Molecules 2020; 26:E104. [PMID: 33379393 PMCID: PMC7796046 DOI: 10.3390/molecules26010104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Tubular-shaped layer electrodeposition from chitosan-hydroxyapatite colloidal solutions has found application in the field of regeneration or replacement of cylindrical tissues and organs, especially peripheral nerve tissue regeneration. Nevertheless, the quantitative and qualitative characterisation of this phenomenon has not been described. In this work, the colloidal systems are subjected to the action of an electric current initiated at different voltages. Parameters of the electrodeposition process (i.e., total charge exchanged, gas volume, and deposit thickness) are monitored over time. Deposit structures are investigated by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The value of voltage influences structural characteristics but not thickness of deposit for the process lasting at least 20 min. The calculated number of exchanged electrons for studied conditions suggests that the mechanism of deposit formation is governed not only by water electrolysis but also interactions between formed hydroxide ions and calcium ions coordinated by chitosan chains.
Collapse
Affiliation(s)
- Mariusz Mąkiewicz
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Street, 90-924 Lodz, Poland;
| | - Radosław A. Wach
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15 Street, 93-590 Lodz, Poland;
| | - Katarzyna Nawrotek
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Street, 90-924 Lodz, Poland;
| |
Collapse
|