1
|
Okeke ES, Nwankwo CE, Ezeorba TPC, Iloh VC, Enochoghene AE. Occurrence and ecotoxicological impacts of polybrominated diphenyl ethers (PBDEs) in electronic waste (e-waste) in Africa: Options for sustainable and eco-friendly management strategies. Toxicology 2024; 506:153848. [PMID: 38825032 DOI: 10.1016/j.tox.2024.153848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent contaminants used as flame retardants in electronic products. PBDEs are contaminants of concern due to leaching and recalcitrance conferred by the stable and hydrophobic bromide residues. The near absence of legislatures and conscious initiatives to tackle the challenges of PBDEs in Africa has allowed for the indiscriminate use and consequent environmental degradation. Presently, the incidence, ecotoxicity, and remediation of PBDEs in Africa are poorly elucidated. Here, we present a position on the level of contamination, ecotoxicity, and management strategies for PBDEs with regard to Africa. Our review shows that Africa is inundated with PBDEs from the proliferation of e-waste due to factors like the increasing growth in the IT sector worsened by the procurement of second-hand gadgets. An evaluation of the fate of PBDEs in the African environment reveals that the environment is adequately contaminated, although reported in only a few countries like Nigeria and Ghana. Ultrasound-assisted extraction, microwave-assisted extraction, and Soxhlet extraction coupled with specific chromatographic techniques are used in the detection and quantification of PBDEs. Enormous exposure pathways in humans were highlighted with health implications. In terms of the removal of PBDEs, we found a gap in efforts in this direction, as not much success has been reported in Africa. However, we outline eco-friendly methods used elsewhere, including microbial degradation, zerovalent iron, supercritical fluid, and reduce, reuse, recycle, and recovery methods. The need for Africa to make and implement legislatures against PBDEs holds the key to reduced effect on the continent.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China; Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; College of Medicine and Veterinary Medicine, Deanery of Molecular, Genetic and Population Health Sciences, University of Edinburgh, United Kingdom.
| | - Chidiebele Emmanuel Nwankwo
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Microbiology, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Veronica Chisom Iloh
- School of Pharmacy and Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | | |
Collapse
|
2
|
Gomes J, Begum M, Kumarathasan P. Polybrominated diphenyl ether (PBDE) exposure and adverse maternal and infant health outcomes: Systematic review. CHEMOSPHERE 2024; 347:140367. [PMID: 37890790 DOI: 10.1016/j.chemosphere.2023.140367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants found in ambient environment and are measured in humans. There are reports on general PBDE toxicity, including endocrine disrupting properties. Studies on adverse maternal and infant outcomes and underlying toxicity mechanisms needs to be understood. The objective of this study was to conduct a systematic review to examine the state of science on the relationship between PBDE and adverse maternal/infant health outcomes and related maternal biomarker changes. This literature review was conducted using PubMed, Scopus, Embase and Web of Science for published articles from January 2005-February 2022. Article quality was assessed using Newcastle-Ottawa Scale. Of the 1518 articles, only 54 human observational studies were screened in for this review. A second reviewer examined the validity of these articles. Reports on associations between PBDE and maternal health outcomes included gestational hypertension/preeclampsia (N = 2) and gestational diabetes mellitus/glycemic index (N = 6). Meanwhile, reports on PBDE and infant outcomes (N=32) included effects on infant birth weight, birth length and cephalic perimeter, preterm birth, fetal growth restriction and APGAR scores. Although findings on PBDE exposure and adverse infant outcomes showed inconsistencies across studies, in general, negative correlations between maternal PBDEs and infant birth weight, birth length and cephalic perimeter were seen, in few cases, after stratification by sex. Association between maternal PBDE and maternal biomarkers (N=18) suggested negative impact of PBDE exposure on markers relevant to neuro-endocrine system and inflammatory processes. The review findings identified potential associations between maternal PBDE and adverse maternal/infant health outcomes. Furthermore, PBDE-related biomarker changes suggest disturbances in maternal mechanisms relevant to endocrine disrupting properties of PBDEs. The observed study heterogeneity can be attributed to factors namely, sample size, study design and statistical analysis. Overall review findings imply the necessity for further research to validate PBDE exposure-related adverse maternal/infant health effects and to validate underlying toxicity mechanisms.
Collapse
Affiliation(s)
- J Gomes
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - M Begum
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - P Kumarathasan
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada; Environmental Health Science and Research Bureau, HECS, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Feng YL, Yang C, Cao XL. Intermediate volatile organic compounds in Canadian residential air in winter: Implication to indoor air quality. CHEMOSPHERE 2023; 328:138567. [PMID: 37023898 DOI: 10.1016/j.chemosphere.2023.138567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Intermediate volatile organic compounds (IVOCs) have recently been characterized for their contributions to the formation of secondary organic aerosol in atmospheric air. However, IVOCs in air in various indoor environments have not been characterized yet. In this study, we characterized and measured IVOCs, volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), in residential indoor air in Ottawa, Canada. IVOCs, including n-alkanes, branched-chain alkanes (b-alkanes), unspecified complex mixtures (UCM) IVOCs, and oxygenated IVOCs (such as fatty acids), were found to have a large impact on indoor air quality. The results indicate that the indoor IVOCs behave differently from those in the outdoor environment. IVOCs in the studied residential air ranged from 14.4 to 69.0 μg/m3, with a geometric mean of 31.3 μg/m3, accounting for approximately 20% of the total organic compounds (IVOCs, VOCs and SVOCs) in indoor air. The total b-alkanes and UCM-IVOCs were found to have statistically significant positive correlations with indoor temperature but have no correlations with airborne particulate matter less than 2.5 μm (PM2.5) as well as ozone (O3) concentration. However, indoor oxygenated IVOCs behaved differently from b-alkanes and UCM-IVOCs, with a statistically significant positive correlation with indoor relative humidity but no correlation with other indoor environmental conditions.
Collapse
Affiliation(s)
- Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada.
| | - Chun Yang
- Emergencies Science and Technology Section, Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario, Canada.
| | - Xu-Liang Cao
- Food Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, 251 Frederick Banting Driveway, AL: 2203D, Ottawa, Ontario, K1A 0K9, Canada
| |
Collapse
|
4
|
Zeng X, Liu D, Wu W. PM 2.5 exposure and pediatric health in e-waste dismantling areas. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103774. [PMID: 34800720 DOI: 10.1016/j.etap.2021.103774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Fine particulate matter (PM2.5) is the first leading environmental risk factor for death according to the Global Burden of Disease Study 2019. Children are in a pivotal window stage of growth and development, and one of the most sensitive and vulnerable groups when they are exposed to PM2.5. E-waste refers to the abandoned electrical or electronic equipment. Informal e-waste dismantling activities, such as heating, burning, and roasting, will release a large number PM2.5 into the local atmosphere. PM2.5 exposure levels are higher in e-waste dismantling areas than those in reference areas. PM2.5 derived from e-waste contains a variety of toxic and harmful components such as transition metals and persistent organic pollutants. Few studies have focused on the exposure levels of PM2.5 and its compositions in e-waste dismantling areas, but little is known about their effects on children's health. Therefore, this study will briefly summarize the impact of PM2.5 on children's health in e-waste dismantling areas.
Collapse
Affiliation(s)
- Xiang Zeng
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan, China.
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan, China
| |
Collapse
|
5
|
Qi Z, Zhang Y, Chen ZF, Yang C, Song Y, Liao X, Li W, Tsang SY, Liu G, Cai Z. Chemical identity and cardiovascular toxicity of hydrophobic organic components in PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110827. [PMID: 32535366 DOI: 10.1016/j.ecoenv.2020.110827] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Numerous experimental and epidemiological studies have demonstrated that exposure to PM2.5 may result in pathogenesis of several major cardiovascular diseases (CVDs), which can be attributed to the combined adverse effects induced by the complicated components of PM2.5. Organic materials, which are major components of PM2.5, contain thousands of chemicals, and most of them are environmental hazards. However, the contamination profile and contribution to overall toxicity of PM2.5-bound organic components (OCs) have not been thoroughly evaluated yet. Herein, we aim to provide an overview of the literature on PM2.5-bound hydrophobic OCs, with an emphasis on the chemical identity and reported impairments on the cardiovascular system, including the potential exposure routes and mechanisms. We first provide an update on the worldwide mass concentration and composition data of PM2.5, and then, review the contamination profile of PM2.5-bound hydrophobic OCs, including constitution, concentration, distribution, formation, source, and identification. In particular, the link between exposure to PM2.5-bound hydrophobic OCs and CVDs and its possible underlying mechanisms are discussed to evaluate the possible risks of PM2.5-bound hydrophobic OCs on the cardiovascular system and to provide suggestions for future studies.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Liao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weiquan Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoguang Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
6
|
Kumal RR, Liu J, Gharpure A, Wal RLV, Kinsey JS, Giannelli B, Stevens J, Leggett C, Howard R, Forde M, Zelenyuk-Imre A, Suski K, Payne G, Manin J, Bachalo W, Frazee R, Onasch TB, Freedman A, Kittelson DB, Swanson JJ. Impact of Biofuel Blends on Black Carbon Emissions from a Gas Turbine Engine. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2020; 34:4958-4966. [PMID: 32327881 PMCID: PMC7180060 DOI: 10.1021/acs.energyfuels.0c00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Presented here is an overview of non-volatile particulate matter (nvPM) emissions, i.e. "soot" as assessed by TEM analyses of samples collected after the exhaust of a J-85 turbojet fueled with Jet-A as well as with blends of Jet-A and Camelina biofuel. A unifying explanation is provided to illustrate the combustion dynamics of biofuel and Jet-A fuel. The variation of primary particle size, aggregate size and nanostructure are analyzed as a function of biofuel blend across a range of engine thrust levels. The postulate is based on where fuels start along the soot formation pathway. Increasing biofuel content lowers aromatic concentration while placing increasing dependence upon fuel pyrolysis reactions to form the requisite concentration of aromatics for particle inception and growth. The required "kinetic" time for pyrolysis reactions to produce benzene and multi-ring PAHs allows increased fuel-air mixing by turbulence, diluting the fuel-rich soot-forming regions, effectively lowering their equivalence ratio. With a lower precursor concentration, particle inception is slowed, the resulting concentration of primary particles is lowered and smaller aggregates were measured. The lower equivalence ratio also results in smaller primary particles because of the lower concentration of growth species.
Collapse
Affiliation(s)
- Raju R Kumal
- The John and Willie Leone Family Department of Energy and Mineral Engineering and the EMS Energy Institute, Penn State University, University Park, PA 16802, USA
| | - Jiawei Liu
- The John and Willie Leone Family Department of Energy and Mineral Engineering and the EMS Energy Institute, Penn State University, University Park, PA 16802, USA
| | - Akshay Gharpure
- The John and Willie Leone Family Department of Energy and Mineral Engineering and the EMS Energy Institute, Penn State University, University Park, PA 16802, USA
| | - Randy L Vander Wal
- The John and Willie Leone Family Department of Energy and Mineral Engineering and the EMS Energy Institute, Penn State University, University Park, PA 16802, USA
| | - John S Kinsey
- Retired (formerly US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27711, USA)
| | - Bob Giannelli
- US Environmental Protection Agency, National Vehicle and Fuel Emissions Laboratory (NVFEL), Ann Arbor, MI 48105, USA
| | - Jeffrey Stevens
- US Environmental Protection Agency, National Vehicle and Fuel Emissions Laboratory (NVFEL), Ann Arbor, MI 48105, USA
| | - Cullen Leggett
- US Environmental Protection Agency, National Vehicle and Fuel Emissions Laboratory (NVFEL), Ann Arbor, MI 48105, USA
| | - Robert Howard
- US Air Force, Arnold Engineering Development Complex (AEDC), Arnold AFB, TN 37389, USA
| | - Mary Forde
- US Air Force, Arnold Engineering Development Complex (AEDC), Arnold AFB, TN 37389, USA
| | - Alla Zelenyuk-Imre
- US Department of Energy, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Kaitlyn Suski
- US Department of Energy, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA
| | - Greg Payne
- Artium Technologies Inc., Sunnyvale, CA 94085, USA
| | - Julien Manin
- Artium Technologies Inc., Sunnyvale, CA 94085, USA
| | | | - Richard Frazee
- Singularity Scientific Consulting Services, LLC, Whitmore Lake, MI 48189, USA
| | | | | | - David B Kittelson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jacob J Swanson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Awere E, Obeng PA, Bonoli A, Obeng PA. E-waste recycling and public exposure to organic compounds in developing countries: a review of recycling practices and toxicity levels in Ghana. ACTA ACUST UNITED AC 2020. [DOI: 10.1080/21622515.2020.1714749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Eric Awere
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy
- Department of Civil Engineering, Cape Coast Technical University, Cape Coast, Ghana
| | - Peter Appiah Obeng
- Department of Water and Sanitation, University of Cape Coast, Cape Coast, Ghana
| | - Alessandra Bonoli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy
| | - Panin Asirifua Obeng
- Department of Civil Engineering, Cape Coast Technical University, Cape Coast, Ghana
| |
Collapse
|
8
|
Affiliation(s)
- Patricia Forbes
- Department of Chemistry, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| |
Collapse
|