1
|
Asefi S, Nouri H, Pourmohammadi G, Moghimi H. Comprehensive network of stress-induced responses in Zymomonas mobilis during bioethanol production: from physiological and molecular responses to the effects of system metabolic engineering. Microb Cell Fact 2024; 23:180. [PMID: 38890644 PMCID: PMC11186258 DOI: 10.1186/s12934-024-02459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Nowadays, biofuels, especially bioethanol, are becoming increasingly popular as an alternative to fossil fuels. Zymomonas mobilis is a desirable species for bioethanol production due to its unique characteristics, such as low biomass production and high-rate glucose metabolism. However, several factors can interfere with the fermentation process and hinder microbial activity, including lignocellulosic hydrolysate inhibitors, high temperatures, an osmotic environment, and high ethanol concentration. Overcoming these limitations is critical for effective bioethanol production. In this review, the stress response mechanisms of Z. mobilis are discussed in comparison to other ethanol-producing microbes. The mechanism of stress response is divided into physiological (changes in growth, metabolism, intracellular components, and cell membrane structures) and molecular (up and down-regulation of specific genes and elements of the regulatory system and their role in expression of specific proteins and control of metabolic fluxes) changes. Systemic metabolic engineering approaches, such as gene manipulation, overexpression, and silencing, are successful methods for building new metabolic pathways. Therefore, this review discusses systems metabolic engineering in conjunction with systems biology and synthetic biology as an important method for developing new strains with an effective response mechanism to fermentation stresses during bioethanol production. Overall, understanding the stress response mechanisms of Z. mobilis can lead to more efficient and effective bioethanol production.
Collapse
Affiliation(s)
- Shaqayeq Asefi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hoda Nouri
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Golchehr Pourmohammadi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Tang Y, Wang Y, Yang Q, Zhang Y, Wu Y, Yang Y, Mei M, He M, Wang X, Yang S. Molecular mechanism of enhanced ethanol tolerance associated with hfq overexpression in Zymomonas mobilis. Front Bioeng Biotechnol 2022; 10:1098021. [PMID: 36588936 PMCID: PMC9797736 DOI: 10.3389/fbioe.2022.1098021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Zymomonas mobilis is a promising microorganism for industrial bioethanol production. However, ethanol produced during fermentation is toxic to Z. mobilis and affects its growth and bioethanol production. Although several reports demonstrated that the RNA-binding protein Hfq in Z. mobilis contributes to the tolerance against multiple lignocellulosic hydrolysate inhibitors, the role of Hfq on ethanol tolerance has not been investigated. In this study, hfq in Z. mobilis was either deleted or overexpressed and their effects on cell growth and ethanol tolerance were examined. Our results demonstrated that hfq overexpression improved ethanol tolerance of Z. mobilis, which is probably due to energy saving by downregulating flagellar biosynthesis and heat stress response proteins, as well as reducing the reactive oxygen species induced by ethanol stress via upregulating the sulfate assimilation and cysteine biosynthesis. To explore proteins potentially interacted with Hfq, the TEV protease mediated Yeast Endoplasmic Reticulum Sequestration Screening system (YESS) was established in Z. mobilis. YESS results suggested that Hfq may modulate the cytoplasmic heat shock response by interacting with the heat shock proteins DnaK and DnaJ to deal with the ethanol inhibition. This study thus not only revealed the underlying mechanism of enhanced ethanol tolerance by hfq overexpression, but also provided an alternative approach to investigate protein-protein interactions in Z. mobilis.
Collapse
Affiliation(s)
- Ying Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Yi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Qing Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Youpeng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Yalun Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Ministry of Agriculture, Chengdu, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China,*Correspondence: Xia Wang, ; Shihui Yang,
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, China,*Correspondence: Xia Wang, ; Shihui Yang,
| |
Collapse
|
3
|
Braga A, Gomes D, Rainha J, Cardoso BB, Amorim C, Silvério SC, Fernández-Lobato M, Rodrigues JL, Rodrigues LR. Tailoring fructooligosaccharides composition with engineered Zymomonas mobilis ZM4. Appl Microbiol Biotechnol 2022; 106:4617-4626. [PMID: 35739346 DOI: 10.1007/s00253-022-12037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/05/2022] [Accepted: 06/18/2022] [Indexed: 11/02/2022]
Abstract
Zymomonas mobilis ZM4 is an attractive host for the development of microbial cell factories to synthesize high-value compounds, including prebiotics. In this study, a straightforward process to produce fructooligosaccharides (FOS) from sucrose was established. To control the relative FOS composition, recombinant Z. mobilis strains secreting a native levansucrase (encoded by sacB) or a mutated β-fructofuranosidase (Ffase-Leu196) from Schwanniomyces occidentalis were constructed. Both strains were able to produce a FOS mixture with high concentration of 6-kestose. The best results were obtained with Z. mobilis ZM4 pB1-sacB that was able to produce 73.4 ± 1.6 g L-1 of FOS, with a productivity of 1.53 ± 0.03 g L-1 h-1 and a yield of 0.31 ± 0.03 gFOS gsucrose-1. This is the first report on the FOS production using a mutant Z. mobilis ZM4 strain in a one-step process. KEY POINTS: • Zymomonas mobilis was engineered to produce FOS in a one-step fermentation process. • Mutant strains produced FOS mixtures with high concentration of 6-kestose. • A new route to produce tailor-made FOS mixtures was presented.
Collapse
Affiliation(s)
- Adelaide Braga
- CEB-Center of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela Gomes
- CEB-Center of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - João Rainha
- CEB-Center of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Beatriz B Cardoso
- CEB-Center of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Cláudia Amorim
- CEB-Center of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara C Silvério
- CEB-Center of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - María Fernández-Lobato
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry-Rocasolano (CSIC), 28006, Madrid, Spain
| | - Joana L Rodrigues
- CEB-Center of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Lígia R Rodrigues
- CEB-Center of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Herrera CRJ, Vieira VR, Benoliel T, Carneiro CVGC, De Marco JL, de Moraes LMP, de Almeida JRM, Torres FAG. Engineering Zymomonas mobilis for the Production of Xylonic Acid from Sugarcane Bagasse Hydrolysate. Microorganisms 2021; 9:1372. [PMID: 34202822 PMCID: PMC8304316 DOI: 10.3390/microorganisms9071372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Sugarcane bagasse is an agricultural residue rich in xylose, which may be used as a feedstock for the production of high-value-added chemicals, such as xylonic acid, an organic acid listed as one of the top 30 value-added chemicals on a NREL report. Here, Zymomonas mobilis was engineered for the first time to produce xylonic acid from sugarcane bagasse hydrolysate. Seven coding genes for xylose dehydrogenase (XDH) were tested. The expression of XDH gene from Paraburkholderia xenovorans allowed the highest production of xylonic acid (26.17 ± 0.58 g L-1) from 50 g L-1 xylose in shake flasks, with a productivity of 1.85 ± 0.06 g L-1 h-1 and a yield of 1.04 ± 0.04 gAX/gX. Deletion of the xylose reductase gene further increased the production of xylonic acid to 56.44 ± 1.93 g L-1 from 54.27 ± 0.26 g L-1 xylose in a bioreactor. Strain performance was also evaluated in sugarcane bagasse hydrolysate as a cheap feedstock, which resulted in the production of 11.13 g L-1 xylonic acid from 10 g L-1 xylose. The results show that Z. mobilis may be regarded as a potential platform for the production of organic acids from cheap lignocellulosic biomass in the context of biorefineries.
Collapse
Affiliation(s)
- Christiane Ribeiro Janner Herrera
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
| | - Vanessa Rodrigues Vieira
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
| | - Tiago Benoliel
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
| | - Clara Vida Galrão Corrêa Carneiro
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
- Laboratório de Genética e Biotecnologia, Parque Estação Biológica, Embrapa, Agroenergia, W3 Norte, Brasília 70770-901, DF, Brazil;
| | - Janice Lisboa De Marco
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
| | - Lídia Maria Pepe de Moraes
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
| | - João Ricardo Moreira de Almeida
- Laboratório de Genética e Biotecnologia, Parque Estação Biológica, Embrapa, Agroenergia, W3 Norte, Brasília 70770-901, DF, Brazil;
| | - Fernando Araripe Gonçalves Torres
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
| |
Collapse
|
5
|
Nouri H, Moghimi H, Marashi SA, Elahi E. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses. PLoS One 2020; 15:e0240330. [PMID: 33035245 PMCID: PMC7546472 DOI: 10.1371/journal.pone.0240330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023] Open
Abstract
Zymomonas mobilis, as an ethanologenic microorganism with many desirable industrial features, faces crucial obstacles in the lignocellulosic ethanol production process. A significant hindrance occurs during the pretreatment procedure that not only produces fermentable sugars but also releases severe toxic compounds. As diverse parts of regulation networks are involved in different aspects of complicated tolerance to inhibitors, we developed ZM4-hfq and ZM4-sigE strains, in which hfq and sigE genes were overexpressed, respectively. ZM4-hfq is a transcription regulator and ZM4-sigE is a transcription factor that are involved in multiple stress responses. In the present work, by overexpressing these two genes, we evaluated their impact on the Z. mobilis tolerance to furfural, acetic acid, and sugarcane bagasse hydrolysates. Both recombinant strains showed increased growth rates and ethanol production levels compared to the parental strain. Under a high concentration of furfural, the growth rate of ZM4-hfq was more inhibited compared to ZM4-sigE. More precisely, fermentation performance of ZM4-hfq revealed that the yield of ethanol production was less than that of ZM4-sigE, because more unused sugar had remained in the medium. In the case of acetic acid, ZM4-sigE was the superior strain and produced four and two-fold more ethanol compared to the parental strain and ZM4-hfq, respectively. Comparison of inhibitor tolerance between single and multiple toxic inhibitors in the fermentation of sugarcane bagasse hydrolysate by ZM4-sigE strain showed similar results. In addition, ethanol production performance was considerably higher in ZM4-sigE as well. Finally, the results of the qPCR analysis suggested that under both furfural and acetic acid treatment experiments, overproduction of both hfq and sigE improves the Z. mobilis tolerance and its ethanol production capability. Overall, our study showed the vital role of the regulatory elements to overcome the obstacles in lignocellulosic biomass-derived ethanol and provide a platform for further improvement by directed evolution or systems metabolic engineering tools.
Collapse
Affiliation(s)
- Hoda Nouri
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- * E-mail:
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Todhanakasem T, Wu B, Simeon S. Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production. World J Microbiol Biotechnol 2020; 36:112. [PMID: 32656581 DOI: 10.1007/s11274-020-02885-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
Zymomonas mobilis is an ethanologenic microbe that has a demonstrated potential for use in lignocellulosic biorefineries for bioethanol production. Z. mobilis exhibits a number of desirable characteristics for use as an ethanologenic microbe, with capabilities for metabolic engineering and bioprocess modification. Many advanced genetic tools, including mutation techniques, screening methods and genome editing have been successively performed to improve various Z. mobilis strains as potential consolidated ethanologenic microbes. Many bioprocess strategies have also been applied to this organism for bioethanol production. Z. mobilis biofilm reactors have been modified with various benefits, including high bacterial populations, less fermentation times, high productivity, high cell stability, resistance to the high concentration of substrates and toxicity, and higher product recovery. We suggest that Z. mobilis biofilm reactors could be used in bioethanol production using lignocellulosic substrates under batch, continuous and repeated batch processes.
Collapse
Affiliation(s)
- Tatsaporn Todhanakasem
- Department of Agro- Industry, Faculty of Biotechnology, Assumption University, Ramkhamhaeng Road, Bangkapi, Bangkok, 10240, Thailand.
| | - Bo Wu
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture and Rural Affairs, Renmin Rd. S 4-13, Chengdu, 610041, China
| | - Saw Simeon
- Absolute Clean Energy Public Company Limited, ITF Tower 7th Floor, Silom Road, Bang Rak, Bangkok, 10500, Thailand
| |
Collapse
|
7
|
Liu Y, Ghosh IN, Martien J, Zhang Y, Amador-Noguez D, Landick R. Regulated redirection of central carbon flux enhances anaerobic production of bioproducts in Zymomonas mobilis. Metab Eng 2020; 61:261-274. [PMID: 32590077 DOI: 10.1016/j.ymben.2020.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 01/25/2023]
Abstract
The microbial production of chemicals and fuels from plant biomass offers a sustainable alternative to fossilized carbon but requires high rates and yields of bioproduct synthesis. Z. mobilis is a promising chassis microbe due to its high glycolytic rate in anaerobic conditions that are favorable for large-scale production. However, diverting flux from its robust ethanol fermentation pathway to nonnative pathways remains a major engineering hurdle. To enable controlled, high-yield synthesis of bioproducts, we implemented a central-carbon metabolism control-valve strategy using regulated, ectopic expression of pyruvate decarboxylase (Pdc) and deletion of chromosomal pdc. Metabolomic and genetic analyses revealed that glycolytic intermediates and NADH accumulate when Pdc is depleted and that Pdc is essential for anaerobic growth of Z. mobilis. Aerobically, all flux can be redirected to a 2,3-butanediol pathway for which respiration maintains redox balance. Anaerobically, flux can be redirected to redox-balanced lactate or isobutanol pathways with ≥65% overall yield from glucose. This strategy provides a promising path for future metabolic engineering of Z. mobilis.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, United States
| | - Indro Neil Ghosh
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, United States
| | - Julia Martien
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, United States
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, United States
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, United States.
| |
Collapse
|