1
|
Nuraini DM, Andityas M, Sukon P, Phuektes P. Carbapenem-resistant Enterobacteriaceae from dairy cattle milk: A systematic review and meta-analysis. Res Vet Sci 2025; 183:105497. [PMID: 39689448 DOI: 10.1016/j.rvsc.2024.105497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have been detected in dairy cattle milk, raising concerns about public health risks. This study aimed to assess the global prevalence of CRE in dairy cattle milk through a systematic review and meta-analysis, following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Retrieved articles from four databases were initially screened based on predefined inclusion criteria. The meta-analysis included 49 studies (2011-2024), covering 28,134 milk samples and 3462 Enterobacteriaceae isolates globally. Data from the full text were extracted to a Microsoft Excel spreadsheet and analysed using the 'meta' R package in R v.4.3.0 software for pooled prevalence and subgroup meta-analysis with a random-effects for logit transformation. Heterogeneity was assessed using Cochran's Q statistic (χ2), p-value and I2 statistic. Publication bias and sensitivity were evaluated using Egger's test, funnel plot, trim and fill plot, and leave-one-out test. Globally, the prevalence of CRE in dairy cattle milk was 0.73 % (95 % CI, 0.37-1.41). Subgroup meta-analysis based on continent, sample type, Enterobacteriaceae species, diagnostic method, antibiotic type, and interpretation guideline revealed no significant differences among the criteria within the subgroup. Although the overall pooled prevalence of CRE in dairy cattle milk is relatively low, it raises public health concern regarding raw milk consumption. This emphasizes the need for regular monitoring with in a One Health framework for CRE in the dairy industry to anticipate potential transmission between humans, animals, and the environment.
Collapse
Affiliation(s)
- Dian Meididewi Nuraini
- Veterinary Science Program, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Animal Science, Faculty of Animal Science, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Morsid Andityas
- Veterinary Science Program, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand; Veterinary Technology Study Program, Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Indonesia
| | - Peerapol Sukon
- Division of Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Patchara Phuektes
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
Pollock J, Foster G, Henderson K, Bell J, Hutchings MR, Paterson GK. Antimicrobial resistance profiles and molecular epidemiology of Klebsiella pneumoniae isolates from Scottish bovine mastitis cases. Epidemiol Infect 2025; 153:e15. [PMID: 39819786 PMCID: PMC11748015 DOI: 10.1017/s0950268824001754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 01/19/2025] Open
Abstract
Klebsiella pneumoniae are opportunistic pathogens which can cause mastitis in dairy cattle. K. pneumoniae mastitis often has a poor cure rate and can lead to the development of chronic infection, which has an impact on both health and production. However, there are few studies which aim to fully characterize K. pneumoniae by whole-genome sequencing from bovine mastitis cases. Here, K. pneumoniae isolates associated with mastitis in dairy cattle were identified using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and whole-genome sequencing. Furthermore, whole-genome sequence data were used for phylogenetic analyses and both virulence and antimicrobial resistance (AMR) prediction, in parallel with phenotypic AMR testing. Forty-two isolates identified as K. pneumoniae were subject to whole-genome sequencing, with 31 multi-locus sequence types being observed, suggesting the source of these isolates was likely environmental. Isolates were examined for key virulence determinants encoding acquired siderophores, colibactin, and hypermucoidy. The majority of these were absent, except for ybST (encoding yersiniabactin) which was present in six isolates. Across the dataset, there were notable levels of phenotypic AMR against streptomycin (26.2%) and tetracycline (19%), and intermediate susceptibility to cephalexin (26.2%) and neomycin (21.4%). Of importance was the detection of two ESBL-producing isolates, which demonstrated multi-drug resistance to amoxicillin-clavulanic acid, streptomycin, tetracycline, cefotaxime, cephalexin, and cefquinome.
Collapse
Affiliation(s)
- Jolinda Pollock
- Microbiology Department, SRUC Veterinary Services, Edinburgh/Inverness, UK
| | - Geoffrey Foster
- Microbiology Department, SRUC Veterinary Services, Edinburgh/Inverness, UK
| | - Katrina Henderson
- Microbiology Department, SRUC Veterinary Services, Edinburgh/Inverness, UK
| | - Jennifer Bell
- Microbiology Department, SRUC Veterinary Services, Edinburgh/Inverness, UK
| | | | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Sievers T, Blumenberg JA, Hölzel CS. INVITED REVIEW: Antimicrobial Resistance Genes in Milk: a 10-year-systematic review and critical comment. J Dairy Sci 2024:S0022-0302(24)01342-0. [PMID: 39647632 DOI: 10.3168/jds.2024-25528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND The occurrence of antimicrobial resistance genes in milk is eagerly discussed as a public health risk, and frequently investigated. Here, we perform a systematic review on the abundance of antimicrobial resistance genes in milk from primary production over a 10-year-period. OBJECTIVES We aimed to provide a comprehensive data set on known and emerging antimicrobial resistance genes in major mastitis pathogens, occurring worldwide in milk at primary production, and to critically discuss the relevance and constraints of these findings. DATA SOURCES AND SYNTHESIS We searched Pubmed for peer-reviewed studies published between 2012 and 2022 that fit fixed combinations of keywords and did not meet exclusion criteria such as "mixed with other sources." For synthesis, data on occurrence was extracted from studies and supplements. To address plausibility issues, we performed an NCBI BLAST search. Results & limitations. Our search revealed 2222 publications in total. Of them, 500 studies were eligible for full-text reads and 306 publications were included in data compilation. An overwhelming majority of studies dealt with mecA in Staphylococcus aureus, followed by extended-spectrum β-lactamase-encoding genes such as blaCTXM in Escherichia coli, while other mastitis pathogens such as Streptococcus spp. were scarcely investigated. In most cases, < 5% of milk samples were positive for major pathogens bearing the antimicrobial resistance gene of interest. However, huge study-to-study differences were found between regions, but also on a national level. For instance, the estimate prevalence of Escherichia coli-borne blaCTXM in mastitis milk samples ranged from 0.0% to 55%, with a median value of 8.02%, while in healthy individuals and bulk milk, the prevalence ranged from 0.0% to 20.0%, with a median value of 0.8%. Several studies reported antimicrobial resistance genes for the very first time in a species, but did not stand up to scrutiny. As an example, frequent detection of TEM-genes in streptococci is most likely attributed to contamination of molecular reagents, as reported elsewhere. CONCLUSIONS Despite the huge amount of data, there is a need for more quality control, more representative sampling of milk, more quantitative research, and deeper insights into bacterial genomics, to identify relevant and/or emerging antimicrobial resistance genes in milk. Considering a low percentage of contaminated milk samples, unknown ARG-concentrations and an unproven role in human disease, the risk attributed to ARGs in milk seems to be exaggerated by far. However, the risk of ARG-selection on farm, resulting in low treatment success in cattle, is a real one and should be met by prudent use of antibiotics.
Collapse
Affiliation(s)
- Theresa Sievers
- Institute for Animal Breeding & Husbandry, Faculty for Agricultural & Nutritional Sciences, Kiel University, Germany
| | - Julia A Blumenberg
- Institute for Animal Breeding & Husbandry, Faculty for Agricultural & Nutritional Sciences, Kiel University, Germany.
| | - Christina S Hölzel
- Institute for Animal Breeding & Husbandry, Faculty for Agricultural & Nutritional Sciences, Kiel University, Germany
| |
Collapse
|
4
|
Saddam, Jamal M, Rahman SU, Khan M, Qadeer A, Mahmoud MH. Genomic diversity and nutritional analysis of multi-drug resistant extended spectrum β-lactamase Producing- Klebsiella pneumoniae genes isolated from mastitic cattle milk in district peshawar, Pakistan. Heliyon 2024; 10:e35876. [PMID: 39170179 PMCID: PMC11337036 DOI: 10.1016/j.heliyon.2024.e35876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
The increasing incidence of resistance extended spectrum-beta lactamase (ESBL) producing Klebsiella pneumonia become worldwide issue. The current study aimed to determine the genomic diversity of ESBL-producing K. pneumoniae in milk samples collected from cows with mastitis as well as their antibiotic sensitivity profiles and genetic identification in Peshawar, Pakistan. The california mastitis test (CMT) was initially used to verify the presence for mastitis in 700 collected milk samples. The molecular identification of the 16SrRNA gene confirmed 120/700 (17.14 %) propagation of K. pneumonia. Out of these isolates MDR ESBL-producing isolates were 60/120 (50 %). The lactose were found (M = 3.96 ± 0.28, SD = 2.19), followed by fats (M = 3.12 ± 0.11, SD = 0.90), protein (M = 5.97 ± 0.24, SD = 1.84), sodium (M = 55.74 ± 2.07, SD = 15.81), potassium (M = 138.5 ± 1.53, SD = 11.71), chloride (M = 0.74 ± 0.03, SD = 0.24), calcium (M = 10.27 ± 0.31, SD = 2.42), and chlorine (M = 2.80 ± 0.22, SD = 1.70), respectively. Amikacin (80 %), ceftazidime (71 %), and tetracycline (71 %) were shown to be the most effective antimicrobials against all of the isolates. The occurrence of the blaSHV gene was observed at 56.00 % whereas the blaTEM gene and blaCTX-M gene were 36.00 %, and 30.00 %. The distribution of blaCTX-M subgroup genes was followed by blaCTX-M-1 (38.00 %), blaCTX-M-9 (22.20 %), and blaCTX-M-15 (61.10 %). Co-occurrence of blaCTX-M+ blaSHV was (15.00 %), blaCTX-M+ blaTEM were (6.60 %), and blaSHV + blaTEM were (10.00 %), respectively. The inappropriate, prolonged and common use of antibiotics may apply selective pressure for propagation and the occurrence of resistant isolates.
Collapse
Affiliation(s)
- Saddam
- Department of Microbiology, Abdul Wali Khan University, Marden, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Marden, Pakistan
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Muddasir Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Tongzipo Road, Changsha, China
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Velasco Garcia WJ, Araripe Dos Santos Neto N, Borba Rios T, Rocha Maximiano M, Souza CMD, Franco OL. Genetic basis of antibiotic resistance in bovine mastitis and its possible implications for human and ecological health. Crit Rev Microbiol 2024:1-14. [PMID: 38916977 DOI: 10.1080/1040841x.2024.2369140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Bovine mastitis is a mammary gland inflammation that can occur due to infectious pathogens, Staphylococcus aureus and Escherichia coli, which are, respectively, the most prevalent Gram-positive and Gram-negative bacteria associated with this disease. Currently, antibiotic treatment has become more complicated due to the presence of resistant pathogens. This review, therefore, aims to identify the most common resistance genes reported for these strains in the last four years. During the review, it was noted that blaZ, blaSHV, blaTEM, and blaampC are the most reported genes for S. aureus and E. coli, associated with drug inactivation, mainly β-lactamases. They are characterized by generating bacterial resistance to β-lactam antibiotics, the most common treatment in animal and human bacterial treatments (penicillins and cephalosporins, among others). Genes associated with efflux systems were also present in the two strains and included norA, tetA, tetC, and tetK, which generate resistance to macrolide and tetracycline antibiotics. Additionally, the effects of spreading resistance between animals and humans through direct contact (such as consumption of contaminated milk) or indirect contact (through environmental contamination) has been deeply discussed, emphasizing the importance of having adequate sanitation and antibiotic control and administration protocols.
Collapse
Affiliation(s)
- Wendy Johana Velasco Garcia
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nilton Araripe Dos Santos Neto
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Brasília, DF, Brazil
| | - Thuanny Borba Rios
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Mariana Rocha Maximiano
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Camila Maurmann de Souza
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Brasília, DF, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
6
|
Nery Garcia BL, Dantas STA, da Silva Barbosa K, Mendes Mitsunaga T, Butters A, Camargo CH, Nobrega DB. Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Other Antimicrobial-Resistant Gram-Negative Pathogens Isolated from Bovine Mastitis: A One Health Perspective. Antibiotics (Basel) 2024; 13:391. [PMID: 38786120 PMCID: PMC11117280 DOI: 10.3390/antibiotics13050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses an imminent threat to global public health, driven in part by the widespread use of antimicrobials in both humans and animals. Within the dairy cattle industry, Gram-negative coliforms such as Escherichia coli and Klebsiella pneumoniae stand out as major causative agents of clinical mastitis. These same bacterial species are frequently associated with severe infections in humans, including bloodstream and urinary tract infections, and contribute significantly to the alarming surge in antimicrobial-resistant bacterial infections worldwide. Additionally, mastitis-causing coliforms often carry AMR genes akin to those found in hospital-acquired strains, notably the extended-spectrum beta-lactamase genes. This raises concerns regarding the potential transmission of resistant bacteria and AMR from mastitis cases in dairy cattle to humans. In this narrative review, we explore the distinctive characteristics of antimicrobial-resistant E. coli and Klebsiella spp. strains implicated in clinical mastitis and human infections. We focus on the molecular mechanisms underlying AMR in these bacterial populations and critically evaluate the potential for interspecies transmission. Despite some degree of similarity observed in sequence types and mobile genetic elements between strains found in humans and cows, the existing literature does not provide conclusive evidence to assert that coliforms responsible for mastitis in cows pose a direct threat to human health. Finally, we also scrutinize the existing literature, identifying gaps and limitations, and propose avenues for future research to address these pressing challenges comprehensively.
Collapse
Affiliation(s)
- Breno Luis Nery Garcia
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Stéfani Thais Alves Dantas
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
| | - Kristian da Silva Barbosa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
| | - Thatiane Mendes Mitsunaga
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
| | - Alyssa Butters
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | | | - Diego Borin Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
7
|
Bai S, Fang L, Xiao H, Zhang Y, Guo W, Zhang J, Liu J, Zhang Y, Wang M, Sun R, Han L, Yu Y, Sun J, Liu Y, Liao X. Genomics analysis of KPC-2 and NDM-5-producing Enterobacteriaceae in migratory birds from Qinghai Lake, China. Appl Microbiol Biotechnol 2023; 107:7531-7542. [PMID: 37861819 DOI: 10.1007/s00253-023-12746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The study examined the epidemiological characteristics of carbapenem-resistant Enterobacteriaceae (CRE) isolated from migratory birds and surroundings in Qinghai Lake, China. We identified 69 (15.7%) CRE isolates from a total of 439 samples including 29 (6.6%) blaNDM-5 Escherichia coli and 40 (9.1%) blaKPC-2 Klebsiella pneumoniae. WGS analysis indicated that ST746, ST48, ST1011, and ST167 were the primary sequence types (ST) for blaNDM-5 E. coli, while all blaKPC-2 K. pneumoniae were ST11 and harbored numerous antibiotic resistance gene types including blaCTX-M, qnrS, and rmtB. A phylogenetic tree based on core genomes revealed that blaNDM-5 E. coli was highly heterogeneous while the blaKPC-2 K. pneumoniae was highly genetically similar within the group and to human Chinese isolates. IncX3, IncHI2, and IncFIB-HI2 plasmid replicon types were associated with blaNDM-5 spread, while IncFII-R and IncFII plasmids mediated blaKPC-2 spread. We also identified IncFII-R hybrid plasmids most likely formed by IS26-mediated integration of IncFII into IncR plasmid backbones. This also facilitated the persistence of IncFII-R plasmids and antibiotic resistance genes including blaKPC-2. In addition, all of the blaKPC-2 K. pneumoniae isolates harbored a pLVKP-like virulence plasmid carrying a combination of two or more hypervirulence markers that included peg-344, iroB, iucA, rmpA, and rmpA2. This is the first description of ST11 K. pneumoniae that co-carried blaKPC-2- and pLVKP-like virulence plasmids from migratory birds. The blaKPC-2 K. pneumoniae carried by migratory birds displayed high genetic relatedness to human isolates highlighting a high risk of transmission of these K. pneumoniae. KEY POINTS: • Multidrug resistance plasmids (blaKPC-2, bla436NDM-5, bla CTX-M, qnrS, and rmtB). • Co-occurrence of plasmid-mediated resistance and virulence genes. • High similarity between migratory bird genomes and humans.
Collapse
Affiliation(s)
- Shuancheng Bai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liangxing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hongliang Xiao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yin Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenying Guo
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jixing Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Juan Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Minge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ruanyang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lu Han
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yang Yu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yahong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaoping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
8
|
Mr. Saddam, Khan M, Jamal M, Rahman SU, Qadeer A, Khan I, Mahmoud MH, Batiha GES, Shah SH. Nutritional analysis and characterization of carbapenemase producing-Klebsiella pneumoniae resistant genes associated with bovine mastitis infected cow's milk. PLoS One 2023; 18:e0293477. [PMID: 37889925 PMCID: PMC10610456 DOI: 10.1371/journal.pone.0293477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The current study was designed to analyze nutritional parameters and to characterize carbapenemase producing-Klebsiella pneumoniae isolates from bovine mastitic cow's milk. Out of 700 milk samples K. pneumoniae was identified by phenotypic and molecular techniques along with their antibiogram analysis and nutritional analysis was performed using the procedure of Association of Official Analytical Chemists. Carbapenemase-producing K. pneumoniae was detected by phenotypic CarbaNP test followed by molecular characterization of their associated resistant genes blaVIM, blaKPC, blaOXA-48, blaNDM, and blaIMP along with insertion sequence common region 1 (ISCR1) and integrons (Int1, Int2, and Int3) genes. Among nutritional parameters, fat content was observed (2.99%) followed by protein (2.78%), lactose (4.32%), and total solid (11.34%), respectively. The prevalence of K. pneumoniae among bovine mastitis was found 25.71%. Antibiogram analysis revealed that more effective antibiotics was ceftazidime (80%) followed by amikacin (72%), while highly resistant antibiotics was Fusidic acid (100%). Distribution of carbapenemase producer K. pneumoniae was found 44.4%. Among carbapenem resistant genes blaKPC was found 11.25%, blaVIM 2.75%, blaNDM 17.5%, and blaOXA-48 7.5%, while blaIMP gene was not detected. Furthermore, distribution of ISCR1 was found 40%, while integron 1 was found 61.2% followed by integron 2 (20%), and integron 3 (5%). In conclusion, the recent scenario of carbapenemase resistant K. pneumoniae isolates responsible for mastitis may affect not only the current treatment regime but also possess a serious threat to public health due to its food borne transmission and zoonotic potential.
Collapse
Affiliation(s)
- Mr. Saddam
- Department of Microbiology, Abdul Wali Khan University, Marden, Pakistan
| | - Muddasir Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Marden, Pakistan
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Qadeer
- Shanghai Tenth People’s Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Imad Khan
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| | - Syed Hussain Shah
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar, Pakistan
| |
Collapse
|
9
|
Uyanik T, Çadirci Ö, Gücükoğlu A, Bölükbaş A. Examining the presence of carbapenem resistant Enterobacterales and routes of transmission to bovine carcasses at slaughterhouses. Int J Food Microbiol 2023; 403:110314. [PMID: 37422948 DOI: 10.1016/j.ijfoodmicro.2023.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
This study was conducted to investigate the existence and possible transmission routes of CREs during the bovine slaughter process. A total of 600 samples including rectoanal mucosal swaps, bovine hides and carcasses were collected weekly, over a 20 week period from three different slaughterhouses in Samsun province and analyzed in terms of CRE. Isolation of CRE was performed using Chromatic CRE Agar. Obtained isolates were identified using PCR and VITEK MS. E-test method was used for screening of carbapenemase production and disk diffusion method was used for detection of phenotypic carbapenem resistance. Presence of five major carbapenemase genes were investigated by PCR and obtained amplicons were sequenced by Sanger sequencing. Clonal relatedness was investigated by Clermont phylo-typing and MLST. Plasmid incompability groups were determined by PCR-based replicon typing. Based on the results, only one bovine hide sample was found positive in terms of CRE and blaKPC-2 harbouring E. coli ST398 (phylogroup A) was identified. E. coli ST398 was found resistant to meropenem, imipenem, ertapenem, doripenem and also tested fluoroquinolones. ST398 was found to harbour three distinct replicons, namely N, FIIK, and FIB KQ. Inc. groups for these replicons were identified as IncN and IncFIIK. On the other hand, no concrete evidence has been obtained to suggest that CREs are spreading at the slaughterhouse level. Conclusively, conducting further studies in areas such as farms, pens, and feedlots is necessary to gain a better understanding of the transmission routes of CREs in livestock.
Collapse
Affiliation(s)
- Tolga Uyanik
- Ondokuz Mayis University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Türkiye.
| | - Özgür Çadirci
- Ondokuz Mayis University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Türkiye
| | - Ali Gücükoğlu
- Ondokuz Mayis University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Türkiye
| | - Ayşegül Bölükbaş
- Ondokuz Mayis University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Türkiye
| |
Collapse
|
10
|
Huang E, Yang X, Leighton E, Li X. Carbapenem resistance in the food supply chain. J Food Prot 2023; 86:100108. [PMID: 37244353 DOI: 10.1016/j.jfp.2023.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Carbapenems are critically important antibiotic agents because they are considered the "last-resort" antibiotics for treating serious infections. However, resistance to carbapenems is increasing throughout the world and has become an urgent problem. Some carbapenem-resistant bacteria are considered urgent threats by the United States Centers for Disease Control and Prevention. In this review, we searched and summarized studies published mostly in the recent five years related to carbapenem resistance in three main areas in the food supply chain: livestock, aquaculture, and fresh produce. We have found that many studies have shown a direct or indirect correlation between carbapenem resistance in the food supply chain and human infections. Our review also revealed the worrisome incidences of the cooccurrence of resistance to carbapenem and other "last-resort" antibiotics, such as colistin and/or tigecycline, in the food supply chain. Antibiotic resistance is a global public health challenge, and more effort related to carbapenem resistance in the food supply chain for different food commodities is still needed in some countries and regions, including the United States. In addition, antibiotic resistance in the food supply chain is a complicated issue. Based on the knowledge from current studies, only restricting the use of antibiotics in food animal production might not be enough. Additional research is needed to determine factors contributing to the introduction and persistence of carbapenem resistance in the food supply chain. Through this review, we hope to provide a better understanding of the current state of carbapenem resistance, and the niches of knowledge that are needed for developing strategies to mitigate antibiotic resistance, especially carbapenem resistance in the food supply chain.
Collapse
Affiliation(s)
- En Huang
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Xu Yang
- Department of Nutrition and Food Science, California State Polytechnic University Pomona, 3801 West Temple Ave, Pomona, CA 91768, USA
| | - Elizabeth Leighton
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | - Xinhui Li
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA.
| |
Collapse
|
11
|
Bonardi S, Cabassi CS, Fiaccadori E, Cavirani S, Parisi A, Bacci C, Lamperti L, Rega M, Conter M, Marra F, Crippa C, Gambi L, Spadini C, Iannarelli M, Paladini C, Filippin N, Pasquali F. Detection of carbapenemase- and ESBL-producing Klebsiella pneumoniae from bovine bulk milk and comparison with clinical human isolates in Italy. Int J Food Microbiol 2023; 387:110049. [PMID: 36521239 DOI: 10.1016/j.ijfoodmicro.2022.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Klebsiella pneumoniae is the most common Klebsiella species infecting animals and is one of the causing agents of mastitis in cows. The rise of antimicrobial resistance in K. pneumoniae, particularly in strains producing extended-spectrum β-lactamases (ESBLs) and/or carbapenemases, is of concern worldwide. Recently (Regulation UE No 2022/1255), carbapenems and cephalosporins in combination with β-lactamase inhibitors have been reserved only to human treatments in the European Union. The aim of this study was to investigate the role of cattle as carrier of human pathogenic carbapenem-resistant (CR) and ESBL-producing K. pneumoniae. On this purpose, a study involving 150 dairy farms in Parma province (Northern Italy) and 14 non replicate K. pneumoniae isolates from patients admitted at Parma University-Hospital was planned. Four multidrug resistant (MDR) K. pneumoniae strains were detected from 258 milk filters collected between 2019 and 2021. One carbapenemase KPC-3-positive K. pneumoniae ST307 (0.4 %; 95 % CI - 0.07 - 2.2) was detected in milk filters. The isolate also harboured OXA-9, CTX-M-15 and SHV-106 determinants, together with genes conferring resistance to aminoglycosides (aac(3')-IIa, aph (3″)-Ib, aph (6)-Id), fluoroquinolones (oqxA, oqxB, qnrB1), phosphonic acids (fosA6), sulphonamides (sul2), tetracyclines (tet(A)6) and trimethoprim (dfrA14). One KPC-3-producing K. pneumoniae ST307 was identified also among the human isolates, thus suggesting a possible circulation of pathogens out of the clinical settings. The remaining three bovine isolates were MDR ESBL-producing K. pneumoniae characterized by different genomic profiles: CTX-M-15, TEM-1B and SHV-187 genes (ST513); CTX-M-15 and SHV-145 (ST307); SHV-187 and DHA-1 (ST307). Occurrence of ESBL-producing K. pneumoniae in milk filters was 1.2 % (95 % CI 0.4-3.4). All the isolates showed resistance to aminoglycosides, 3rd-generation cephalosporins, and fluoroquinolones. Among the human isolates, two multidrug resistant ESBL-producing K. pneumoniae ST307 were found, thus confirming the circulation of this high-risk lineage between humans and cattle. Our findings suggest that food-producing animals can carry human pathogenic microorganisms harboring resistance genes against carbapenems and 3rd-generation cephalosporins, even if not treated with such antimicrobials. Moreover, on the MDR K. pneumoniae farms, the antimicrobial use was much higher than the Italian median value, thus highlighting the importance of a more prudent use of antibiotics in animal productions.
Collapse
Affiliation(s)
- S Bonardi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - C S Cabassi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - E Fiaccadori
- Nephrology Unit, Parma University-Hospital, Department of Medicine and Surgery, Parma University, Via Gramsci 24, 43126 Parma, Italy
| | - S Cavirani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - A Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Chiancolla, 1, 70017 Putignano, BA, Italy
| | - C Bacci
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - L Lamperti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - M Rega
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - M Conter
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - F Marra
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - C Crippa
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, Via del Florio, 2, 40064 Ozzano dell'Emilia, BO, Italy
| | - L Gambi
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, Via del Florio, 2, 40064 Ozzano dell'Emilia, BO, Italy
| | - C Spadini
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - M Iannarelli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - C Paladini
- National Veterinary Service, Via Vasari 13/A, 43126 Parma, Italy
| | - N Filippin
- National Veterinary Service, Via Vasari 13/A, 43126 Parma, Italy
| | - F Pasquali
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, Via del Florio, 2, 40064 Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
12
|
Naranjo-Lucena A, Slowey R. Invited review: Antimicrobial resistance in bovine mastitis pathogens: A review of genetic determinants and prevalence of resistance in European countries. J Dairy Sci 2023; 106:1-23. [PMID: 36333144 DOI: 10.3168/jds.2022-22267] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial resistance is an urgent and growing problem worldwide, both for human and animal health. In the animal health sector actions have been taken as concerns grow regarding the development and spread of antimicrobial resistance. Mastitis is the most common infection in dairy cattle. We aimed to summarize the genetic determinants found in staphylococci, streptococci, and Enterobacteriaceae isolated from mastitic milk samples and provide a comparison of percentage resistance to a variety of antimicrobials in European countries.
Collapse
Affiliation(s)
- Amalia Naranjo-Lucena
- National Reference Laboratory for Antimicrobial Resistance, Department of Agriculture, Food and the Marine, Backweston Laboratory Campus, Celbridge, Ireland W23 VW2C.
| | - Rosemarie Slowey
- National Reference Laboratory for Antimicrobial Resistance, Department of Agriculture, Food and the Marine, Backweston Laboratory Campus, Celbridge, Ireland W23 VW2C
| |
Collapse
|
13
|
Kumar S, Anwer R, Azzi A. Molecular typing methods & resistance mechanisms of MDR Klebsiella pneumoniae. AIMS Microbiol 2023; 9:112-130. [PMID: 36891535 PMCID: PMC9988409 DOI: 10.3934/microbiol.2023008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The emergence and transmission of carbapenem-resistant Klebsiella pneumoniae (CRKP) have been recognized as a major public health concern. Here, we investigated the molecular epidemiology and its correlation with the mechanisms of resistance in CRKP isolates by compiling studies on the molecular epidemiology of CRKP strains worldwide. CRKP is increasing worldwide, with poorly characterized epidemiology in many parts of the world. Biofilm formation, high efflux pump gene expression, elevated rates of resistance, and the presence of different virulence factors in various clones of K. pneumoniae strains are important health concerns in clinical settings. A wide range of techniques has been implemented to study the global epidemiology of CRKP, such as conjugation assays, 16S-23S rDNA, string tests, capsular genotyping, multilocus sequence typing, whole-genome sequencing-based surveys, sequence-based PCR, and pulsed-field gel electrophoresis. There is an urgent need to conduct global epidemiological studies on multidrug-resistant infections of K. pneumoniae across all healthcare institutions worldwide to develop infection prevention and control strategies. In this review, we discuss different typing methods and resistance mechanisms to explore the epidemiology of K. pneumoniae pertaining to human infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Microbiology, Kampala International University, Western Campus, Ishaka, Uganda
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Ma X, Xu S, Li J, Cui L, Dong J, Meng X, Zhu G, Wang H. Selenomethionine protected BMECs from inflammatory injury and oxidative damage induced by Klebsiella pneumoniae by inhibiting the NF-κB and activating the Nrf2 signaling pathway. Int Immunopharmacol 2022; 110:109027. [PMID: 35820365 DOI: 10.1016/j.intimp.2022.109027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is one of the main environmental pathogens causing bovine mastitis. The incidence of bovine mastitis caused by K. pneumoniae is increasing worldwide. Selenium is an essential trace element that has multiple physiological functions, such as antioxidant and anti-inflammatory activities. Therefore, this study aimed to verify whether selenomethionine (SeMet) could contribute to alleviating the inflammatory injury and oxidative damage induced by K. pneumoniae. Bovine mammary epithelial cells were cultured in vitro and pretreated with 4 μM SeMet before being infected with K. pneumoniae. Western blot analysis was used to detect the expression of the related proteins in the NF-κB and Nrf2 signaling pathways. The gene expression levels of IL-1β, IL-6, IL-8, TNF-α, Nrf2, Keap1, NQO-1 and HO-1 were detected using RT-qPCR. The levels of MDA, GSH-PX, SOD, CAT and T-AOC were detected by commercial assay kits. Flow cytometry was used to determine the level of intracellular ROS, and immunofluorescence was used to detect the nuclear localization of Nrf2 protein. Briefly, SeMet downregulated the phosphorylation levels of IκBα and p65 proteins and the gene expression levels of IL-1β, IL-6, IL-8 and TNF-α were also decreased. Moreover, the protein and gene expression levels of Nrf2, NQO-1 and HO-1 were upregulated, and the nuclear expression of Nrf2 protein was also promoted, which enhanced the activity of antioxidant enzymes. In conclusion, SeMet protected BMECs from inflammatory injury and oxidative stress induced by K. pneumoniae by inhibiting the NF-κB and activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Xiaomin Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-innovation Center for Prevention and Control of Important Animal Infection Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Siyan Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-innovation Center for Prevention and Control of Important Animal Infection Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-innovation Center for Prevention and Control of Important Animal Infection Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-innovation Center for Prevention and Control of Important Animal Infection Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-innovation Center for Prevention and Control of Important Animal Infection Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-innovation Center for Prevention and Control of Important Animal Infection Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-innovation Center for Prevention and Control of Important Animal Infection Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-innovation Center for Prevention and Control of Important Animal Infection Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
15
|
Campos-Madueno EI, Moser AI, Jost G, Maffioli C, Bodmer T, Perreten V, Endimiani A. Carbapenemase-producing Klebsiella pneumoniae strains in Switzerland: Human and non-human settings may share high-risk clones. J Glob Antimicrob Resist 2022; 28:206-215. [DOI: 10.1016/j.jgar.2022.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
|