1
|
Mangoma N, Zhou N, Ncube T. Metagenomic insights into the microbial community of the Buhera soda pans, Zimbabwe. BMC Microbiol 2024; 24:510. [PMID: 39614167 DOI: 10.1186/s12866-024-03655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Soda pans are unique, natural aquatic environments characterised by elevated salinity and alkalinity, creating a distinctive and often extreme geochemistry. The microbiomes of soda pans are unique, with extremophiles such as halophiles, alkaliphiles and haloalkaliphiles being important. Despite being dominated by mostly unculturable inhabitants, soda pans hold immense biotechnological potential. The application of modern "omics-based" techniques helps us better understand the ecology and true extend of the biotechnological potential of soda pan microbiomes. In this study, we used a shotgun metagenomic approach to determine the microbial diversity and functional profile of previously unexplored soda pans located in Buhera, Eastern Zimbabwe. A combination of titrimetry and inductively coupled plasma optical emission spectroscopy (ICP‒OES) was used to perform physico-chemical analysis of the soda pan water. RESULTS Physicochemical analysis revealed that the Buhera soda pans are highly alkaline, with a pH range of 8.74 to 11.03, moderately saline (2.94 - 7.55 g/L), and have high carbonate (3625 mg/L) and bicarbonate ion (1325 mg/L) alkalinity. High levels of sulphate, phosphate, chloride and fluoride ions were detected. Metagenomic analysis revealed that domain Bacteria dominated the soda pan microbial community, with Pseudomonadota and Bacillota being the dominant phyla. Vibrio was shown to be the predominant genus, followed by Clostridium, Candidatus Brevefilum, Acetoanaerobium, Thioalkalivibrio and Marinilactibacillus. Archaea were also detected, albeit at a low prevalence of 1%. Functional profiling revealed that the Buhera soda pan microbiome is functionally diverse, has hydrolytic-enzyme production potential and is capable of supporting a variety of geochemical cycles. CONCLUSIONS The results of this pioneering study showed that despite their extreme alkalinity and moderate salinity, the Buhera soda pans harbour a taxonomically and functionally diverse microbiome dominated by bacteria. Future work will aim towards establishing the full extent of the soda pan's biotechnological potential, with a particular emphasis on potential enzyme production.
Collapse
Affiliation(s)
- Ngonidzashe Mangoma
- Department of Applied Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe.
| | - Nerve Zhou
- Biological Sciences and Biotechnology Department, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Research and Internationalization Office, National University of Science and Technology, Bulawayo, Zimbabwe
| |
Collapse
|
2
|
Borsodi AK. Taxonomic diversity of extremophilic prokaryotes adapted to special environmental parameters in Hungary: a review. Biol Futur 2024; 75:183-192. [PMID: 38753295 DOI: 10.1007/s42977-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
The taxonomic and metabolic diversity of prokaryotes and their adaptability to extreme environmental parameters have allowed extremophiles to find their optimal living conditions under extreme conditions for one or more environmental parameters. Natural habitats abundant in extremophilic microorganisms are relatively rare in Hungary. Nevertheless, alkaliphiles and halophiles can flourish in shallow alkaline lakes (soda pans) and saline (solonetz) soils, where extreme weather conditions favor the development of unique bacterial communities. In addition, the hot springs and thermal wells that supply spas and thermal baths and provide water for energy use are suitable colonization sites for thermophiles and hyperthermophiles. Polyextremophiles, adapted to multiple extreme circumstances, can be found in the aphotic, nutrient-poor and radioactive hypogenic caves of the Buda Thermal Karst, among others. The present article reviews the organization, taxonomic composition, and potential role of different extremophilic bacterial communities in local biogeochemical cycles, based on the most recent studies on extremophiles in Hungary.
Collapse
Affiliation(s)
- Andrea K Borsodi
- Department of Microbiology, Institute of Biology, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
3
|
Zhang L, Yuan L, Xiang J, Liao Q, Zhang D, Liu J. Response of the microbial community structure to the environmental factors during the extreme flood season in Poyang Lake, the largest freshwater lake in China. Front Microbiol 2024; 15:1362968. [PMID: 38633691 PMCID: PMC11021660 DOI: 10.3389/fmicb.2024.1362968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 04/19/2024] Open
Abstract
Background Poyang Lake is the largest freshwater lake in China, and there are several studies on the composition and diversity of bacteria in Poyang Lake, while few quantitative studies were carried out on the response of the bacterial community to environmental factors during the extreme flood season in Poyang Lake. Methods The connected-lake heterogeneity of bacterial community composition (BCC) was investigated in Poyang Lake during the flood season in 2020. Illumina high-throughput sequencing technology was used in this study. Results The bacterial community structure in the water was different from that in the sediment of Poyang Lake during extreme flood seasons. The bacterial diversity in water was much lower than that in sediment. In the water column, the dominant phyla were Actinobacteriota, while the composition of bacteria in sediment was more complex than that in water, and the dominant phyla in sediment were Proteobacteria, Chloroflexi, Acidobacteriota, and Actinobacteriota. The bacterial diversity in the water of Poyang Lake showed seasonal dynamics, while no seasonal variation of bacterial communities in sediment was observed. The bacterial community structure in the sediment from the two bays and channel areas of Poyang Lake can be distinguished from each other. The microbial diversity in sediment gradually increased from the Sancha Bay to the Zhouxi Bay and then to the channel, but the total nitrogen (TN) concentration in sediment (STN) and the total phosphorus (TP) concentration in sediment (STP) showed opposite trends. This might be due to the anthropogenic disturbances from the extreme flood. The bacterial community structure in, water column was significantly correlated with WT, NH4-N, STP, SOM, Chl a, DO, TP, and Eh, while the bacterial community structure in sediment was significantly correlated with SOM and STP. Conclusion The bacterial community structure in water was greatly different from that in sediment in Poyang Lake during extreme flood seasons. The bacterial community structure in the water column was not only sensitive to the geochemical characteristics of the water but also affected by some nutrient concentrations in the sediment. During the wet seasons, bacterial diversity was only affected by SOM and STP.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Lijuan Yuan
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Jianjun Xiang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Qiegen Liao
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Dawen Zhang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Jutao Liu
- Jiangxi Provincial Institute of Water Sciences, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Mucsi M, Borsodi AK, Megyes M, Szili-Kovács T. Response of the metabolic activity and taxonomic composition of bacterial communities to mosaically varying soil salinity and alkalinity. Sci Rep 2024; 14:7460. [PMID: 38553497 PMCID: PMC10980690 DOI: 10.1038/s41598-024-57430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Soil salinity and sodicity is a worldwide problem that affects the composition and activity of bacterial communities and results from elevated salt and sodium contents. Depending on the degree of environmental pressure and the combined effect of other factors, haloalkalitolerant and haloalkaliphilic bacterial communities will be selected. These bacteria play a potential role in the maintenance and restoration of salt-affected soils; however, until recently, only a limited number of studies have simultaneously studied the bacterial diversity and activity of saline-sodic soils. Soil samples were collected to analyse and compare the taxonomic composition and metabolic activity of bacteria from four distinct natural plant communities at three soil depths corresponding to a salinity‒sodicity gradient. Bacterial diversity was detected using 16S rRNA gene Illumina MiSeq amplicon sequencing. Community-level physiological profiles (CLPPs) were analysed using the MicroResp™ method. The genus-level bacterial composition and CLPPs differed significantly in soils with different alkaline vegetation. The surface soil samples also significantly differed from the intermediate and deep soil samples. The results showed that the pH, salt content, and Na+ content of the soils were the main edaphic factors influencing both bacterial diversity and activity. With salinity and pH, the proportion of the phylum Gemmatimonadota increased, while the proportions of Actinobacteriota and Acidobacteriota decreased.
Collapse
Affiliation(s)
- Márton Mucsi
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány P. sétány 1/AC, Budapest, 1117, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary.
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary.
| | - Melinda Megyes
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány P. sétány 1/AC, Budapest, 1117, Hungary
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Tibor Szili-Kovács
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary.
| |
Collapse
|
5
|
Márton Z, Csitári B, Felföldi T, Hidas A, Jordán F, Szabó A, Székely AJ. Contrasting response of microeukaryotic and bacterial communities to the interplay of seasonality and local stressors in shallow soda lakes. FEMS Microbiol Ecol 2023; 99:fiad095. [PMID: 37586889 PMCID: PMC10449373 DOI: 10.1093/femsec/fiad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Seasonal environmental variation is a leading driver of microbial planktonic community assembly and interactions. However, departures from usual seasonal trends are often reported. To understand the role of local stressors in modifying seasonal succession, we sampled fortnightly, throughout three seasons, five nearby shallow soda lakes exposed to identical seasonal and meteorological changes. We characterised their microeukaryotic and bacterial communities by amplicon sequencing of the 16S and 18S rRNA gene, respectively. Biological interactions were inferred by analyses of synchronous and time-shifted interaction networks, and the keystone taxa of the communities were topologically identified. The lakes showed similar succession patterns during the study period with spring being characterised by the relevance of trophic interactions and a certain level of community stability followed by a more dynamic and variable summer-autumn period. Adaptation to general seasonal changes happened through shared core microbiome of the lakes. Stochastic events such as desiccation disrupted common network attributes and introduced shifts from the prevalent seasonal trajectory. Our results demonstrated that, despite being extreme and highly variable habitats, shallow soda lakes exhibit certain similarities in the seasonality of their planktonic communities, yet local stressors such as droughts instigate deviations from prevalent trends to a greater extent for microeukaryotic than for bacterial communities.
Collapse
Affiliation(s)
- Zsuzsanna Márton
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, H-1113 Budapest, Hungary
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Bianka Csitári
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
- Karolinska Institutet, 171 65 Stockholm, Sweden
- Uppsala University, 752 36 Uppsala, Sweden
| | - Tamás Felföldi
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Department of Microbiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - András Hidas
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Ferenc Jordán
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Attila Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Anna J Székely
- Uppsala University, 752 36 Uppsala, Sweden
- Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
6
|
Korponai K, Szuróczki S, Márton Z, Szabó A, Morais PV, Proença DN, Tóth E, Boros E, Márialigeti K, Felföldi T. Habitat distribution of the genus Belliella in continental waters and the description of Belliella alkalica sp. nov., Belliella calami sp. nov. and Belliella filtrata sp. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37326610 DOI: 10.1099/ijsem.0.005928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
The genus Belliella belongs to the family Cyclobacteriaceae (order Cytophagales, phylum Bacteroidota) and harbours aerobic chemoheterotrophic bacteria. Members of this genus were isolated from various aquatic habitats, and our analysis based on global amplicon sequencing data revealed that their relative abundance can reach up to 5-10 % of the bacterioplankton in soda lakes and pans. Although a remarkable fraction of the most frequent genotypes that we identified from continental aquatic habitats is still uncultured, five new alkaliphilic Belliella strains were characterized in detail in this study, which were isolated from three different soda lakes and pans of the Carpathian Basin (Hungary). Cells of all strains were Gram-stain-negative, obligate aerobic, rod-shaped, non-motile and non-spore-forming. The isolates were oxidase- and catalase-positive, red-coloured, but did not contain flexirubin-type pigments; they formed bright red colonies that were circular, smooth and convex. Their major isoprenoid quinone was MK-7 and the predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 containing C16 : 1 ω6c and/or C16 : 1 ω7c. The polar lipid profiles contained phosphatidylethanolamine, an unidentified aminophospholipid, an unidentified glycolipid, and several unidentified lipids and aminolipids. Based on whole-genome sequences, the DNA G+C content was 37.0, 37.1 and 37.8 mol % for strains R4-6T, DMA-N-10aT and U6F3T, respectively. The distinction of three new species was confirmed by in silico genomic comparison. Orthologous average nucleotide identity (<85.4 %) and digital DNA-DNA hybridization values (<38.9 %) supported phenotypic, chemotaxonomic and 16S rRNA gene sequence data and, therefore, the following three novel species are proposed: Belliella alkalica sp. nov. (represented by strains R4-6T=DSM 111903T=JCM 34281T=UCCCB122T and S4-10), Belliella calami sp. nov. (DMA-N-10aT=DSM 107340T=JCM 34280T=UCCCB121T) and Belliella filtrata sp. nov. (U6F3T=DSM 111904T=JCM 34282T=UCCCB123T and U6F1). Emended descriptions of species Belliella aquatica, Belliella baltica, Belliella buryatensis, Belliella kenyensis and Belliella pelovolcani are also presented.
Collapse
Affiliation(s)
- Kristóf Korponai
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Agricultural Institute, Centre for Agricultural Research, Brunszvik utca 2, 2462 Martonvásár, Hungary
| | - Sára Szuróczki
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Zsuzsanna Márton
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| | - Attila Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms Vag 9, 750 07 Uppsala, Sweden
| | - Paula V Morais
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Diogo Neves Proença
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Erika Tóth
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Emil Boros
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| |
Collapse
|
7
|
Pellegrinetti TA, Cotta SR, Sarmento H, Costa JS, Delbaje E, Montes CR, Camargo PB, Barbiero L, Rezende-Filho AT, Fiore MF. Bacterial Communities Along Environmental Gradients in Tropical Soda Lakes. MICROBIAL ECOLOGY 2023; 85:892-903. [PMID: 35916937 DOI: 10.1007/s00248-022-02086-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Soda lake environments are known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effects of different environmental conditions of six adjacent soda lakes in the Pantanal biome (Mato Grosso do Sul state, Brazil) on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes into three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, which was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were associated with high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and with lower salinity and pH levels. Stress response metabolism was enhanced in OT and ET lakes and underrepresented in CVO lakes. The microbiome dataset of this study can serve as a baseline for restoring impacted soda lakes. Altogether, the results of this study demonstrate the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.
Collapse
Affiliation(s)
- Thierry A Pellegrinetti
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Simone R Cotta
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, 13565-905, Brazil
| | - Juliana S Costa
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Endrews Delbaje
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Celia R Montes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Plinio B Camargo
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Laurent Barbiero
- The Observatory Midi-Pyrénées, Geoscience Environment Toulouse, Research Institute for Development, The National Center for Research Scientific, Paul Sabatier University, 31400, Toulouse, France
| | - Ary T Rezende-Filho
- Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, 79070-900, Brazil
| | - Marli F Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, São Paulo, 13416-000, Brazil.
| |
Collapse
|
8
|
Habitat and Features of Development of Plankton Communities in Salt Lakes (South-Eastern Transbaikalia, Russia). DIVERSITY 2023. [DOI: 10.3390/d15030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Results of studies of plankton algae and invertebrates in salt lakes of the territory of a closed runoff in the south of South-Eastern Transbaikalia (Russia) carried out in 2021–2022 are presented. Phyto- and zooplankton of sixteen saline lakes were studied during the maximum vegetation period from July to August. Lakes are different in chemical type: chloride, soda and sulfate. For chloride, sulfate and some soda lakes, data on plankton have been obtained for the first time. Fifty-four taxa of phytoplankton and twenty-seven species of zooplankton were found in soda lakes; twenty-three taxa of phytoplankton and four species of zooplankton were found in the chloride lakes; fifteen phytoplankton species and five zooplankton species were found in the sulfate lakes. For phytoplankton in soda lakes, green algae, cyanobacteria and diatoms were dominant. Green algae dominated in species composition in sulfate lakes; cryptophyte algae and cyanobacteria dominated in chloride lakes. For zooplankton, in all types of lakes, Brachionus plicatilis, Moina brachiata and Metadiaptomus asiaticus dominated. The abundance and biomass of algae and invertebrates in the surveyed lakes varied widely. Based on the results of the correlation analysis, total dissolved solids (TDS) are a key factor in the formation of planktonic communities in soda lakes; depth, transparency and temperature—in chloride lakes and pH—in sulfate lakes.
Collapse
|
9
|
Márton Z, Szabó B, Vad CF, Pálffy K, Horváth Z. Environmental changes associated with drying climate are expected to affect functional groups of pro- and microeukaryotes differently in temporary saline waters. Sci Rep 2023; 13:3243. [PMID: 36828901 PMCID: PMC9957990 DOI: 10.1038/s41598-023-30385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Temporary ponds are among the most sensitive aquatic habitats to climate change. Their microbial communities have crucial roles in food webs and biogeochemical cycling, yet how their communities are assembled along environmental gradients is still understudied. This study aimed to reveal the environmental drivers of diversity (OTU-based richness, evenness, and phylogenetic diversity) and community composition from a network of saline temporary ponds, soda pans, in two consecutive spring seasons characterized by contrasting weather conditions. We used DNA-based molecular methods to investigate microbial community composition. We tested the effect of environmental variables on the diversity of prokaryotic (Bacteria, Cyanobacteria) and microeukaryotic functional groups (ciliates, heterotrophic flagellates and nanoflagellates, fungi, phytoplankton) within and across the years. Conductivity and the concentration of total suspended solids and phosphorus were the most important environmental variables affecting diversity patterns in all functional groups. Environmental conditions were harsher and they also had a stronger impact on community composition in the dry spring. Our results imply that these conditions, which are becoming more frequent with climate change, have a negative effect on microbial diversity in temporary saline ponds. This eventually might translate into community-level shifts across trophic groups with changing local conditions with implications for ecosystem functioning.
Collapse
Affiliation(s)
- Zsuzsanna Márton
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary.
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary.
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Beáta Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
| | - Csaba F Vad
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Károly Pálffy
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
| | - Zsófia Horváth
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary
- ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1113, Hungary
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| |
Collapse
|
10
|
Jeilu O, Gessesse A, Simachew A, Johansson E, Alexandersson E. Prokaryotic and eukaryotic microbial diversity from three soda lakes in the East African Rift Valley determined by amplicon sequencing. Front Microbiol 2022; 13:999876. [PMID: 36569062 PMCID: PMC9772273 DOI: 10.3389/fmicb.2022.999876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Soda lakes are unique poly-extreme environments with high alkalinity and salinity that support diverse microbial communities despite their extreme nature. In this study, prokaryotic and eukaryotic microbial diversity in samples of the three soda lakes, Lake Abijata, Lake Chitu and Lake Shala in the East African Rift Valley, were determined using amplicon sequencing. Culture-independent analysis showed higher diversity of prokaryotic and eukaryotic microbial communities in all three soda lakes than previously reported. A total of 3,603 prokaryotic and 898 eukaryotic operational taxonomic units (OTUs) were found through culture-independent amplicon sequencing, whereas only 134 bacterial OTUs, which correspond to 3%, were obtained by enrichment cultures. This shows that only a fraction of the microorganisms from these habitats can be cultured under laboratory conditions. Of the three soda lakes, samples from Lake Chitu showed the highest prokaryotic diversity, while samples from Lake Shala showed the lowest diversity. Pseudomonadota (Halomonas), Bacillota (Bacillus, Clostridia), Bacteroidota (Bacteroides), Euryarchaeota (Thermoplasmata, Thermococci, Methanomicrobia, Halobacter), and Nanoarchaeota (Woesearchaeia) were the most common prokaryotic microbes in the three soda lakes. A high diversity of eukaryotic organisms were identified, primarily represented by Ascomycota and Basidiomycota. Compared to the other two lakes, a higher number of eukaryotic OTUs were found in Lake Abijata. The present study showed that these unique habitats harbour diverse microbial genetic resources with possible use in biotechnological applications, which should be further investigated by functional metagenomics.
Collapse
Affiliation(s)
- Oliyad Jeilu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden,*Correspondence: Oliyad Jeilu,
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
11
|
Where the Little Ones Play the Main Role-Picophytoplankton Predominance in the Soda and Hypersaline Lakes of the Carpathian Basin. Microorganisms 2022; 10:microorganisms10040818. [PMID: 35456867 PMCID: PMC9030754 DOI: 10.3390/microorganisms10040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
The extreme environmental conditions of the diverse saline inland waters (soda lakes and pans, hypersaline lakes and ponds) of the Carpathian Basin are an advantage for picophytoplankton. The abundance of picophytoplankton in these waters can be up to several orders of magnitude higher than that in freshwater shallow lakes, but differences are also found within different saline water types: higher picophytoplankton abundances were observed in hypersaline lakes compared to humic soda lakes, and their highest numbers were detected in turbid soda lakes. Moreover, their contribution to phytoplankton biomass is higher than that in shallow freshwater lakes with similar trophic states. Based on long-term data, their ratio within the phytoplankton increased with turbidity in the case of turbid soda lakes, while, in hypersaline lakes, their proportion increased with salinity. Picocyanobacteria were only detected with high abundance (>106−107 cells/mL) in turbid soda lakes, while picoeukaryotes occurred in high numbers in both turbid and hypersaline lakes. Despite the extreme conditions of the lakes, the diversity of picophytoplankton is remarkable, with the dominance of non-marine Synechococcus/Cyanobium, Choricystis, Chloroparva and uncultured trebouxiophycean green algae in the soda lakes, and marine Synechococcus and Picochlorum in the hypersaline lakes.
Collapse
|
12
|
Csitári B, Bedics A, Felföldi T, Boros E, Nagy H, Máthé I, Székely AJ. Anion-type modulates the effect of salt stress on saline lake bacteria. Extremophiles 2022; 26:12. [PMID: 35137260 PMCID: PMC8825391 DOI: 10.1007/s00792-022-01260-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
Beside sodium chloride, inland saline aquatic systems often contain other anions than chloride such as hydrogen carbonate and sulfate. Our understanding of the biological effects of salt composition diversity is limited; therefore, the aim of this study was to examine the effect of different anions on the growth of halophilic bacteria. Accordingly, the salt composition and concentration preference of 172 strains isolated from saline and soda lakes that differed in ionic composition was tested using media containing either carbonate, chloride or sulfate as anion in concentration values ranging from 0 to 0.40 mol/L. Differences in salt-type preference among bacterial strains were observed in relationship to the salt composition of the natural habitat they were isolated from indicating specific salt-type adaptation. Sodium carbonate represented the strongest selective force, while majority of strains was well-adapted to growth even at high concentrations of sodium sulfate. Salt preference was to some extent associated with taxonomy, although variations even within the same bacterial species were also identified. Our results suggest that the extent of the effect of dissolved salts in saline lakes is not limited to their concentration but the type of anion also substantially impacts the growth and survival of individual microorganisms.
Collapse
Affiliation(s)
- Bianka Csitári
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Department of Ecology and Genetics/Limnology, Uppsala University EBC, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Stockholm, Sweden
| | - Anna Bedics
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Depatment of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, 2100, Gödöllő, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina u. 29, 1113, Budapest, Hungary
| | - Emil Boros
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina u. 29, 1113, Budapest, Hungary
| | - Hajnalka Nagy
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104, Miercurea Ciuc, Romania
| | - Anna J Székely
- Department of Ecology and Genetics/Limnology, Uppsala University EBC, Norbyvägen 18D, 75236, Uppsala, Sweden.
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden.
| |
Collapse
|
13
|
Báldi A, Vári Á. Freshwater ecosystems: research, policy and applications. Biol Futur 2021; 71:333-336. [PMID: 34554465 DOI: 10.1007/s42977-020-00051-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/31/2020] [Indexed: 11/29/2022]
Affiliation(s)
- András Báldi
- Lendület Ecosystem Services Research Group, ELKH Centre for Ecological Research, 2-4 Alkotmány utca, Vácrátót, 2163, Hungary
| | - Ágnes Vári
- Lendület Ecosystem Services Research Group, ELKH Centre for Ecological Research, 2-4 Alkotmány utca, Vácrátót, 2163, Hungary.
| |
Collapse
|
14
|
Szabó A, Korponai K, Somogyi B, Vajna B, Vörös L, Horváth Z, Boros E, Szabó-Tugyi N, Márialigeti K, Felföldi T. Grazing pressure-induced shift in planktonic bacterial communities with the dominance of acIII-A1 actinobacterial lineage in soda pans. Sci Rep 2020; 10:19871. [PMID: 33199773 PMCID: PMC7669872 DOI: 10.1038/s41598-020-76822-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/18/2020] [Indexed: 11/23/2022] Open
Abstract
Astatic soda pans of the Pannonian Steppe are unique environments with respect to their multiple extreme physical and chemical characteristics (high daily water temperature fluctuation, high turbidity, alkaline pH, salinity, polyhumic organic carbon concentration, hypertrophic state and special ionic composition). However, little is known about the seasonal dynamics of the bacterial communities inhabiting these lakes and the role of environmental factors that have the main impact on their structure. Therefore, two soda pans were sampled monthly between April 2013 and July 2014 to reveal changes in the planktonic community. By late spring in both years, a sudden shift in the community structure was observed, the previous algae-associated bacterial communities had collapsed, resulting the highest ratio of Actinobacteria within the bacterioplankton (89%, with the dominance of acIII-A1 lineage) ever reported in the literature. Before these peaks, an extremely high abundance (> 10,000 individuum l-1) of microcrustaceans (Moina brachiata and Arctodiaptomus spinosus) was observed. OTU-based statistical approaches showed that in addition to algal blooms and water-level fluctuations, zooplankton densities had the strongest effect on the composition of bacterial communities. In these extreme environments, this implies a surprisingly strong, community-shaping top-down role of microcrustacean grazers.
Collapse
Affiliation(s)
- Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary.
| | - Kristóf Korponai
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| | - Boglárka Somogyi
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Balázs Vajna
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| | - Lajos Vörös
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Zsófia Horváth
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Emil Boros
- Centre for Ecological Research, Danube Research Institute, Karolina út 29, Budapest, 1113, Hungary
| | - Nóra Szabó-Tugyi
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| |
Collapse
|
15
|
Tandon K, Baatar B, Chiang PW, Dashdondog N, Oyuntsetseg B, Tang SL. A Large-Scale Survey of the Bacterial Communities in Lakes of Western Mongolia with Varying Salinity Regimes. Microorganisms 2020; 8:E1729. [PMID: 33158252 PMCID: PMC7716208 DOI: 10.3390/microorganisms8111729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, climate change coupled with anthropogenic activities has led to monumental changes in saline lakes which are rapidly drying up across the globe and particularly in Central Asia. The landlocked country of Mongolia is rich in lakes which have remained primarily undisturbed by human impact, and many of these lakes have varying salinity regimes and are located across various geographical landscapes. In this study, we sampled 18 lakes with varying salinity regimes (hyperhaline, mesohaline, oligohaline, and polyhaline) covering 7000 km of western Mongolia and its various geographical landscapes (Gobi Desert, forests, and steppe). We identified that the bacterial communities that dominate these lakes are significantly influenced by salinity (p < 0.001) and geographical landscape (p < 0.001). Further, only five zOTUs were shared in all the lakes across the salinity regimes, providing evidence that both local and regional factors govern the community assembly and composition. Furthermore, the bacterial communities of hyperhaline lakes were significantly positively correlated with salinity (ANOVA, p < 0.001) and arsenic concentrations (ANOVA, p < 0.001), whereas bacterial communities of mesohaline and polyhaline lakes situated in forest and steppe landscapes were positively correlated with temperature (ANOVA, p < 0.001) and altitude (ANOVA, p < 0.001), respectively. Functional predictions based on the 16S rRNA gene indicated enrichment of KEGG Ontology terms related to transporters for osmoprotection and -regulation. Overall, our study provides a comprehensive view of the bacterial diversity and community composition present in these lakes, which might be lost in the future.
Collapse
Affiliation(s)
- Kshitij Tandon
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; (K.T.); (B.B.); (P.-W.C.)
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bayanmunkh Baatar
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; (K.T.); (B.B.); (P.-W.C.)
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia;
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; (K.T.); (B.B.); (P.-W.C.)
| | - Narangarvuu Dashdondog
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia;
| | - Bolormaa Oyuntsetseg
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia;
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; (K.T.); (B.B.); (P.-W.C.)
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|