1
|
Zaranek M, Pinski A, Skupien-Rabian B, Jankowska U, Godel-Jedrychowska K, Sala-Cholewa K, Nowak K, Kurczyńska E, Grzebelus E, Betekhtin A. The cell colony development is connected with the accumulation of embryogenesis-related proteins and dynamic distribution of cell wall components in in vitro cultures of Fagopyrum tataricum and Fagopyrum esculentum. BMC PLANT BIOLOGY 2025; 25:102. [PMID: 39856552 PMCID: PMC11761224 DOI: 10.1186/s12870-025-06119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Due to the totipotency of plant cells, which allows them to reprogram from a differentiated to a dedifferentiated state, plants exhibit a remarkable regenerative capacity, including under in vitro culture conditions. When exposed to plant hormones, primarily auxins and cytokinins, explant cells cultured in vitro can undergo differentiation through callus formation. Protoplast culture serves as a valuable research model for studying these processes in detail. This knowledge is particularly relevant for improving common and Tartary buckwheat species. To gain deeper insights into the stages of cell development from protoplasts-such as cell division, cell colony formation, and microcalli development-we focused on analyzing proteomes, cell wall composition, and changes in the expression profiles of selected genes in Fagopyrum protoplast cultures. RESULTS The results demonstrate a significant accumulation of somatic embryogenesis-related proteins like late embryogenesis abundant proteins (embryogenic protein-DC-8-like, seed biotin-containing protein) and endochitinases during the developmental path of protoplast-derived cultures. Additionally, we noted an extensive increase in seed storage proteins like vicilin, oleosins, and seed biotin-containing proteins during the culture. Investigation of somatic embryogenesis-associated transcription factors revealed massive up-regulation of LEAFY COTYLEDON1 for the 50th day of F. tataricum protoplast-derived cultures. However, for BABY BOOM, the transcription factor was noted to be down-regulated during the development of cell colonies. Furthermore, we demonstrated the variable distribution of cell wall components like pectin side chains, arabinogalactan proteins (AGPs) and extensins (EXTs), indicating the reorganisation of cell wall composition during the culture period. CONCLUSIONS This study revealed changes correlating with regaining embryogenic competence during the development of Fagopyrum protoplast-derived cell colonies. Our findings revealed variable expression levels of genes and proteins associated with somatic embryogenesis. This analysis identified an increase in seed storage proteins that play a significant role in the somatic somatic embryogenesis pathway of regeneration. Furthermore, the relationship between transcription factors and these processes seems to be connected with regaining somatic cells' totipotency and promoting embryogenic competence of protoplast-derived cell colonies. Additionally, we observed dynamic changes in cell wall composition during the development of the protoplast-derived cultures. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Magdalena Zaranek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, St. Jagiellonska 28, Katowice, 40-032, Poland
| | - Artur Pinski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, St. Jagiellonska 28, Katowice, 40-032, Poland.
| | - Bozena Skupien-Rabian
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, St. Gronostajowa 7A, Krakow, 30-387, Poland
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, St. Gronostajowa 7A, Krakow, 30-387, Poland
| | - Kamila Godel-Jedrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, St. Jagiellonska 28, Katowice, 40-032, Poland
| | - Katarzyna Sala-Cholewa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, St. Jagiellonska 28, Katowice, 40-032, Poland
| | - Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, St. Jagiellonska 28, Katowice, 40-032, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, St. Jagiellonska 28, Katowice, 40-032, Poland
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Ave. Mickiewicza 21, Krakow, 31-120, Poland
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, St. Jagiellonska 28, Katowice, 40-032, Poland.
| |
Collapse
|
2
|
Hesami M, Pepe M, Spitzer-Rimon B, Eskandari M, Jones AMP. Epigenetic factors related to recalcitrance in plant biotechnology. Genome 2025; 68:1-11. [PMID: 39471459 DOI: 10.1139/gen-2024-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
This review explores the challenges and potential solutions in plant micropropagation and biotechnology. While these techniques have proven successful for many species, certain plants or tissues are recalcitrant and do not respond as desired, limiting the application of these technologies due to unattainable or minimal in vitro regeneration rates. Indeed, traditional in vitro culture techniques may fail to induce organogenesis or somatic embryogenesis in some plants, leading to classification as in vitro recalcitrance. This paper focuses on recalcitrance to somatic embryogenesis due to its promise for regenerating juvenile propagules and applications in biotechnology. Specifically, this paper will focus on epigenetic factors that regulate recalcitrance as understanding them may help overcome these barriers. Transformation recalcitrance is also addressed, with strategies proposed to improve transformation frequency. The paper concludes with a review of CRISPR-mediated genome editing's potential in modifying somatic embryogenesis-related epigenetic status and strategies for addressing transformation recalcitrance.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ben Spitzer-Rimon
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Milad Eskandari
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
3
|
Bennur PL, O’Brien M, Fernando SC, Doblin MS. Improving transformation and regeneration efficiency in medicinal plants: insights from other recalcitrant species. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:52-75. [PMID: 38652155 PMCID: PMC11659184 DOI: 10.1093/jxb/erae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Medicinal plants are integral to traditional medicine systems worldwide, being pivotal for human health. Harvesting plant material from natural environments, however, has led to species scarcity, prompting action to develop cultivation solutions that also aid conservation efforts. Biotechnological tools, specifically plant tissue culture and genetic transformation, offer solutions for sustainable, large-scale production and enhanced yield of valuable biomolecules. While these techniques are instrumental to the development of the medicinal plant industry, the challenge of inherent regeneration recalcitrance in some species to in vitro cultivation hampers these efforts. This review examines the strategies for overcoming recalcitrance in medicinal plants using a holistic approach, emphasizing the meticulous choice of explants (e.g. embryonic/meristematic tissues), plant growth regulators (e.g. synthetic cytokinins), and use of novel regeneration-enabling methods to deliver morphogenic genes (e.g. GRF/GIF chimeras and nanoparticles), which have been shown to contribute to overcoming recalcitrance barriers in agriculture crops. Furthermore, it highlights the benefit of cost-effective genomic technologies that enable precise genome editing and the value of integrating data-driven models to address genotype-specific challenges in medicinal plant research. These advances mark a progressive step towards a future where medicinal plant cultivation is not only more efficient and predictable but also inherently sustainable, ensuring the continued availability and exploitation of these important plants for current and future generations.
Collapse
Affiliation(s)
- Praveen Lakshman Bennur
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| | - Martin O’Brien
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| | - Shyama C Fernando
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| | - Monika S Doblin
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
4
|
Dong X, Gao J, Jiang M, Tao Y, Chen X, Yang X, Wang L, Jiang D, Xiao Z, Bai X, He F. The Identification and Characterization of WOX Family Genes in Coffea arabica Reveals Their Potential Roles in Somatic Embryogenesis and the Cold-Stress Response. Int J Mol Sci 2024; 25:13031. [PMID: 39684742 DOI: 10.3390/ijms252313031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
WUSCHEL-related homeobox (WOX) genes play significant roles in plant development and stress responses. Difficulties in somatic embryogenesis are a significant constraint on the uniform seedling production and genetic modification of Coffea arabica, hindering efforts to improve coffee production in Yunnan, China. This study comprehensively analyzed WOX genes in three Coffea species. A total of 23 CaWOXs, 12 CcWOXs, and 10 CeWOXs were identified. Transcriptomic profile analysis indicated that about half of the CaWOX genes were actively expressed during somatic embryogenesis. The most represented CaWOXs were CaWOX2a, CaWOX2b, CaWOX8a, and CaWOX8b, which are suggested to promote the induction and development of the embryogenic callus, whereas CaWOX13a and CaWOX13b are suggested to negatively impact these processes. Co-expression analysis revealed that somatic embryogenesis-related CaWOXs were co-expressed with genes involved in embryo development, post-embryonic development, DNA repair, DNA metabolism, phenylpropanoid metabolism, secondary metabolite biosynthesis, and several epigenetic pathways. In addition, qRT-PCR showed that four WOX genes responded to cold stress. Overall, this study offers valuable insights into the functions of CaWOX genes during somatic embryogenesis and under cold stress. The results suggest that certain WOX genes play distinct regulatory roles during somatic embryogenesis, meriting further functional investigation. Moreover, the cold-responsive genes identified here are promising candidates for further molecular analysis to assess their potential to enhance cold tolerance.
Collapse
Affiliation(s)
- Xiangshu Dong
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Jing Gao
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Meng Jiang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yuan Tao
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Xingbo Chen
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Xiaoshuang Yang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Linglin Wang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Dandan Jiang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Ziwei Xiao
- Dehong Tropical Agriculture Research Institute, Dehong 678600, China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute, Dehong 678600, China
| | - Feifei He
- School of Agriculture, Yunnan University, Kunming 650500, China
| |
Collapse
|
5
|
Carra A, Wijerathna-Yapa A, Pathirana R, Carimi F. Development and Applications of Somatic Embryogenesis in Grapevine ( Vitis spp.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3131. [PMID: 39599340 PMCID: PMC11597845 DOI: 10.3390/plants13223131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Somatic embryogenesis (SE) provides alternative methodologies for the propagation of grapevine (Vitis spp.) cultivars, conservation of their germplasm resources, and crop improvement. In this review, the current state of knowledge regarding grapevine SE as applied to these technologies is presented, with a focus on the benefits, challenges, and limitations of this method. The paper provides a comprehensive overview of the different steps involved in the grapevine SE process, including callus induction, maintenance of embryogenic cultures, and the production of plantlets. Additionally, the review explores the development of high-health plant material through SE; the molecular and biochemical mechanisms underlying SE, including the regulation of gene expression, hormone signaling pathways, and metabolic pathways; as well as its use in crop improvement programs. The review concludes by highlighting the future directions for grapevine SE research, including the development of new and improved protocols, the integration of SE with other plant tissue culture techniques, and the application of SE for the production of elite grapevine cultivars, for the conservation of endangered grapevine species as well as for cultivars with unique traits that are valuable for breeding programs.
Collapse
Affiliation(s)
- Angela Carra
- Istituto di Bioscienze e BioRisorse (IBBR), Consiglio Nazionale delle Recerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (A.C.); (F.C.)
| | - Akila Wijerathna-Yapa
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Ranjith Pathirana
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus Research Precinct—S120, Main Waite Bldg., Waite Rd, Urrbrae, SA 5064, Australia
| | - Francesco Carimi
- Istituto di Bioscienze e BioRisorse (IBBR), Consiglio Nazionale delle Recerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (A.C.); (F.C.)
| |
Collapse
|
6
|
Wójcikowska B, Chwiałkowska K, Nowak K, Citerne S, Morończyk J, Wójcik AM, Kiwior-Wesołowska A, Francikowski J, Kwaśniewski M, Gaj MD. Transcriptomic profiling reveals histone acetylation-regulated genes involved in somatic embryogenesis in Arabidopsis thaliana. BMC Genomics 2024; 25:788. [PMID: 39148037 PMCID: PMC11325840 DOI: 10.1186/s12864-024-10623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Somatic embryogenesis (SE) exemplifies the unique developmental plasticity of plant cells. The regulatory processes, including epigenetic modifications controlling embryogenic reprogramming of cell transcriptome, have just started to be revealed. RESULTS To identify the genes of histone acetylation-regulated expression in SE, we analyzed global transcriptomes of Arabidopsis explants undergoing embryogenic induction in response to treatment with histone deacetylase inhibitor, trichostatin A (TSA). The TSA-induced and auxin (2,4-dichlorophenoxyacetic acid; 2,4-D)-induced transcriptomes were compared. RNA-seq results revealed the similarities of the TSA- and auxin-induced transcriptomic responses that involve extensive deregulation, mostly repression, of the majority of genes. Within the differentially expressed genes (DEGs), we identified the master regulators (transcription factors - TFs) of SE, genes involved in biosynthesis, signaling, and polar transport of auxin and NITRILASE-encoding genes of the function in indole-3-acetic acid (IAA) biosynthesis. TSA-upregulated TF genes of essential functions in auxin-induced SE, included LEC1/LEC2, FUS3, AGL15, MYB118, PHB, PHV, PLTs, and WUS/WOXs. The TSA-induced transcriptome revealed also extensive upregulation of stress-related genes, including those related to stress hormone biosynthesis. In line with transcriptomic data, TSA-induced explants accumulated salicylic acid (SA) and abscisic acid (ABA), suggesting the role of histone acetylation (Hac) in regulating stress hormone-related responses during SE induction. Since mostly the adaxial side of cotyledon explant contributes to SE induction, we also identified organ polarity-related genes responding to TSA treatment, including AIL7/PLT7, RGE1, LBD18, 40, HB32, CBF1, and ULT2. Analysis of the relevant mutants supported the role of polarity-related genes in SE induction. CONCLUSION The study results provide a step forward in deciphering the epigenetic network controlling embryogenic transition in somatic cells of plants.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland.
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Nowak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Sylvie Citerne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Joanna Morończyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Anna Maria Wójcik
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Agnieszka Kiwior-Wesołowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Jacek Francikowski
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Mirosław Kwaśniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Małgorzata Danuta Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
7
|
Ramakrishnan M, Zhou M, Ceasar SA, Ali DJ, Maharajan T, Vinod KK, Sharma A, Ahmad Z, Wei Q. Epigenetic modifications and miRNAs determine the transition of somatic cells into somatic embryos. PLANT CELL REPORTS 2023; 42:1845-1873. [PMID: 37792027 DOI: 10.1007/s00299-023-03071-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
KEY MESSAGE This review discusses the epigenetic changes during somatic embryo (SE) development, highlights the genes and miRNAs involved in the transition of somatic cells into SEs as a result of epigenetic changes, and draws insights on biotechnological opportunities to study SE development. Somatic embryogenesis from somatic cells occurs in a series of steps. The transition of somatic cells into somatic embryos (SEs) is the most critical step under genetic and epigenetic regulations. Major regulatory genes such as SERK, WUS, BBM, FUS3/FUSA3, AGL15, and PKL, control SE steps and development by turning on and off other regulatory genes. Gene transcription profiles of somatic cells during SE development is the result of epigenetic changes, such as DNA and histone protein modifications, that control and decide the fate of SE formation. Depending on the type of somatic cells and the treatment with plant growth regulators, epigenetic changes take place dynamically. Either hypermethylation or hypomethylation of SE-related genes promotes the transition of somatic cells. For example, the reduced levels of DNA methylation of SERK and WUS promotes SE initiation. Histone modifications also promote SE induction by regulating SE-related genes in somatic cells. In addition, miRNAs contribute to the various stages of SE by regulating the expression of auxin signaling pathway genes (TIR1, AFB2, ARF6, and ARF8), transcription factors (CUC1 and CUC2), and growth-regulating factors (GRFs) involved in SE formation. These epigenetic and miRNA functions are unique and have the potential to regenerate bipolar structures from somatic cells when a pluripotent state is induced. However, an integrated overview of the key regulators involved in SE development and downstream processes is lacking. Therefore, this review discusses epigenetic modifications involved in SE development, SE-related genes and miRNAs associated with epigenetics, and common cis-regulatory elements in the promoters of SE-related genes. Finally, we highlight future biotechnological opportunities to alter epigenetic pathways using the genome editing tool and to study the transition mechanism of somatic cells.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamassery, Kochi, 683104, Kerala, India
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamassery, Kochi, 683104, Kerala, India
| | | | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
8
|
Hesami M, Pepe M, de Ronne M, Yoosefzadeh-Najafabadi M, Adamek K, Torkamaneh D, Jones AMP. Transcriptomic Profiling of Embryogenic and Non-Embryogenic Callus Provides New Insight into the Nature of Recalcitrance in Cannabis. Int J Mol Sci 2023; 24:14625. [PMID: 37834075 PMCID: PMC10572465 DOI: 10.3390/ijms241914625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Differential gene expression profiles of various cannabis calli including non-embryogenic and embryogenic (i.e., rooty and embryonic callus) were examined in this study to enhance our understanding of callus development in cannabis and facilitate the development of improved strategies for plant regeneration and biotechnological applications in this economically valuable crop. A total of 6118 genes displayed significant differential expression, with 1850 genes downregulated and 1873 genes upregulated in embryogenic callus compared to non-embryogenic callus. Notably, 196 phytohormone-related genes exhibited distinctly different expression patterns in the calli types, highlighting the crucial role of plant growth regulator (PGRs) signaling in callus development. Furthermore, 42 classes of transcription factors demonstrated differential expressions among the callus types, suggesting their involvement in the regulation of callus development. The evaluation of epigenetic-related genes revealed the differential expression of 247 genes in all callus types. Notably, histone deacetylases, chromatin remodeling factors, and EMBRYONIC FLOWER 2 emerged as key epigenetic-related genes, displaying upregulation in embryogenic calli compared to non-embryogenic calli. Their upregulation correlated with the repression of embryogenesis-related genes, including LEC2, AGL15, and BBM, presumably inhibiting the transition from embryogenic callus to somatic embryogenesis. These findings underscore the significance of epigenetic regulation in determining the developmental fate of cannabis callus. Generally, our results provide comprehensive insights into gene expression dynamics and molecular mechanisms underlying the development of diverse cannabis calli. The observed repression of auxin-dependent pathway-related genes may contribute to the recalcitrant nature of cannabis, shedding light on the challenges associated with efficient cannabis tissue culture and regeneration protocols.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
| | | | - Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec, QC G1V 0A6, Canada
| | | |
Collapse
|
9
|
Li HZ, Wu H, Song KK, Zhao HH, Tang XY, Zhang XH, Wang D, Dong SL, Liu F, Wang J, Li ZC, Yang L, Xiang QZ. Transcriptome analysis revealed enrichment pathways and regulation of gene expression associated with somatic embryogenesis in Camellia sinensis. Sci Rep 2023; 13:15946. [PMID: 37743377 PMCID: PMC10518320 DOI: 10.1038/s41598-023-43355-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023] Open
Abstract
The high frequency, stable somatic embryo system of tea has still not been established due to the limitations of its own characteristics and therefore severely restricts the genetic research and breeding process of tea plants. In this study, the transcriptome was used to illustrate the mechanisms of gene expression regulation in the somatic embryogenesis of tea plants. The number of DEGs for the (IS intermediate stage)_PS (preliminary stage), ES (embryoid stage)_IS and ES_PS stages were 109, 2848 and 1697, respectively. The enrichment analysis showed that carbohydrate metabolic processes were considerably enriched at the ES_IS stage and performed a key role in somatic embryogenesis, while enhanced light capture in photosystem I could provide the material basis for carbohydrates. The pathway analysis showed that the enriched pathways in IS_PS process were far less than those in ES_IS or ES_PS, and the photosynthesis and photosynthetic antenna protein pathway of DEGs in ES_IS or ES_PS stage were notably enriched and up-regulated. The key photosynthesis and photosynthesis antenna protein pathways and the Lhcb1 gene were discovered in tea plants somatic embryogenesis. These results were of great significance to clarify the mechanism of somatic embryogenesis and the breeding research of tea plants.
Collapse
Affiliation(s)
- Hao-Zhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui Wu
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, 5030, Gembloux 2, Belgium
| | - Kang-Kang Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui-Hui Zhao
- Ri Zhao Cha Cang Tea Co. Ltd, Ri'zhao, 276800, China
| | - Xiao-Yan Tang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, He'fei, 230036, China
| | - Xiao-Hua Zhang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Di Wang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Shao-Lin Dong
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China
| | - Feng Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jun Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhong-Cong Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai'an, 271018, China.
| | - Qin-Zeng Xiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
10
|
Kurczynska E, Godel-Jędrychowska K. Apoplastic and Symplasmic Markers of Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1951. [PMID: 37653868 PMCID: PMC10224393 DOI: 10.3390/plants12101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Somatic embryogenesis (SE) is a process that scientists have been trying to understand for many years because, on the one hand, it is a manifestation of the totipotency of plant cells, so it enables the study of the mechanisms regulating this process, and, on the other hand, it is an important method of plant propagation. Using SE in basic research and in practice is invaluable. This article describes the latest, but also historical, information on changes in the chemical composition of the cell wall during the transition of cells from the somatic to embryogenic state, and the importance of symplasmic communication during SE. Among wall chemical components, different pectic, AGP, extensin epitopes, and lipid transfer proteins have been discussed as potential apoplastic markers of explant cells during the acquisition of embryogenic competence. The role of symplasmic communication/isolation during SE has also been discussed, paying particular attention to the formation of symplasmic domains within and between cells that carry out different developmental processes. Information about the number and functionality of plasmodesmata (PD) and callose deposition as the main player in symplasmic isolation has also been presented.
Collapse
Affiliation(s)
- Ewa Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| | - Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
11
|
Fambrini M, Usai G, Pugliesi C. Induction of Somatic Embryogenesis in Plants: Different Players and Focus on WUSCHEL and WUS-RELATED HOMEOBOX (WOX) Transcription Factors. Int J Mol Sci 2022; 23:15950. [PMID: 36555594 PMCID: PMC9781121 DOI: 10.3390/ijms232415950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, other cells can express totipotency in addition to the zygote, thus resulting in embryo differentiation; this appears evident in apomictic and epiphyllous plants. According to Haberlandt's theory, all plant cells can regenerate a complete plant if the nucleus and the membrane system are intact. In fact, under in vitro conditions, ectopic embryos and adventitious shoots can develop from many organs of the mature plant body. We are beginning to understand how determination processes are regulated and how cell specialization occurs. However, we still need to unravel the mechanisms whereby a cell interprets its position, decides its fate, and communicates it to others. The induction of somatic embryogenesis might be based on a plant growth regulator signal (auxin) to determine an appropriate cellular environment and other factors, including stress and ectopic expression of embryo or meristem identity transcription factors (TFs). Still, we are far from having a complete view of the regulatory genes, their target genes, and their action hierarchy. As in animals, epigenetic reprogramming also plays an essential role in re-establishing the competence of differentiated cells to undergo somatic embryogenesis. Herein, we describe the functions of WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors in regulating the differentiation-dedifferentiation cell process and in the developmental phase of in vitro regenerated adventitious structures.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|