1
|
Wang X, Cai W, Liang T, Li H, Gu Y, Wei X, Zhang H, Yang X. The matrix stiffness is increased in the eutopic endometrium of adenomyosis patients: a study based on atomic force microscopy and histochemistry. Eur J Histochem 2024; 68:4131. [PMID: 39629520 PMCID: PMC11694501 DOI: 10.4081/ejh.2024.4131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
Previous ultrasound studies suggest that patients with adenomyosis (AM) exhibit increased uterine cavity stiffness, although direct evidence regarding extracellular matrix (ECM) content and its specific impact on endometrial stiffness remains limited. This study utilized atomic force microscopy to directly measure endometrial stiffness and collagen morphology, enabling a detailed analysis of the endometrium's mechanical properties: through this approach, we established direct evidence of increased endometrial stiffness and fibrosis in patients with AM. Endometrial specimens were also stained with Picrosirius red or Masson's trichrome to quantify fibrosis, and additional analyses assessed α-SMA and Ki-67 expression. Studies indicate that pathological conditions significantly influence the mechanical properties of endometrial tissue. Specifically, adenomyotic endometrial tissue demonstrates increased stiffness, associated with elevated ECM and fibrosis content, whereas normal endometrial samples are softer with lower ECM content. AM appears to alter both the mechanical and histological characteristics of the eutopic endometrium. Higher ECM content may significantly impact endometrial mechanical properties, potentially contributing to AM-associated decidualization defects and fertility challenges.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province
| | - Wenbin Cai
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Ting Liang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Hui Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province
| | - Yingjie Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province
| | - Xiaojiao Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province
| |
Collapse
|
2
|
Dai W, Liang J, Guo R, Zhao Z, Na Z, Xu D, Li D. Bioengineering approaches for the endometrial research and application. Mater Today Bio 2024; 26:101045. [PMID: 38600921 PMCID: PMC11004221 DOI: 10.1016/j.mtbio.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
The endometrium undergoes a series of precise monthly changes under the regulation of dynamic levels of ovarian hormones that are characterized by repeated shedding and subsequent regeneration without scarring. This provides the potential for wound healing during endometrial injuries. Bioengineering materials highlight the faithful replication of constitutive cells and the extracellular matrix that simulates the physical and biomechanical properties of the endometrium to a larger extent. Significant progress has been made in this field, and functional endometrial tissue bioengineering allows an in-depth investigation of regulatory factors for endometrial and myometrial defects in vitro and provides highly therapeutic methods to alleviate obstetric and gynecological complications. However, much remains to be learned about the latest progress in the application of bioengineering technologies to the human endometrium. Here, we summarize the existing developments in biomaterials and bioengineering models for endometrial regeneration and improving the female reproductive potential.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Zhongyu Zhao
- Innovation Institute, China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
3
|
Shi H, Xu K, Huang M, Mao M, Ou J. Regulatory mechanism of GPER in the invasion and migration of ectopic endometrial stromal cells in endometriosis. Women Health 2024; 64:109-120. [PMID: 38148599 DOI: 10.1080/03630242.2023.2296522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
Endometriosis (EMS) is a chronic inflammatory disorder of high incidence that causes serious reproductive consequences. High estrogen production is a consistently observed endocrine feature of EMS. The present study aims to probe the molecular mechanism of G protein-coupled estrogen receptor 1 (GPER) in the invasion and migration of ectopic endometrial stromal cells (Ect-ESCs) and provides a new rationale for EMS treatment. Eutopic and ectopic endometrial tissues were collected from 41 EMS patients, and primary ESCs were separated. GPER, miR-16-5p, and miR-103a-3p levels in cells and tissues were determined by qRT-PCR or Western blot assay. Cell viability, proliferation, invasion, and migration were evaluated by CCK-8, colony formation, and Transwell assays. The upstream miRNAs of GPER were predicted by databases, and dual-luciferase assay was performed to validate the binding of miR-16-5p and miR-103a-3p to GPER 3'UTR. GPER was highly expressed in EMS tissues and Ect-ESCs. Inhibition of GPER mitigated the proliferation, invasion, and migration of Ect-ESCs. GPER was regulated by miR-16-5p and miR-103a-3p. Overexpression of miR-16-5p and miR-103a-3p negatively regulated GPER expression and inhibited the invasion and migration of Ect-ESC. In conclusion, GPER promoted the invasion and migration of Ect-ESCs, which can be reversed by upstream miR-16-5p and miR-103a-3p.
Collapse
Affiliation(s)
- Hongyan Shi
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo City, China
| | - Kejun Xu
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo City, China
| | - Mengna Huang
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo City, China
| | - Meiya Mao
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo City, China
| | - Jilan Ou
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo City, China
| |
Collapse
|
4
|
Yan J, Wu T, Zhang J, Gao Y, Wu JM, Wang S. Revolutionizing the female reproductive system research using microfluidic chip platform. J Nanobiotechnology 2023; 21:490. [PMID: 38111049 PMCID: PMC10729361 DOI: 10.1186/s12951-023-02258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Comprehensively understanding the female reproductive system is crucial for safeguarding fertility and preventing diseases concerning women's health. With the capacity to simulate the intricate physio- and patho-conditions, and provide diagnostic platforms, microfluidic chips have fundamentally transformed the knowledge and management of female reproductive health, which will ultimately promote the development of more effective assisted reproductive technologies, treatments, and drug screening approaches. This review elucidates diverse microfluidic systems in mimicking the ovary, fallopian tube, uterus, placenta and cervix, and we delve into the culture of follicles and oocytes, gametes' manipulation, cryopreservation, and permeability especially. We investigate the role of microfluidics in endometriosis and hysteromyoma, and explore their applications in ovarian cancer, endometrial cancer and cervical cancer. At last, the current status of assisted reproductive technology and integrated microfluidic devices are introduced briefly. Through delineating the multifarious advantages and challenges of the microfluidic technology, we chart a definitive course for future research in the woman health field. As the microfluidic technology continues to evolve and advance, it holds great promise for revolutionizing the diagnosis and treatment of female reproductive health issues, thus propelling us into a future where we can ultimately optimize the overall wellbeing and health of women everywhere.
Collapse
Affiliation(s)
- Jinfeng Yan
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Tong Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Yueyue Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jia-Min Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
5
|
Silencing of circ_0007299 suppresses proliferation, migration, and invasiveness and promotes apoptosis of ectopic endometrial stromal cells in endometriosis via miR-424-5p-dependent modulation of CREB1. Arch Gynecol Obstet 2023; 307:149-161. [PMID: 35708784 DOI: 10.1007/s00404-022-06650-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/26/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The abnormality of endometrial stromal cells (ESCs) can contribute to endometriosis pathogenesis. Circular RNAs (circRNAs) possess critical roles in endometriosis pathogenesis. Here, we defined the activity and mechanism of human circ_0007299 in the regulation of ectopic ESCs in vitro. METHODS Circ_0007299, miR-424-5p and cAMP response element-binding protein 1 (CREB1) were quantified by qRT-PCR or immunoblotting. Cell viability, proliferation, apoptosis, invasion and motility were gauged by CCK-8, 5-Ethynyl-2'-Deoxyuridine (EdU), flow cytometry, transwell, and wound-healing assays, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to verify the direct relationship between miR-424-5p and circ_0007299 or CREB1. RESULTS Our data showed that circ_0007299 was upregulated in human ectopic endometrium tissues and ectopic ESCs. Silencing endogenous circ_0007299 impeded the proliferation, invasiveness, and motility and enhanced apoptosis of ectopic ESCs. Mechanistically, circ_0007299 regulated miR-424-5p expression. Moreover, circ_0007299 silencing impeded the proliferation, invasiveness, and motility and enhanced apoptosis of ectopic ESCs via its regulation on miR-424-5p. CREB1 was identified as a direct miR-424-5p target, and miR-424-5p overexpression suppressed ectopic ESC proliferation, migration, and invasiveness and promoted apoptosis by downregulating CREB1. Furthermore, circ_0007299 positively modulated CREB1 expression through miR-424-5p competition. CONCLUSION Our findings establish that circ_0007299 silencing impedes the proliferation, invasiveness, and motility and promotes apoptosis of ectopic ESCs at least in part via miR-424-5p-dependent modulation of CREB1.
Collapse
|
6
|
Abstract
Each month during a woman's reproductive years, the endometrium undergoes vast changes to prepare for a potential pregnancy. Diseases of the endometrium arise for numerous reasons, many of which remain unknown. These endometrial diseases, including endometriosis, adenomyosis, endometrial cancer and Asherman syndrome, affect many women, with an overall lack of efficient or permanent treatment solutions. The challenge lies in understanding the complexity of the endometrium and the extensive changes, orchestrated by ovarian hormones, that occur in multiple cell types over the period of the menstrual cycle. Appropriate model systems that closely mimic the architecture and function of the endometrium and its diseases are needed. The emergence of organoid technology using human cells is enabling a revolution in modelling the endometrium in vitro. The goal of this Review is to provide a focused reference for new models to study the diseases of the endometrium. We provide perspectives on the power of new and emerging models, from organoids to microfluidics, which have opened up a new frontier for studying endometrial diseases.
Collapse
Affiliation(s)
- Alina R Murphy
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
| | - Hannes Campo
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
| | - J Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Chen Y, Guo K, Jiang L, Zhu S, Ni Z, Xiang N. Microfluidic deformability cytometry: A review. Talanta 2022; 251:123815. [DOI: 10.1016/j.talanta.2022.123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
|
8
|
|
9
|
Sternberg AK, Buck VU, Classen-Linke I, Leube RE. How Mechanical Forces Change the Human Endometrium during the Menstrual Cycle in Preparation for Embryo Implantation. Cells 2021; 10:2008. [PMID: 34440776 PMCID: PMC8391722 DOI: 10.3390/cells10082008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
The human endometrium is characterized by exceptional plasticity, as evidenced by rapid growth and differentiation during the menstrual cycle and fast tissue remodeling during early pregnancy. Past work has rarely addressed the role of cellular mechanics in these processes. It is becoming increasingly clear that sensing and responding to mechanical forces are as significant for cell behavior as biochemical signaling. Here, we provide an overview of experimental evidence and concepts that illustrate how mechanical forces influence endometrial cell behavior during the hormone-driven menstrual cycle and prepare the endometrium for embryo implantation. Given the fundamental species differences during implantation, we restrict the review to the human situation. Novel technologies and devices such as 3D multifrequency magnetic resonance elastography, atomic force microscopy, organ-on-a-chip microfluidic systems, stem-cell-derived organoid formation, and complex 3D co-culture systems have propelled the understanding how endometrial receptivity and blastocyst implantation are regulated in the human uterus. Accumulating evidence has shown that junctional adhesion, cytoskeletal rearrangement, and extracellular matrix stiffness affect the local force balance that regulates endometrial differentiation and blastocyst invasion. A focus of this review is on the hormonal regulation of endometrial epithelial cell mechanics. We discuss potential implications for embryo implantation.
Collapse
Affiliation(s)
| | | | | | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; (A.K.S.); (V.U.B.); (I.C.-L.)
| |
Collapse
|
10
|
Esmaeel A, Ahmed KIE, FathEl-Bab AMR. Determination of damping coefficient of soft tissues using piezoelectric transducer. Biomed Microdevices 2021; 23:23. [PMID: 33847817 DOI: 10.1007/s10544-021-00558-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 11/25/2022]
Abstract
Measuring viscoelastic properties of soft tissues becomes a new biomarker in the medical diagnosis field. It can help in early diagnosis and related fields, such as minimally-invasive-surgery (MIS) applications and cell mechanics. The current work presents a tactile sensor for measuring the damping coefficient of the soft tissues. The proposed sensor can be miniaturized easily and used in MIS applications. Besides the proposed sensor, a mathematical model, based on Jacobsen's approach, is built to calculate the damping coefficient of the specimens and the surrounding. These damping sources significantly influence the proposed sensor, such as air damping and hysteretic damping. The sensor system principally depends on a piezoelectric transducer, which is cheap, commonly available, and easily integrated into MEMS. To conceptually prove the sensor feasibility, silicon rubber samples with different stiffnesses have been fabricated and tested by the new sensor. The obtained results prove the newly proposed sensor's capability to differentiate the damping coefficients for soft materials effectively.
Collapse
Affiliation(s)
- Abdelhady Esmaeel
- Mechatronics and Robotics Engineering Department, EJUST University, Assiut, Egypt.
| | - Khaled I E Ahmed
- Mechanical Engineering Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed M R FathEl-Bab
- Mechatronics and Robotics Engineering Department, EJUST University, Assiut, Egypt
| |
Collapse
|
11
|
El-Mokhtar MA, Othman ER, Khashbah MY, Ismael A, Ghaliony MAA, Seddik MI, Sayed IM. Evidence of the Extrahepatic Replication of Hepatitis E Virus in Human Endometrial Stromal Cells. Pathogens 2020; 9:pathogens9040295. [PMID: 32316431 PMCID: PMC7238207 DOI: 10.3390/pathogens9040295] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide. The tropism of HEV is not restricted to the liver, and the virus replicates in other organs. Not all the extrahepatic targets for HEV are identified. Herein, we found that non-decidualized primary human endometrial stromal cells (PHESCs), which are precursors for the decidua and placenta, are susceptible to HEV infection. PHESCs, isolated from healthy non-pregnant women (n = 5), were challenged with stool-derived HEV-1 and HEV-3. HEV RNA was measured by qPCR, and HEV capsid protein was assessed by flow cytometry, immunofluorescence (IF), and ELISA. HEV infection was successfully established in PHESCs. Intracellular and extracellular HEV RNA loads were increased over time, indicating efficient replication in vitro. In addition, HEV capsid protein was detected intracellularly in the HEV-infected PHESCs and accumulated extracellularly over time, confirming the viral assembly and release from the infected cells. HEV-1 replicated more efficiently in PHESCs than HEV-3 and induced more inflammatory responses. Ribavirin (RBV) treatment abolished the replication of HEV in PHESCs. In conclusion, PHESCs are permissive to HEV infection and these cells could be an endogenous source of HEV infection during pregnancy and mediate HEV vertical transmission.
Collapse
Affiliation(s)
- Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, 71515 Assiut, Egypt;
- Reproductive Science Research Center, Assiut University, 71515 Assiut, Egypt; (E.R.O.); (M.Y.K.)
| | - Essam R. Othman
- Reproductive Science Research Center, Assiut University, 71515 Assiut, Egypt; (E.R.O.); (M.Y.K.)
- Department of Obstetrics and Gynecology, Assiut University, 71515 Assiut, Egypt
- Department of Reproductive Medicine, Academic Endometriosis Center, Amsterdam University Medical Center, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Maha Y. Khashbah
- Reproductive Science Research Center, Assiut University, 71515 Assiut, Egypt; (E.R.O.); (M.Y.K.)
- Department of Obstetrics and Gynecology, Assiut University, 71515 Assiut, Egypt
| | - Ali Ismael
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt;
| | - Mohamed AA Ghaliony
- Department of Tropical Medicine and Gastroenterology Department, Assiut University, 71515 Assiut, Egypt;
| | - Mohamed Ismail Seddik
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, 71515 Assiut, Egypt;
| | - Ibrahim M. Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, 71515 Assiut, Egypt;
- Reproductive Science Research Center, Assiut University, 71515 Assiut, Egypt; (E.R.O.); (M.Y.K.)
- Department of Pathology, School of Medicine, University of California, San Diego, CA 92093, USA
- Correspondence: or
| |
Collapse
|