1
|
Zhang C, Qin M. Extracellular vesicles targeting tumor microenvironment in ovarian cancer. Int J Biol Macromol 2023; 252:126300. [PMID: 37573911 DOI: 10.1016/j.ijbiomac.2023.126300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Ovarian cancer (OC) is a prevalent neoplastic condition affecting women. Extracellular vesicles (EVs), nano-sized membrane vesicles, are secreted by various cells in both physiological and pathological states. The profound interplay between EVs and the tumor microenvironment (TME) in ovarian cancer is crucial. In this review, we explores the pivotal role of EVs in facilitating intercellular communication between cancer cells and the TME, emphasizing the potential of EVs as promising diagnostic markers and innovative therapeutic targets for ovarian cancer. The comprehensive analysis outlines the specific mechanisms by which EVs engage in communication with the constituents of the TME, including the modulation of tumor growth through EVs carrying matrix metalloproteinases (MMPs) and EV-mediated inhibition of angiogenesis, among other factors. Additionally, the we discuss the potential clinical applications of EVs that target the TME in ovarian cancer, encompassing the establishment of novel treatment strategies and the identification of novel biomarkers for early detection and prognosis. Finally, this review identifies novel strategies for therapeutic interventions, such as utilizing EVs as carriers for drug delivery and targeting specific EV-mediated signaling pathways. In summary, this manuscript offers valuable insights into the role of EVs in ovarian cancer and highlights the significance of comprehending intercellular communication in the realm of cancer biology.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Meiying Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
2
|
Sahib AS, Fawzi A, Zabibah RS, Koka NA, Khudair SA, Muhammad FA, Hamad DA. miRNA/epithelial-mesenchymal axis (EMT) axis as a key player in cancer progression and metastasis: A focus on gastric and bladder cancers. Cell Signal 2023; 112:110881. [PMID: 37666286 DOI: 10.1016/j.cellsig.2023.110881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The metastasis a major hallmark of tumors that its significant is not only related to the basic research, but clinical investigations have revealed that majority of cancer deaths are due to the metastasis. The metastasis of tumor cells is significantly increased due to EMT mechanism and therefore, inhibition of EMT can reduce biological behaviors of tumor cells and improve the survival rate of patients. One of the gaps related to cancer metastasis is lack of specific focus on the EMT regulation in certain types of tumor cells. The gastric and bladder cancers are considered as two main reasons of death among patients in clinical level. Herein, the role of EMT in regulation of their progression is evaluated with a focus on the function of miRNAs. The inhibition/induction of EMT in these cancers and their ability in modulation of EMT-related factors including ZEB1/2 proteins, TGF-β, Snail and cadherin proteins are discussed. Moreover, lncRNAs and circRNAs in crosstalk of miRNA/EMT regulation in these tumors are discussed and final impact on cancer metastasis and response of tumor cells to the chemotherapy is evaluated. Moreover, the impact of miRNAs transferred by exosomes in regulation of EMT in these cancers are discussed.
Collapse
Affiliation(s)
- Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Amjid Fawzi
- Medical Technical College, Al-Farahidi University, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Nisar Ahmad Koka
- Department of English, Faculty of Languages and Translation, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | | | - Doaa A Hamad
- Nursing Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
3
|
Geng Y, Sun YJ, Song H, Miao QJ, Wang YF, Qi JL, Xu XL, Sun JF. Construction and Identification of an NLR-Associated Prognostic Signature Revealing the Heterogeneous Immune Response in Skin Cutaneous Melanoma. Clin Cosmet Investig Dermatol 2023; 16:1623-1639. [PMID: 37396711 PMCID: PMC10312339 DOI: 10.2147/ccid.s410723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Background Skin cutaneous melanoma (SKCM) is the deadliest dermatology tumor. Ongoing researches have confirmed that the NOD-like receptors (NLRs) family are crucial in driving carcinogenesis. However, the function of NLRs signaling pathway-related genes in SKCM remains unclear. Objective To establish and identify an NLRs-related prognostic signature and to explore its predictive power for heterogeneous immune response in SKCM patients. Methods Establishment of the predictive signature using the NLRs-related genes by least absolute shrinkage and selection operator-Cox regression analysis (LASSO-COX algorithm). Through univariate and multivariate COX analyses, NLRs signature's independent predictive effectiveness was proven. CIBERSORT examined the comparative infiltration ratios of 22 distinct types of immune cells. RT-qPCR and immunohistochemistry implemented expression validation for critical NLRs-related prognostic genes in clinical samples. Results The prognostic signature, including 7 genes, was obtained by the LASSO-Cox algorithm. In TCGA and validation cohorts, SKCM patients with higher risk scores had remarkably poorer overall survival. The independent predictive role of this signature was confirmed by multivariate Cox analysis. Additionally, a graphic nomogram demonstrated that the risk score of the NLRs signature has high predictive accuracy. SKCM patients in the low-risk group revealed a distinct immune microenvironment characterized by the significantly activated inflammatory response, interferon-α/γ response, and complement pathways. Indeed, several anti-tumor immune cell types were significantly accumulated in the low-risk group, including M1 macrophage, CD8 T cell, and activated NK cell. It is worth noting that our NLRs prognostic signature could serve as one of the promising biomarkers for predicting response rates to immune checkpoint blockade (ICB) therapy. Furthermore, the results of expression validation (RT-qPCR and IHC) were consistent with the previous analysis. Conclusion A promising NLRs signature with excellent predictive efficacy for SKCM was developed.
Collapse
Affiliation(s)
- Yi Geng
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| | - Yu-Jie Sun
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| | - Hao Song
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| | - Qiu-Ju Miao
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| | - Yi-Fei Wang
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People’s Republic of China
| | - Xiu-Lian Xu
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| | - Jian-Fang Sun
- Institute of Dermatology, Peking Union Medical College and Chinese Academy of Medical Sciences, Nanjing, 210042, People’s Republic of China
| |
Collapse
|
4
|
Nie S, Ni N, Chen N, Gong M, Feng E, Liu J, Liu Q. Development of a necroptosis-related gene signature and the immune landscape in ovarian cancer. J Ovarian Res 2023; 16:82. [PMID: 37095524 PMCID: PMC10127035 DOI: 10.1186/s13048-023-01155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Necroptosis is a novel type of programmed cell death distinct from apoptosis. However, the role of necroptosis in ovarian cancer (OC) remains unclear. The present study investigated the prognostic value of necroptosis-related genes (NRGs) and the immune landscape in OC. METHODS The gene expression profiling and clinical information were downloaded from the TCGA and GTEx databases. Differentially expressed NRGs (DE-NRGs) between OC and normal tissueswere identified. The regression analyses were conducted to screen the prognostic NRGs and construct the predictive risk model. Patients were then divided into high- and low-risk groups, and the GO and KEGG analyses were performed to explore bioinformatics functions between the two groups. Subsequently, the risk level and immune status correlations were assessed through the ESTIMATE and CIBERSORT algorithms. The tumor mutation burden (TMB) and the drug sensitivity were also analyzed based on the two-NRG signature in OC. RESULTS Totally 42 DE-NRGs were identified in OC. The regression analyses screened out two NRGs (MAPK10 and STAT4) with prognostic values for overall survival. The ROC curve showed a better predictive ability in five-year OS using the risk score. Immune-related functions were significantly enriched in the high- and low-risk group. Macrophages M1, T cells CD4 memory activated, T cells CD8, and T cells regulatory infiltration immune cells were associated with the low-risk score. The lower tumor microenvironment score was demonstrated in the high-risk group. Patients with lower TMB in the low-risk group showed a better prognosis, and a lower TIDE score suggested a better immune checkpoint inhibitor response in the high-risk group. Besides, cisplatin and paclitaxel were found to be more sensitive in the low-risk group. CONCLUSIONS MAPK10 and STAT4 can be important prognosis factors in OC, and the two-gene signature performs well in predicting survival outcomes. Our study provided novel ways of OC prognosis estimation and potential treatment strategy.
Collapse
Affiliation(s)
- Sipei Nie
- Department of Gynecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Na Ni
- Department of Gynecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Ningxin Chen
- Department of Gynecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Min Gong
- Department of Gynecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Ercui Feng
- Department of Preventive Health Care, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Jinhui Liu
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| | - Qiaoling Liu
- Department of Gynecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| |
Collapse
|
5
|
Bayat P, Mahdavi N, Younespour S, Kardouni Khoozestani N. Interactive role of miR-29, miR-93, miR-205, and VEGF in salivary adenoid cystic carcinoma. Clin Exp Dent Res 2023; 9:112-121. [PMID: 36281584 PMCID: PMC9932236 DOI: 10.1002/cre2.678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Salivary adenoid cystic carcinoma (SACC) is one of the most common salivary gland tumors in which patients encounter local recurrence and lung metastases. Understanding prognostic biomarkers in SACC is essential for future development in prognosis and treatment. This study aimed to assess the expression level of vascular endothelial growth factor (VEGF) and its potential regulatory microRNAs in SACC for prognostic determination. MATERIAL AND METHODS: The expression of VEGF in SACC samples was assessed using immunohistochemistry. Potential regulatory microRNAs were evaluated using quantitative reverse transcription-polymerase chain reaction. Associations between VEGF and microRNAs expression and clinicopathological parameters were investigated. RESULTS VEGF expression levels positively correlated with histologic grade (p = .004) and treatment modality (p = .04). Decreased expression of miR-29a (p = .01) and increased expression of miR-93-5p and miR-205 (both p < .0001) were observed in SACC compared to normal salivary gland tissue. MiR-93-5p showed a positive association (p = .02) with VEGF overexpression. CONCLUSIONS Our results showed the downregulation of miR-29 and overexpression of miR-93 and miR-205 in the SACC group, and the correlation between miR-93 and VEGF suggests these biomarkers as potential prognostic markers in the future.
Collapse
Affiliation(s)
- Parisa Bayat
- School of Dentistry, Dentistry Research InstituteTehran University of Medical SciencesTehranIran
| | - Nazanin Mahdavi
- Department of Oral and Maxillofacial Pathology, School of DentistryTehran University of Medical SciencesTehranIran
| | - Shima Younespour
- School of Dentistry, Dentistry Research InstituteTehran University of Medical SciencesTehranIran
| | - Neda Kardouni Khoozestani
- Department of Oral and Maxillofacial Pathology, School of DentistryTehran University of Medical SciencesTehranIran
- Cancer Institute, Imam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Zhang L, Ye B, Chen Z, Chen ZS. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers. Acta Pharm Sin B 2022; 13:982-997. [PMID: 36970215 PMCID: PMC10031261 DOI: 10.1016/j.apsb.2022.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2022] Open
Abstract
Chemotherapy is one of the important methods to treat cancer, and the emergence of multidrug resistance (MDR) is one major cause for the failure of cancer chemotherapy. Almost all anti-tumor drugs develop drug resistance over a period of time of application in cancer patients, reducing their effects on killing cancer cells. Chemoresistance can lead to a rapid recurrence of cancers and ultimately patient death. MDR may be induced by multiple mechanisms, which are associated with a complex process of multiple genes, factors, pathways, and multiple steps, and today the MDR-associated mechanisms are largely unknown. In this paper, from the aspects of protein-protein interactions, alternative splicing (AS) in pre-mRNA, non-coding RNA (ncRNA) mediation, genome mutations, variance in cell functions, and influence from the tumor microenvironment, we summarize the molecular mechanisms associated with MDR in cancers. In the end, prospects for the exploration of antitumor drugs that can reverse MDR are briefly discussed from the angle of drug systems with improved targeting properties, biocompatibility, availability, and other advantages.
Collapse
|
7
|
MiR-4284 inhibits sensitivity to paclitaxel in human ovarian carcinoma SKOV3ip1 and HeyA8 cells by targeting DMC1. Anticancer Drugs 2022; 33:701-709. [PMID: 35946537 DOI: 10.1097/cad.0000000000001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An increasing number of studies have confirmed that microRNAs (miRNAs) are involved in various biological processes, including tumor growth and drug resistance. MiR-4284 has been proved to be abnormally regulated in several cancers, but the function of miR-4284 in ovarian carcinoma (OC) is unclear. Paclitaxel resistance is a key obstacle in OC treatment. Here, the role of miR-4284 in cell sensitivity to paclitaxel in OC was investigated. Two OC cell lines (SKOV3ip1 and HeyA8) were utilized for the establishment of paclitaxel-resistant cell lines. Reverse transcription-quantitative PCR (RT-qPCR) was applied to analyze the levels of miR-4284 and potential mRNAs in OC cell lines. Western blotting was performed to evaluate the levels of DNA meiotic recombinase 1 (DMC1) protein and cell cycle-associated proteins. Identification of the relationship between miR-4284 and DMC1 was achieved by luciferase reporter assay. CCK-8 and flow cytometry assays were utilized for evaluating the impact of miR-4284 on the malignant characteristics of paclitaxel-resistant OC cells. MiR-4284 was upregulated in paclitaxel-resistant OC cell lines and correlated with an adverse prognosis in OC patients. Depletion of miR-4284 suppressed cell proliferation and cell cycle progression of paclitaxel-resistant OC. MiR-4284 targeted DMC1 which was downregulated in paclitaxel-resistant cells and reversed the inhibitory influence of miR-4284 silencing on the malignant characters of paclitaxel-resistant OC cells. MiR-4284 targets DMC1 to suppress sensitivity to paclitaxel in human OC cells.
Collapse
|
8
|
Zhang L, Li Y, Hu C, Chen Y, Chen Z, Chen ZS, Zhang JY, Fang S. CDK6-PI3K signaling axis is an efficient target for attenuating ABCB1/P-gp mediated multi-drug resistance (MDR) in cancer cells. Mol Cancer 2022; 21:103. [PMID: 35459184 PMCID: PMC9027122 DOI: 10.1186/s12943-022-01524-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multidrug resistance (MDR) mediated by ATP binding cassette subfamily B member 1 (ABCB1/P-gp) is a major cause of cancer chemotherapy failure, but the regulation mechanisms are largely unknown. METHODS Based on single gene knockout, we studied the regulation of CDK6-PI3K axis on ABCB1-mediated MDR in human cancer cells. CRISPR/Cas9 technique was performed in KB-C2 cells to knockout cdk6 or cdk4 gene. Western blot, RT-PCR and transcriptome analysis were performed to investigate target gene deletion and expression of critical signaling factors. The effect of cdk4 or cdk6 deficiency on cell apoptosis and the cell cycle was analyzed using flow cytometry. In vivo studies were performed to study the sensitivity of KB-C2 tumors to doxorubicin, tumor growth and metastasis. RESULTS Deficiency of cdk6 led to remarkable downregulation of ABCB1 expression and reversal of ABCB1-mediated MDR. Transcriptomic analysis revealed that CDK6 knockout regulated a series of signaling factors, among them, PI3K 110α and 110β, KRAS and MAPK10 were downregulated, and FOS-promoting cell autophagy and CXCL1-regulating multiple factors were upregulated. Notably, PI3K 110α/110β deficiency in-return downregulated CDK6 and the CDK6-PI3K axis synergizes in regulating ABCB1 expression, which strengthened the regulation of ABCB1 over single regulation by either CDK6 or PI3K 110α/110β. High frequency of alternative splicing (AS) of premature ABCB1 mRNA induced by CDK6, CDK4 or PI3K 110α/110β level change was confirmed to alter the ABCB1 level, among them 10 common skipped exon (SE) events were found. In vivo experiments demonstrated that loss of cdk6 remarkably increased the sensitivity of KB-C2 tumors to doxorubicin by increasing drug accumulation of the tumors, resulting in remarkable inhibition of tumor growth and metastasis, as well as KB-C2 survival in the nude mice. CONCLUSIONS CDK6-PI3K as a new target signaling axis to reverse ABCB1-mediated MDR is reported for the first time in cancers. Pathways leading to inhibition of cancer cell proliferation were revealed to be accompanied by CDK6 deficiency.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China. .,College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yidong Li
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Chaohua Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yangmin Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Shuo Fang
- The department of clinical oncology, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
9
|
Tanshinone IIA Improves Ventricular Remodeling following Cardiac Infarction by Regulating miR-205-3p. DISEASE MARKERS 2021; 2021:8740831. [PMID: 34880957 PMCID: PMC8648449 DOI: 10.1155/2021/8740831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022]
Abstract
Objective To illustrate the role of tanshinone IIA (TSN) in regulating cardiac structure and function following myocardial infarction (MI) and the involvement of miR-205-3p in TSN-induced antifibrosis effect on ventricular remodeling. Patients and Methods. One hundred MI patients were randomly assigned into two groups, and they were treated with TSN (TSN group, n = 50) or conventional therapy (control group, n = 50). Plasma levels of miR-205-3p and TGF-β1 were detected in each patient. Echocardiography was conducted in each patient at post-MI 1 day, 2 weeks, and 4 weeks, respectively, for recording LVIDd (left ventricular internal-diastolic diameter), LVIDs (left ventricular internal-systolic diameter), and LVEF (left ventricular ejection fraction). The interaction between miR-205-3p and TGF-β1 was examined by the RNA-Binding Protein Immunoprecipitation (RIP) assay. After induction of TGF-β1 and/or 10 μL of TSN in cardiac fibroblasts, relative levels of miR-205-3p, Col1a1, and Col3a1 were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Results Compared with the control group, miR-205-3p and TGF-β1 were downregulated in plasma of MI patients in the TSN group. In the TSN group, LVIDd and LVIDs were reduced, and EF was enhanced at 2 weeks and 4 weeks compared with that at post-MI 1 day. miR-205-3p could negatively interact with TGF-β1. TSN induction abolished the regulatory effects of TGF-β1 on downregulating miR-205-3p and upregulating Col1a1 and Col3a1 in cardiac fibroblasts. Conclusions Through upregulating miR-205-3p and downregulating TGF-β1, TSN alleviates cardiac fibrosis and improves ventricular remodeling following MI.
Collapse
|
10
|
Sheng W, Guo W, Lu F, Liu H, Xia R, Dong F. Upregulation of Linc00284 Promotes Lung Cancer Progression by Regulating the miR-205-3p/c-Met Axis. Front Genet 2021; 12:694571. [PMID: 34616424 PMCID: PMC8488201 DOI: 10.3389/fgene.2021.694571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/16/2021] [Indexed: 01/25/2023] Open
Abstract
Lung cancer (LC) is a malignant tumor with the highest incidence and mortality rates worldwide. Linc00284, a long non-coding RNA, is a newly discovered regulator of LC. This study aimed to explore the role of Linc00284 in LC progression. Gene expression levels were detected by RT-qPCR and/or western blot analysis. Cell migratory and invasive capabilities were measured by wound healing and transwell assays. Subcutaneous xenograft models were constructed to examine tumor growth of LC cells. Data showed that Linc00284 was significantly upregulated in LC tissues compared to adjacent normal lung tissues and predicted poor prognosis in patients with LC. In vitro, Linc00284 was highly expressed in LC cells and was mainly localized in the cytoplasm. Mechanistically, Linc00284 directly bound to miR-205-3p, leading to the upregulation of c-Met expression. A significant negative correlation was observed between Linc00284 and miR-205-3p expression levels, and the Linc00284 level was positively correlated with the c-Met expression. Linc00284/miR-205-3p/c-Met regulatory axis promotes LC cell proliferation, migration, and invasion. Furthermore, the in vivo results indicated that Linc00284 knockdown markedly suppressed tumor growth. Taken together, these data suggest that Linc00284 facilitates LC progression by targeting the miR-205-3p/c-Met axis, which may be a potential target for LC treatment.
Collapse
Affiliation(s)
- Wang Sheng
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Weixi Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Fang Lu
- Pulmonary and Critical Care Medicine (PCCM), The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongming Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Rongmu Xia
- School of Medicine, Xiamen University, Xiamen, China
| | - Feng Dong
- Department of Radiotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Dong YJ, Feng W, Li Y. HOTTIP-miR-205-ZEB2 Axis Confers Cisplatin Resistance to Ovarian Cancer Cells. Front Cell Dev Biol 2021; 9:707424. [PMID: 34322490 PMCID: PMC8311351 DOI: 10.3389/fcell.2021.707424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer is a deadly gynecological malignancy with resistance to cisplatin a major clinical problem. We evaluated a role of long non-coding (lnc) RNA HOTTIP (HOXA transcript at the distal tip) in the cisplatin resistance of ovarian cancer cells, using paired cisplatin sensitive and resistant A2780 cells along with the SK-OV-3 cells. HOTTIP was significantly elevated in cisplatin resistant cells and its silencing reversed the cisplatin resistance of resistant cells. HOTTIP was found to sponge miR-205 and therefore HOTTIP silenced cells had higher levels of miR-205. Downregulation of miR-205 could attenuate HOTTIP-silencing effects whereas miR-205 upregulation in resistant cells was found to re-sensitize cells to cisplatin. HOTTIP silencing also led to reduced NF-κB activation, clonogenic potential and the reduced expression of stem cell markers SOX2, OCT4, and NANOG, an effect that could be attenuated by miR-205. Finally, ZEB2 was identified as the gene target of miR-205, thus completing the elucidation of HOTTIP-miR-205-ZEB2 as the novel axis which is functionally involved in the determination of cisplatin resistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Yu-Jie Dong
- Department of Emergency, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Feng
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Li
- Department of Emergency, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Gao Y, Wang Y, Wang X, Zhao C, Wang F, Du J, Zhang H, Shi H, Feng Y, Li D, Yan J, Yao Y, Hu W, Ding R, Zhang M, Wang L, Huang C, Zhang J. miR-335-5p suppresses gastric cancer progression by targeting MAPK10. Cancer Cell Int 2021; 21:71. [PMID: 33482821 PMCID: PMC7821696 DOI: 10.1186/s12935-020-01684-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies have established the roles of microRNAs (miRNAs) in cancer progression. The aberrant expression of miR-335-5p has been reported in many cancers, including gastric cancer (GC). In this study, the precise roles of miR-335-5p in GC as well as the molecular mechanisms underlying its effects, including the role of its target MAPK10, were evaluated. Methods Quantitative real-time PCR was used to evaluate miR-335-5p levels in GC cell lines and tissues. MTT and colony formation assays were used to detect cell proliferation, and Transwell and wound-healing assays were used to evaluate the invasion and migration of GC cells. The correlation between levels of miR-335-5p and the cell cycle-related target gene mitogen-activated protein kinase 10 (MAPK10) in GC was analyzed. In addition, the candidate target was evaluated by a luciferase reporter assay, qRT-PCR, and western blotting. Results The levels of miR-335-5p were downregulated in GC tissues and cell lines. Furthermore, miR-335-5p inhibited the proliferation and migration of GC cells and induced apoptosis. Additionally, miR-335-5p arrested the cell cycle at the G1/S phase in GC cells in vitro. Levels of miR-335-5p and the cell cycle-related target gene MAPK10 in GC were correlated, and MAPK10 was directly targeted by miR-335-5p. Conclusions These data suggest that miR-335-5p is a tumor suppressor and acts via MAPK10 to inhibit GC progression.
Collapse
Affiliation(s)
- Yi Gao
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Yanfeng Wang
- Department of Medical Genetic and Cell Biology, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Changan Zhao
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Fenghui Wang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Juan Du
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Huahua Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Haiyan Shi
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Yun Feng
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Dan Li
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Jing Yan
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Yan Yao
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Weihong Hu
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Ruxin Ding
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Mengjie Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China
| | - Lumin Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, 716000, Shaanxi, China. .,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
13
|
Kumar V, Gupta S, Varma K, Sachan M. MicroRNA as Biomarker in Ovarian Cancer Management: Advantages and Challenges. DNA Cell Biol 2020; 39:2103-2124. [PMID: 33156705 DOI: 10.1089/dna.2020.6024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most prevalent gynecological malignancy affecting women throughout the globe. Ovarian cancer has several subtypes, including epithelial ovarian cancer (EOC) with a whopping incidence rate of 239,000 per year, making it the sixth most common gynecological malignancy worldwide. Despite advancement of detection and therapeutics, death rate accounts for 152,000 per annum. Several protein-based biomarkers such as CA125 and HE4 are currently being used for diagnosis, but their sensitivity and specificity for early detection of ovarian cancer are under question. MicroRNA (a small noncoding RNA molecule that participates in post-transcription regulation of gene expression) and its functional deregulation in most cancers have been discovered in the previous two decades. Studies support that miRNA deregulation has an epigenetic component as well. Aberrant miRNA expression is often correlated with the form of EOC tumor, histological grade, prognosis, and FIGO stage. In this review, we addressed epigenetic regulation of miRNAs, the latest research on miRs as a biomarker in the detection of EOC, and tailored assays to use miRNAs as a biomarker in ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Kachnar Varma
- Department of Pathology, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
14
|
Lu W, Wu Y, Lu CX, Zhu T, Ren ZL, Yu Z. Bioinformatics analysis of prognostic value and prospective pathway signal of miR-30a in ovarian cancer. J Ovarian Res 2020; 13:120. [PMID: 33004058 PMCID: PMC7532093 DOI: 10.1186/s13048-020-00722-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/18/2020] [Indexed: 01/10/2023] Open
Abstract
Objective MicroRNAs (MiRNAs) is thought to play a critical role in the initiation and progress of ovarian cancer (OC). Although miRNAs has been widely recognized in ovarian cancer, the role of hsa-miR-30a-5p (miR-30a) in OC has not been fully elucidated. Methods Three mRNA datasets of normal ovarian tissue and OC, GSE18520,GSE14407 and GSE36668, were downloaded from Gene Expression Omnibus (GEO) to find the differentially expressed gene (DEG). Then the target genes of hsa-miR-30a-5p were predicted by miRWALK3.0 and TargetScan. Then, the gene overlap between DEG and the predicted target genes of miR-30a in OC was analyzed by Gene Ontology (GO) enrichment analysis. Protein-protein interaction (PPI) network was conducted by STRING and Cytoscape, and the effect of HUB gene on the outcome of OC was analyzed. Results A common pattern of up-regulation of miR-30a in OC was found. A total of 225 DEG, were identified, both OC-related and miR-30a-related. Many DEG are enriched in the interactions of intracellular matrix tissue, ion binding and biological process regulation. Among the 10 major Hub genes analyzed by PPI, five Hub genes were significantly related to the overall poor survival of OC patients, in which the low expression of ESR1,MAPK10, Tp53 and the high expression of YKT,NSF were related to poor prognosis of OC. Conclusion Our results indicate that miR-30a is of significance for the biological progress of OC.
Collapse
Affiliation(s)
- Weijia Lu
- Guangzhou University of Chinese Medicine, No.232, Waihuandong Road, University Town, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Yunyu Wu
- Department of Gynaecological Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong Province, China
| | - Can Xiong Lu
- Laboratory Department, Foshan Sanshui hospital of Traditional Chinese Medicine, Foshan, 528100, Guangdong, China
| | - Ting Zhu
- Division of Laboratory Science, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Zhong Lu Ren
- College of Medical Information Engineering Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Zhiwu Yu
- Division of Laboratory Science, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|