1
|
Lantzanaki M, Vavilis T, Harizopoulou VC, Bili H, Goulis DG, Vavilis D. Ceramides during Pregnancy and Obstetrical Adverse Outcomes. Metabolites 2023; 13:1136. [PMID: 37999232 PMCID: PMC10673483 DOI: 10.3390/metabo13111136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Ceramides are a group of sphingolipids located in the external plasma membrane layer and act as messengers in cellular pathways such as inflammatory processes and apoptosis. Plasma ceramides are biomarkers of cardiovascular disease, type 2 diabetes mellitus, Alzheimer's disease, various autoimmune conditions and cancer. During pregnancy, ceramides play an important role as stress mediators, especially during implantation, delivery and lactation. Based on the current literature, plasma ceramides could be potential biomarkers of obstetrical adverse outcomes, although their role in metabolic pathways under such conditions remains unclear. This review aims to present current studies that examine the role of ceramides during pregnancy and obstetrical adverse outcomes, such as pre-eclampsia, gestational diabetes mellitus and other complications.
Collapse
Affiliation(s)
- Maria Lantzanaki
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
| | - Theofanis Vavilis
- Department of Dentistry, School of Medicine, European University of Cyprus, Nicosia 2404, Cyprus;
- Laboratory of Medical Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Vikentia C. Harizopoulou
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
| | - Helen Bili
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
| | - Dimitrios G. Goulis
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
| | - Dimitrios Vavilis
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
- Medical School, University of Cyprus, Nicosia 1678, Cyprus
| |
Collapse
|
2
|
Stephenson DJ, MacKnight HP, Hoeferlin LA, Washington SL, Sawyers C, Archer KJ, Strauss JF, Walsh SW, Chalfant CE. Bioactive lipid mediators in plasma are predictors of preeclampsia irrespective of aspirin therapy. J Lipid Res 2023; 64:100377. [PMID: 37119922 PMCID: PMC10230265 DOI: 10.1016/j.jlr.2023.100377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
There are few early biomarkers to identify pregnancies at risk of preeclampsia (PE) and abnormal placental function. In this cross-sectional study, we utilized targeted ultra-performance liquid chromatography-ESI MS/MS and a linear regression model to identify specific bioactive lipids that serve as early predictors of PE. Plasma samples were collected from 57 pregnant women prior to 24-weeks of gestation with outcomes of either PE (n = 26) or uncomplicated term pregnancies (n = 31), and the profiles of eicosanoids and sphingolipids were evaluated. Significant differences were revealed in the eicosanoid, (±)11,12 DHET, as well as multiple classes of sphingolipids; ceramides, ceramide-1-phosphate, sphingomyelin, and monohexosylceramides; all of which were associated with the subsequent development of PE regardless of aspirin therapy. Profiles of these bioactive lipids were found to vary based on self-designated race. Additional analyses demonstrated that PE patients can be stratified based on the lipid profile as to PE with a preterm birth linked to significant differences in the levels of 12-HETE, 15-HETE, and resolvin D1. Furthermore, subjects referred to a high-risk OB/GYN clinic had higher levels of 20-HETE, arachidonic acid, and Resolvin D1 versus subjects recruited from a routine, general OB/GYN clinic. Overall, this study shows that quantitative changes in plasma bioactive lipids detected by ultra-performance liquid chromatography-ESI-MS/MS can serve as an early predictor of PE and stratify pregnant people for PE type and risk.
Collapse
Affiliation(s)
- Daniel J Stephenson
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - H Patrick MacKnight
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Sonya L Washington
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Chelsea Sawyers
- Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kellie J Archer
- Division of Biostatistics, The Ohio State University College of Public Health, Columbus, OH, USA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Scott W Walsh
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Charles E Chalfant
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA; Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, USA.
| |
Collapse
|
3
|
Chen T, Zhang Z, Lu Q, Ma J. Screening and functional analysis of the differential peptides from the placenta of patients with healthy pregnancy and preeclampsia using placental peptidome. Front Genet 2022; 13:1014836. [PMID: 36531221 PMCID: PMC9751626 DOI: 10.3389/fgene.2022.1014836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2024] Open
Abstract
Molecular peptides play an extensive range of functions in the human body. However, no previous study has performed placental peptidome profiling. In the present study, 3,941 peptides from human placental tissues were identified using peptidomics. Compared to healthy pregnant women, there were 87 and 129 differentially expressed peptides (DEPs) in the mild and severe preeclampsia groups, respectively. In the mild PE group, 55 and 34 DEPs had high and low expressions, respectively. In comparison, in the severe PE group, 82 and 47 DEPs had high and low expressions, respectively. Functional analysis of the precursor proteins of DEPs by gene ontology suggested that they are primarily involved in focal adhesion, extracellular matrix-receptor interaction, tight junction, and extracellular matrix. Network analysis using ingenuity pathway analysis software showed that the precursor proteins of DEPs were primarily related to the transforming growth factor-β (TGF-β)/Smad signaling pathway. Further molecular docking experiments showed that the AASAKKKNKKGKTISL peptide (placenta-derived peptide, PDP) derived from the precursor protein IF4B could bind to TGF-β1. Therefore, our preliminary results suggest that the actions of PDP may be mediated through the TGF-β1/Smad signaling pathway. Our results demonstrate that the placental bioactive peptides may regulate the placental function during PE progression.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Gynaecology and Obstetrics, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Lu
- Department of Gynaecology and Obstetrics, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Ma
- Department of Gynaecology and Obstetrics, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of General Practitioners, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Walsh SW, Al Dulaimi M, Strauss JF. Aspirin Inhibits the Inflammatory Response of Protease-Activated Receptor 1 in Pregnancy Neutrophils: Implications for Treating Women with Preeclampsia. Int J Mol Sci 2022; 23:13218. [PMID: 36362006 PMCID: PMC9654155 DOI: 10.3390/ijms232113218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Neutrophils expressing cyclooxygenase-2 (COX-2) extensively infiltrate maternal blood vessels in preeclampsia, associated with vascular inflammation. Because pregnancy neutrophils also express protease-activated receptor 1 (PAR-1, F2R thrombin receptor), which they do not in non-pregnant subjects, they can be activated by proteases. We tested the hypothesis that aspirin at a dose sufficient to inhibit COX-2 would reduce inflammatory responses in preeclampsia neutrophils. Neutrophils were isolated from normal pregnant and preeclamptic women at approximately 30 weeks' gestation. Normal pregnancy neutrophils were treated with elastase, a protease elevated in preeclampsia, or elastase plus aspirin to inhibit COX-2, or elastase plus pinane thromboxane, a biologically active structural analog of thromboxane and a thromboxane synthase inhibitor. Preeclamptic pregnancy neutrophils were treated with the same doses of aspirin or pinane thromboxane. Confocal microscopy with immunofluorescence staining was used to determine the cellular localization of the p65 subunit of nuclear factor-kappa B (NF-κB) and media concentrations of thromboxane were measured to evaluate the inflammatory response. In untreated neutrophils of normal pregnant women, p65 was localized to the cytosol. Upon stimulation with elastase, p65 translocated from the cytosol to the nucleus coincident with increased thromboxane production. When neutrophils were co-treated with aspirin or pinane thromboxane, elastase was not able to cause nuclear translocation of p65 or increase thromboxane. In untreated neutrophils of preeclamptic women, the p65 subunit was present in the nucleus and thromboxane production was elevated, but when preeclamptic neutrophils were treated with aspirin or pinane thromboxane, p65 was cleared from the nucleus and returned to the cytosol along with decreased thromboxane production. These findings suggest that COX-2 is a downstream mediator of PAR-1 and demonstrate that PAR-1- mediated inflammation can be inhibited by aspirin. Given the extensive and ubiquitous expression of PAR-1 and COX-2 in preeclamptic women, consideration should be given to treating women with preeclampsia using a dose of aspirin sufficient to inhibit COX-2.
Collapse
Affiliation(s)
- Scott W. Walsh
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0034, USA
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0034, USA
| | - Marwah Al Dulaimi
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0034, USA
| | - Jerome F. Strauss
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0034, USA
| |
Collapse
|
5
|
Maus KD, Stephenson DJ, Ali AN, MacKnight HP, Huang HJ, Serrats J, Kim M, Diegelmann RF, Chalfant CE. Ceramide kinase regulates acute wound healing by suppressing 5-oxo-ETE biosynthesis and signaling via its receptor OXER1. J Lipid Res 2022; 63:100187. [PMID: 35219746 PMCID: PMC8980959 DOI: 10.1016/j.jlr.2022.100187] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
The sphingolipid, ceramide-1-phosphate (C1P), has been shown to promote the inflammatory phase and inhibit the proliferation and remodeling stages of wound repair via direct interaction with group IVA cytosolic phospholipase A2, a regulator of eicosanoid biosynthesis that fine-tunes the behaviors of various cell types during wound healing. However, the anabolic enzyme responsible for the production of C1P that suppresses wound healing as well as bioactive eicosanoids and target receptors that drive enhanced wound remodeling have not been characterized. Herein, we determined that decreasing C1P activity via inhibitors or genetic ablation of the anabolic enzyme ceramide kinase (CERK) significantly enhanced wound healing phenotypes. Importantly, postwounding inhibition of CERK enhanced the closure rate of acute wounds, improved the quality of healing, and increased fibroblast migration via a "class switch" in the eicosanoid profile. This switch reduced pro-inflammatory prostaglandins (e.g., prostaglandin E2) and increased levels of 5-hydroxyeicosatetraenoic acid and the downstream metabolite 5-oxo-eicosatetraenoic acid (5-oxo-ETE). Moreover, dermal fibroblasts from mice with genetically ablated CERK showed enhanced wound healing markers, while blockage of the murine 5-oxo-ETE receptor (oxoeicosanoid receptor 1) inhibited the enhanced migration phenotype of these cell models. Together, these studies reinforce the vital roles eicosanoids play in the wound healing process and demonstrate a novel role for CERK-derived C1P as a negative regulator of 5-oxo-ETE biosynthesis and the activation of oxoeicosanoid receptor 1 in wound healing. These findings provide foundational preclinical results for the use of CERK inhibitors to shift the balance from inflammation to resolution and increase the wound healing rate.
Collapse
Affiliation(s)
- Kenneth D Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Anika N Ali
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Henry Patrick MacKnight
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Huey-Jing Huang
- Neuroscience Drug Discovery Unit, Takeda California, San Diego, CA, USA
| | - Jordi Serrats
- Neuroscience Drug Discovery Unit, Takeda California, San Diego, CA, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, VA, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA; Cancer Biology and Evolution Program, The Moffitt Cancer Center, Tampa, FL, USA; Research Service, James A. Haley Veterans Hospital, Tampa, FL, USA; Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA; Research Service, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA.
| |
Collapse
|
6
|
Sakowicz A. The Targeting of Nuclear Factor Kappa B by Drugs Adopted for the Prevention and Treatment of Preeclampsia. Int J Mol Sci 2022; 23:2881. [PMID: 35270023 PMCID: PMC8911173 DOI: 10.3390/ijms23052881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Preeclampsia (PE) is characterised by high levels and activity of the transcription factor Nuclear Factor kappa B (NFĸB) in the maternal blood and placental cells. This factor is responsible for the regulation of over 400 genes known to influence processes related to inflammation, apoptosis and angiogenesis, and cellular responses to oxidative stress and hypoxia. Although high NFĸB activity induces hypoxia and inflammation, which are beneficial for the process of implantation, NFĸB level should be reduced in the later stages of physiological pregnancy to favour maternal immunosuppression and maintain gestation. It is believed that the downregulation of NFĸB activity by pharmacotherapy might be a promising way to treat preeclampsia. Interestingly, many of the drugs adopted for the prevention and treatment of preeclampsia have been found to regulate NFĸB activity. Despite this, further innovation is urgently needed to ensure treatment safety and efficacy. The present article summarizes the current state of knowledge about the drugs recommended by cardiology, obstetrics, and gynaecology societies for the prevention and treatment of preeclampsia with regard to their impact on the cellular regulation of NFĸB pathways.
Collapse
Affiliation(s)
- Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
7
|
Walsh SW, Strauss JF. Pregnancy-specific expression of protease-activated receptor 1: a therapeutic target for prevention and treatment of preeclampsia? Am J Obstet Gynecol 2022; 226:S945-S953. [PMID: 35177224 PMCID: PMC8868505 DOI: 10.1016/j.ajog.2021.11.1367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
Neutrophils extensively infiltrate maternal blood vessels in preeclampsia. This could explain why multiple organs are affected in this enigmatic disorder. Lipid peroxides produced by the placenta are probably the first factors that activate neutrophils as they circulate through the intervillous space, but then a second factor specific to pregnancy comes into play, protease-activated receptor 1. The only time neutrophils express protease-activated receptor 1 is during pregnancy. This means that neutrophils can be activated by a mechanism specific to pregnancy, that is, by proteases. Two proteases that are elevated in preeclampsia and activate protease-activated receptor 1 are matrix metalloproteinase-1 and neutrophil elastase. There is an 8-fold increase in vascular protease-activated receptor 1 expression in women with preeclampsia, and protease-activated receptor 1 is also expressed on the placenta, a pregnancy-specific tissue. The question arises if the pregnancy-specific expression of protease-activated receptor 1 is essential to the pathophysiology of preeclampsia. Protease activation of protease-activated receptor 1 in neutrophils of women with normal pregnancies causes activation of RhoA kinase. RhoA kinase phosphorylates nuclear factor-kappa B causing its translocation from the cytosol into the nucleus, increasing the expression of inflammatory genes. This signaling pathway is blocked by inhibition of either protease-activated receptor 1 or RhoA kinase activity. In contrast, neutrophils obtained from preeclamptic women are already activated, with nuclear factor-kappa B localized in the nucleus. Surprisingly, inhibition of either protease-activated receptor 1 or RhoA kinase results in an efflux of nuclear factor-kappa B from the nucleus back into the cytoplasm. Cyclooxygenase-2 seems to be a downstream mediator between protease-activated receptor 1 and RhoA kinase because aspirin inhibits the nuclear translocation of nuclear factor-kappa B and inhibits neutrophil production of superoxide, thromboxane, and tumor necrosis factor alpha. Currently, low-dose aspirin is the standard of care to prevent preeclampsia in high-risk women. Generally, the actions of low-dose aspirin are attributed to selective inhibition of maternal platelet thromboxane production. However, a recent study showed that beneficial effects extend to the placenta, where aspirin corrected the imbalance of increased thromboxane and reduced prostacyclin and oxidative stress. Selective inhibition of placental thromboxane is possible because thromboxane and prostacyclin are compartmentalized. Thromboxane is produced by trophoblast cells and prostacyclin by endothelial cells, so as aspirin crosses the placenta, its levels decline, sparing prostacyclin. Placental oxidative stress is attenuated because cyclooxygenase-2 inhibition decreases the generation of reactive oxygen species to decrease the formation of isoprostanes. The clinical manifestations of preeclampsia can be explained by protease activation of protease-activated receptor 1 in different tissues. In neutrophils, it can account for their activation and inflammatory response. In vascular tissue, protease-activated receptor 1 activation leads to enhanced vascular reactivity to angiotensin II to cause hypertension. In the placenta, it leads to oxidative stress, increased soluble fms-like tyrosine kinase, and thromboxane production. Activation of protease-activated receptor 1 on endothelial cells causes contraction, leading to edema and proteinuria, and activation on platelets leads to coagulation abnormalities. As proteases that activate protease-activated receptor 1 are elevated in the circulation of women with preeclampsia, consideration should be given to the inhibition of protease-activated receptor 1 as a treatment. Recently, The Food and Drug Administration (FDA) approved a protease-activated receptor 1 inhibitor, creating an opportunity to test whether protease-activated receptor 1 inhibition can prevent and/or treat preeclampsia, but a standard dose of aspirin might be just as effective by blocking its downstream actions.
Collapse
|
8
|
Patterns of Maternal Neutrophil Gene Expression at 30 Weeks of Gestation, but Not DNA Methylation, Distinguish Mild from Severe Preeclampsia. Int J Mol Sci 2021; 22:ijms222312876. [PMID: 34884685 PMCID: PMC8657979 DOI: 10.3390/ijms222312876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neutrophils are activated and extensively infiltrate blood vessels in preeclamptic women. To identify genes that contribute to neutrophil activation and infiltration, we analyzed the transcriptomes of circulating neutrophils from normal pregnant and preeclamptic women. Neutrophils were collected at 30 weeks’ gestation and RNA and DNA were isolated for RNA sequencing and 5-hydroxy-methylcytosine (5-hmC) sequencing as an index of dynamic changes in neutrophil DNA methylation. Women with normal pregnancy who went on to develop mild preeclampsia at term had the most uniquely expressed genes (697) with 325 gene ontology pathways upregulated, many related to neutrophil activation and function. Women with severe preeclampsia who delivered prematurely had few pathways up- or downregulated. Cluster analysis revealed that gene expression in women with severe preeclampsia was an inverse mirror image of gene expression in normal pregnancy, while gene expression in women who developed mild preeclampsia was remarkably different from both. DNA methylation marks, key regulators of gene expression, are removed by the action of ten-eleven translocation (TET) enzymes, which oxidize 5-methylcytosines (5mCs), resulting in locus-specific reversal of DNA methylation. DNA sequencing for 5-hmC revealed no differences among the three groups. Genome-wide DNA methylation revealed extremely low levels in circulating neutrophils suggesting they are de-methylated. Collectively, these data demonstrate that neutrophil gene expression profiles can distinguish different preeclampsia phenotypes, and in the case of mild preeclampsia, alterations in gene expression occur well before clinical symptoms emerge. These findings serve as a foundation for further evaluation of neutrophil transcriptomes as biomarkers of preeclampsia phenotypes. Changes in DNA methylation in circulating neutrophils do not appear to mediate differential patterns of gene expression in either mild or severe preeclampsia.
Collapse
|
9
|
Walsh SW, Strauss JF. The Road to Low-Dose Aspirin Therapy for the Prevention of Preeclampsia Began with the Placenta. Int J Mol Sci 2021; 22:6985. [PMID: 34209594 PMCID: PMC8268135 DOI: 10.3390/ijms22136985] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
The road to low-dose aspirin therapy for the prevention of preeclampsia began in the 1980s with the discovery that there was increased thromboxane and decreased prostacyclin production in placentas of preeclamptic women. At the time, low-dose aspirin therapy was being used to prevent recurrent myocardial infarction and other thrombotic events based on its ability to selectively inhibit thromboxane synthesis without affecting prostacyclin synthesis. With the discovery that thromboxane was increased in preeclamptic women, it was reasonable to evaluate whether low-dose aspirin would be effective for preeclampsia prevention. The first clinical trials were very promising, but then two large multi-center trials dampened enthusiasm until meta-analysis studies showed aspirin was effective, but with caveats. Low-dose aspirin was most effective when started <16 weeks of gestation and at doses >100 mg/day. It was effective in reducing preterm preeclampsia, but not term preeclampsia, and patient compliance and patient weight were important variables. Despite the effectiveness of low-dose aspirin therapy in correcting the placental imbalance between thromboxane and prostacyclin and reducing oxidative stress, some aspirin-treated women still develop preeclampsia. Alterations in placental sphingolipids and hydroxyeicosatetraenoic acids not affected by aspirin, but with biologic actions that could cause preeclampsia, may explain treatment failures. Consideration should be given to aspirin's effect on neutrophils and pregnancy-specific expression of protease-activated receptor 1, as well as additional mechanisms of action to prevent preeclampsia.
Collapse
Affiliation(s)
- Scott W. Walsh
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | |
Collapse
|
10
|
Fakhr Y, Brindley DN, Hemmings DG. Physiological and pathological functions of sphingolipids in pregnancy. Cell Signal 2021; 85:110041. [PMID: 33991614 DOI: 10.1016/j.cellsig.2021.110041] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023]
Abstract
Signaling by the bioactive sphingolipid, sphingosine 1-phosphate (S1P), and its precursors are emerging areas in pregnancy research. S1P and ceramide levels increase towards end of gestation, suggesting a physiological role in parturition. However, high levels of circulating S1P and ceramide are correlated with pregnancy disorders such as preeclampsia, gestational diabetes mellitus and intrauterine growth restriction. Expression of placental and decidual enzymes that metabolize S1P and S1P receptors are also dysregulated during pregnancy complications. In this review, we provide an in-depth examination of the signaling mechanism of S1P and ceramide in various reproductive tissues during gestation. These factors determine implantation and early pregnancy success by modulating corpus luteum function from progesterone production to luteolysis through to apoptosis. We also highlight the role of S1P through receptor signaling in inducing decidualization and angiogenesis in the decidua, as well as regulating extravillous trophoblast migration to anchor the placenta into the uterine wall. Recent advances on the role of the S1P:ceramide rheostat in controlling the fate of villous trophoblasts and the role of S1P as a negative regulator of trophoblast syncytialization to a multinucleated placental barrier are discussed. This review also explores the role of S1P in anti-inflammatory and pro-inflammatory signaling, its role as a vasoconstrictor, and the effects of S1P metabolizing enzymes and receptors in pregnancy.
Collapse
Affiliation(s)
- Yuliya Fakhr
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - David N Brindley
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Denise G Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2S2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|