1
|
Mijušković A, Wray S, Arrowsmith S. A hydrogen sulphide-releasing non-steroidal anti-inflammatory, ATB-346, significantly attenuates human myometrial contractions. Pharmacol Rep 2025; 77:287-294. [PMID: 39231921 PMCID: PMC11743401 DOI: 10.1007/s43440-024-00643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Spontaneous preterm birth is the leading cause of perinatal morbidity and mortality. Tocolytics are drugs used to inhibit uterine contractions in cases of imminent preterm birth, however, few are effective in stopping labour once initiated and all have side effects. Combination approaches involving drugs that target multiple signalling pathways that regulate contractions may increase efficacy, reduce dosage and improve tolerability. Both non-steroidal anti-inflammatory drugs (NSAIDs) and hydrogen sulphide (H2S)-releasing compounds can reduce myometrial contractions. In a novel approach we evaluated the tocolytic properties of ATB-346-a H2S-releasing derivative of the NSAID naproxen, shown clinically to reduce pain and inflammation in arthritis. METHODS Using organ baths, paired strips of human myometrium were exposed to increasing concentrations of ATB-346, or equimolar concentrations (10µM and 30µM) of the parent drug, naproxen, or the H2S-releasing moiety, 4-hydroxy-thiobenzamide (TBZ), alone. The ability of ATB-346 versus the individual components of ATB-346 to decrease ex vivo spontaneous contractions was investigated, and the potency was compared to a known H2S donor, Na2S. RESULTS Acute application of Na2S produced a concentration-dependent decrease in force amplitude and force integral (area under the curve) of contraction. ATB-346 produced a more profound decrease in contraction compared to equimolar concentrations of naproxen or TZB alone and was more potent than the equivalent concentration of Na2S. CONCLUSIONS ATB-346 exhibits potent tocolytic properties in human myometrium. These exciting results call for further exploration of ATB-346, with a view to repurposing this or similar drugs as novel therapies for delaying preterm labour.
Collapse
Affiliation(s)
- Ana Mijušković
- Harris-Wellbeing Research Centre, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Susan Wray
- Harris-Wellbeing Research Centre, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Sarah Arrowsmith
- Harris-Wellbeing Research Centre, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
2
|
Fu Y, Yan J, Lan L, Zhang H, Wang P, Wang Y, Xiong X, Li J, He H. Cloning, bioinformatics analysis and expression of the cysteine dioxygenase type 1 (CDO1) gene in domestic yak. Front Vet Sci 2024; 11:1488782. [PMID: 39493813 PMCID: PMC11527789 DOI: 10.3389/fvets.2024.1488782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction The CDO1 gene is an important gene in the taurine synthesis pathway and has been observed to have high expression in ovaries of female mammals. This study aims to explore the conservation of CDO1 gene in domestic yaks, as well as to examine the fundamental characteristics of CDO1 gene and its expression in female yaks. Methods Ovarian samples were collected from yaks in the follicular phase, luteal phase and gestation period in this experiment, and their total RNA and protein were extracted. Then Polymerase Chain Reaction (PCR) and bioinformatics online software were used to clone and analyze the CDO1 gene. The relative expression of CDO1 in yak ovaries was detected by Quantitative Real-time PCR (RT-qPCR) and Western blotting. The distribution and localization of CDO1 protein in ovary were detected by immunohistochemistry. Results We have successfully cloned the coding region of CDO1 gene in yak. The results showed that the CDS region of CDO1 gene was 603 bp, encoding 200 amino acids, and was a relatively stable hydrophilic protein. CDO1 is relatively conservative in species evolution. The protein encoded by CDO1 gene does not have a signaling peptide or a transmembrane structure. It is a protein that is not involved in transmembrane transport and is mainly located in the cytoplasm. The secondary structure of the protein is dominated by the random coil. CDO1 is estimated to interact with 10 proteins. The results of RT-qPCR and Western blotting showed that the CDO1 gene exhibited the highest expression in the ovary during the luteal phase and the lowest expression in the ovary during the follicular phase (P < 0.01). The results of immunohistochemistry showed that CDO1 was mainly expressed in granular cells, theca cells and lutein cells of ovarian tissue. Conclusion These results suggest that the CDO1 gene has undergone minimal evolutionary changes during the course of animal evolution. The results provide a reference for further investigation of the function of CDO1 gene in reproduction and production in yaks.
Collapse
Affiliation(s)
- Yuxin Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jiuru Yan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Lan Lan
- Animal Husbandry Science Institute of Ganzi Tibetan Autonomous Prefecture, Kangding, China
| | - Huizhu Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Peng Wang
- Animal Husbandry Science Institute of Ganzi Tibetan Autonomous Prefecture, Kangding, China
| | - Yaying Wang
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Honghong He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Medicine at Southwest Minzu University of Sichuan Province, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
3
|
Jeitner TM, Azcona JA, Ables GP, Cooke D, Horowitz MC, Singh P, Kelly JM, Cooper AJL. Cystine rather than cysteine is the preferred substrate for β-elimination by cystathionine γ-lyase: implications for dietary methionine restriction. GeroScience 2024; 46:3617-3634. [PMID: 37217633 PMCID: PMC11229439 DOI: 10.1007/s11357-023-00788-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
Dietary methionine restriction (MR) increases longevity by improving health. In experimental models, MR is accompanied by decreased cystathionine β-synthase activity and increased cystathionine γ-lyase activity. These enzymes are parts of the transsulfuration pathway which produces cysteine and 2-oxobutanoate. Thus, the decrease in cystathionine β-synthase activity is likely to account for the loss of tissue cysteine observed in MR animals. Despite this decrease in cysteine levels, these tissues exhibit increased H2S production which is thought to be generated by β-elimination of the thiol moiety of cysteine, as catalyzed by cystathionine β-synthase or cystathionine γ-lyase. Another possibility for this H2S production is the cystathionine γ-lyase-catalyzed β-elimination of cysteine persulfide from cystine, which upon reduction yields H2S and cysteine. Here, we demonstrate that MR increases cystathionine γ-lyase production and activities in the liver and kidneys, and that cystine is a superior substrate for cystathionine γ-lyase catalyzed β-elimination as compared to cysteine. Moreover, cystine and cystathionine exhibit comparable Kcat/Km values (6000 M-1 s-1) as substrates for cystathionine γ-lyase-catalyzed β-elimination. By contrast, cysteine inhibits cystathionine γ-lyase in a non-competitive manner (Ki ~ 0.5 mM), which limits its ability to function as a substrate for β-elimination by this enzyme. Cysteine inhibits the enzyme by reacting with its pyridoxal 5'-phosphate cofactor to form a thiazolidine and in so doing prevents further catalysis. These enzymological observations are consistent with the notion that during MR cystathionine γ-lyase is repurposed to catabolize cystine and thereby form cysteine persulfide, which upon reduction produces cysteine.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
| | - Juan A Azcona
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY, 10516, USA
| | - Diana Cooke
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY, 10516, USA
| | - Mark C Horowitz
- Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Pradeep Singh
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - James M Kelly
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, 516 East 72Nd St, New York, NY, 10021, USA
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
4
|
Maclean KN, Jiang H, Neill PD, Chanin RR, Hurt KJ, Orlicky DJ, Bottiglieri T, Roede JR, Stabler SP. Dysregulation of hepatic one-carbon metabolism in classical homocystinuria: Implications of redox-sensitive DHFR repression and tetrahydrofolate depletion for pathogenesis and treatment. FASEB J 2024; 38:e23795. [PMID: 38984928 DOI: 10.1096/fj.202302585r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Cystathionine beta-synthase-deficient homocystinuria (HCU) is a life-threatening disorder of sulfur metabolism. HCU can be treated by using betaine to lower tissue and plasma levels of homocysteine (Hcy). Here, we show that mice with severely elevated Hcy and potentially deficient in the folate species tetrahydrofolate (THF) exhibit a very limited response to betaine indicating that THF plays a critical role in treatment efficacy. Analysis of a mouse model of HCU revealed a 10-fold increase in hepatic levels of 5-methyl -THF and a 30-fold accumulation of formiminoglutamic acid, consistent with a paucity of THF. Neither of these metabolite accumulations were reversed or ameliorated by betaine treatment. Hepatic expression of the THF-generating enzyme dihydrofolate reductase (DHFR) was significantly repressed in HCU mice and expression was not increased by betaine treatment but appears to be sensitive to cellular redox status. Expression of the DHFR reaction partner thymidylate synthase was also repressed and metabolomic analysis detected widespread alteration of hepatic histidine and glutamine metabolism. Many individuals with HCU exhibit endothelial dysfunction. DHFR plays a key role in nitric oxide (NO) generation due to its role in regenerating oxidized tetrahydrobiopterin, and we observed a significant decrease in plasma NOx (NO2 + NO3) levels in HCU mice. Additional impairment of NO generation may also come from the HCU-mediated induction of the 20-hydroxyeicosatetraenoic acid generating cytochrome CYP4A. Collectively, our data shows that HCU induces dysfunctional one-carbon metabolism with the potential to both impair betaine treatment and contribute to multiple aspects of pathogenesis in this disease.
Collapse
Affiliation(s)
- Kenneth N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hua Jiang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Philip D Neill
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ryan R Chanin
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - K Joseph Hurt
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Sally P Stabler
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
5
|
Pilsova A, Pilsova Z, Klusackova B, Zelenkova N, Chmelikova E, Postlerova P, Sedmikova M. Hydrogen sulfide and its role in female reproduction. Front Vet Sci 2024; 11:1378435. [PMID: 38933705 PMCID: PMC11202402 DOI: 10.3389/fvets.2024.1378435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule produced in the body by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S is crucial in various physiological processes associated with female mammalian reproduction. These include estrus cycle, oocyte maturation, oocyte aging, ovulation, embryo transport and early embryo development, the development of the placenta and fetal membranes, pregnancy, and the initiation of labor. Despite the confirmed presence of H2S-producing enzymes in all female reproductive tissues, as described in this review, the exact mechanisms of H2S action in these tissues remain in most cases unclear. Therefore, this review aims to summarize the knowledge about the presence and effects of H2S in these tissues and outline possible signaling pathways that mediate these effects. Understanding these pathways may lead to the development of new therapeutic strategies in the field of women's health and perinatal medicine.
Collapse
Affiliation(s)
- Aneta Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | | | | | | | | | | | | |
Collapse
|
6
|
Miyazaki T. Identification of a novel enzyme and the regulation of key enzymes in mammalian taurine synthesis. J Pharmacol Sci 2024; 154:9-17. [PMID: 38081683 DOI: 10.1016/j.jphs.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Taurine has many pharmacological roles on various tissues. The maintenance of abundant taurine content in the mammalian body through endogenous synthesis, in addition to exogenous intake, is the essential factor for morphological and functional maintenances in most tissues. The synthesis of taurine from sulfur-containing amino acids is influenced by various factors. Previous literature findings indicate the influence of the intake of proteins and sulfur-containing amino acids on the activity of the rate-limiting enzymes cysteine dioxygenase and cysteine sulfinate decarboxylase. In addition, the regulation of the activity and expression of taurine-synthesis enzymes by hormones, bile acids, and inflammatory cytokines through nuclear receptors have been reported in liver and reproductive tissues. Furthermore, flavin-containing monooxygenase subtype 1 was recently identified as the taurine-synthesis enzyme that converts hypotaurine to taurine. This review introduces the novel taurine synthesis enzyme and the nuclear receptor-associated regulation of key enzymes in taurine synthesis.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395, Japan.
| |
Collapse
|
7
|
Wu X, Ao H, Wu X, Cao Y. Sulfur-containing amino acids and risk of schizophrenia. Schizophr Res 2023; 262:8-17. [PMID: 37918291 DOI: 10.1016/j.schres.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 09/10/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Schizophrenia is a chronic and complex severe psychiatric disorder. Male and female are different in their risks for schizophrenia for the biologic and sociocultural reasons. Homocysteine (Hcy), Cysteine (Cys), and methionine (Met) play important roles in metabolism, and the three amino acids may also be involved in pathogenesis of schizophrenia. OBJECTIVE This study aimed to test the associations between sulfur-containing amino acid blood levels and risk of schizophrenia, evaluating the different risk in male and female. METHODS We organized a case-control study on 876 individuals with schizophrenia and 913 age- and sex-matched healthy subjects as control group. The concentrations of Hcy, Cys and Met were measured by liquid chromatography-tandem mass spectrometry technology. Subsequently, restricted cubic spline was applied to explore full-range associations of these amino acids with schizophrenia. Interactions between levels of the three amino acids and sex on additive scale were also tested. RESULTS Hcy levels at ≤29 μmol/L were associated with sharply increased risk of schizophrenia, inversely, Met was associated with sharply decreased risk of schizophrenia at levels ≤22 μmol/L. Increased Cys levels were associated with decreased risk of schizophrenia. Almost inverse associations were observed between Cys/Hcy and Met/Hcy ratios and schizophrenia. Significant synergistic interactions between levels of all the three amino acids and sex were discovered on an additive scale. CONCLUSIONS Our study suggests a close association between sulfur-containing amino acids and schizophrenia with different risk in male and female. Future studies are demanded to clarify the pathogenic role of Hcy, Cys and Met in schizophrenia.
Collapse
Affiliation(s)
- Xue Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China; The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, China
| | - Huaixuan Ao
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China; The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, China
| | - Xiaoyong Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China.
| | - Yunfeng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
8
|
Zhang D, Fan J, Liu H, Qiu G, Cui S. Testosterone enhances taurine synthesis by upregulating androgen receptor and cysteine sulfinic acid decarboxylase expressions in male mouse liver. Am J Physiol Gastrointest Liver Physiol 2023; 324:G295-G304. [PMID: 36749568 DOI: 10.1152/ajpgi.00076.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Taurine is an end-product of cysteine metabolism, whereas cysteine dioxygenase (CDO) and cysteine sulfinate decarboxylase (CSAD) are key enzymes regulating taurine synthesis. Sex steroids, including estrogens and androgens, are associated with liver physiopathological processes; however, we still do not know whether taurine and sex steroids interact in regulating liver physiology and hepatic diseases, and whether there are sex differences, although our recent study shows that the estrogen is involved in regulating taurine synthesis in mouse liver. The present study was thus proposed to identify whether 17-β-estradiol and testosterone (T) play their roles by regulating CDO and CSAD expression and taurine synthesis in male mouse liver. Our results demonstrated that testosterone did not have a significant influence on CDO expression but significantly enhanced CSAD, androgen receptor (AR) expressions, and taurine levels in mouse liver, cultured hepatocytes, and HepG2 cells, whereas these effects were abrogated by AR antagonist flutamide. Furthermore, our results showed that testosterone increased CSAD-promoter-luciferase activity through the direct interaction of the AR DNA binding domain with the CSAD promoter. These findings first demonstrate that testosterone acts as an important factor to regulate sulfur amino acid metabolism and taurine synthesis through AR/CSAD signaling pathway. In addition, the in vivo and in vitro experiments showed that 17-β-estradiol has no significant effects on liver CSAD expression and taurine synthesis in male mice and suggest that the effects of sex steroids on the taurine synthesis in mouse liver have sex differences. These results are crucial for understanding the physiological functions of taurine/androgen and their interacting mechanisms in the liver.NEW & NOTEWORTHY This study demonstrates that testosterone functions to enhance taurine synthesis by interacting with androgen receptor and binding to cysteine sulfinate decarboxylase (CSAD) promoter zone. Whereas estrogen has no significant effects either on liver CSAD expression or taurine synthesis in male mice and suggests that the effects of sex steroids on taurine synthesis in the liver have gender differences. These new findings are the potential for establishing effective protective and therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| | - Jingjing Fan
- College of Biological and Agricultural Engineering, Weifang University, Weifang, People's Republic of China
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| | - Guobin Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
9
|
Kissler K, Hurt KJ. The Pathophysiology of Labor Dystocia: Theme with Variations. Reprod Sci 2023; 30:729-742. [PMID: 35817950 PMCID: PMC10388369 DOI: 10.1007/s43032-022-01018-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Abnormally prolonged labor, or labor dystocia, is a common complication of parturition. It is the indication for about half of unplanned cesarean deliveries in low-risk nulliparous women. Reducing the rate of unplanned cesarean birth in the USA has been a public health priority over the last two decades with limited success. Labor dystocia is a complex disorder due to multiple causes with a common clinical outcome of slow cervical dilation and fetal descent. A better understanding of the pathophysiologic mechanisms of labor dystocia could lead to new clinical opportunities to increase the rate of normal vaginal delivery, reduce cesarean birth rates, and improve maternal and neonatal health. We conducted a literature review of the causes and pathophysiologic mechanisms of labor dystocia. We summarize known mechanisms supported by clinical and experimental data and newer hypotheses with less supporting evidence. We review recent data on uterine preparation for labor, uterine contractility, cervical preparation for labor, maternal obesity, cephalopelvic disproportion, fetal malposition, intrauterine infection, and maternal stress. We also describe current clinical approaches to preventing and managing labor dystocia. The variation in pathophysiologic causes of labor dystocia probably limits the utility of current general treatment options. However, treatments targeting specific underlying etiologies could be more effective. We found that the pathophysiologic basis of labor dystocia is under-researched, offering wide opportunities for translational investigation of individualized labor management, particularly regarding uterine metabolism and fetal position. More precise diagnostic tools and individualized therapies for labor dystocia might lead to better outcomes. We conclude that additional knowledge of parturition physiology coupled with rigorous clinical evaluation of novel biologically directed treatments could improve obstetric quality of care.
Collapse
Affiliation(s)
- Katherine Kissler
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Mailstop 8613, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Zhang D, Wang Z, Luo X, Guo H, Qiu G, Gong Y, Gao H, Cui S. Cysteine dioxygenase and taurine are essential for embryo implantation by involving in E 2-ERα and P 4-PR signaling in mouse. J Anim Sci Biotechnol 2023; 14:6. [PMID: 36604722 PMCID: PMC9814424 DOI: 10.1186/s40104-022-00804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/20/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Taurine performs multiple physiological functions, and the maintenance of taurine level for most mammals relies on active uptake from diet and endogenous taurine synthesis through its synthesis enzymes, including cysteine dioxygenase (CDO). In addition, uterus tissue and uterus fluid are rich in taurine, and taurine synthesis is regulated by estrogen (E2) and progesterone (P4), the key hormones priming embryo-uterine crosstalk during embryo implantation, but the functional interactions and mechanisms among which are largely unknown. The present study was thus proposed to identify the effects of CDO and taurine on embryo implantation and related mechanisms by using Cdo knockout (KO) and ovariectomy (OVX) mouse models. RESULTS The uterine CDO expression was assayed from the first day of plugging (d 1) to d 8 and the results showed that CDO expression level increased from d 1 to d 4, followed by a significant decline on d 5 and persisted to d 8, which was highly correlated with serum and uterine taurine levels, and serum P4 concentration. Next, Cdo KO mouse was established by CRISPER/Cas9. It was showed that Cdo deletion sharply decreased the taurine levels both in serum and uterus tissue, causing implantation defects and severe subfertility. However, the implantation defects in Cdo KO mice were partly rescued by the taurine supplementation. In addition, Cdo deletion led to a sharp decrease in the expressions of P4 receptor (PR) and its responsive genes Ihh, Hoxa10 and Hand2. Although the expression of uterine estrogen receptor (ERα) had no significant change, the levels of ERα induced genes (Muc1, Ltf) during the implantation window were upregulated after Cdo deletion. These accompanied by the suppression of stroma cell proliferation. Meanwhile, E2 inhibited CDO expression through ERα and P4 upregulated CDO expression through PR. CONCLUSION The present study firstly demonstrates that taurine and CDO play prominent roles in uterine receptivity and embryo implantation by involving in E2-ERα and P4-PR signaling. These are crucial for our understanding the mechanism of embryo implantation, and infer that taurine is a potential agent for improving reproductive efficiency of livestock industry and reproductive medicine.
Collapse
Affiliation(s)
- Di Zhang
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009 People’s Republic of China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Zhijuan Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, People’s Republic of China
| | - Xuan Luo
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, People’s Republic of China
| | - Hongzhou Guo
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009 People’s Republic of China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Guobin Qiu
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009 People’s Republic of China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Yuneng Gong
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009 People’s Republic of China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Hongxu Gao
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009 People’s Republic of China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Sheng Cui
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009 People’s Republic of China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 People’s Republic of China ,grid.268415.cInstitute of Reproduction and Metabolism, Yangzhou University, 225009 Jiangsu, People’s Republic of China
| |
Collapse
|
11
|
Zhu Y, Wang R, Fan Z, Luo D, Cai G, Li X, Han J, Zhuo L, Zhang L, Zhang H, Li Y, Wu S. Taurine Alleviates Chronic Social Defeat Stress-Induced Depression by Protecting Cortical Neurons from Dendritic Spine Loss. Cell Mol Neurobiol 2023; 43:827-840. [PMID: 35435537 PMCID: PMC9958166 DOI: 10.1007/s10571-022-01218-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Abnormal amino acid metabolism in neural cells is involved in the occurrence and development of major depressive disorder. Taurine is an important amino acid required for brain development. Here, microdialysis combined with metabonomic analysis revealed that the level of taurine in the extracellular fluid of the cerebral medial prefrontal cortex (mPFC) was significantly reduced in mice with chronic social defeat stress (CSDS)-induced depression. Therefore, taurine supplementation may be usable an intervention for depression. We found that taurine supplementation effectively rescued immobility time during a tail suspension assay and improved social avoidance behaviors in CSDS mice. Moreover, taurine treatment protected CSDS mice from impairments in dendritic complexity, spine density, and the proportions of different types of spines. The expression of N-methyl D-aspartate receptor subunit 2A, an important synaptic receptor, was largely restored in the mPFC of these mice after taurine supplementation. These results demonstrated that taurine exerted an antidepressive effect by protecting cortical neurons from dendritic spine loss and synaptic protein deficits.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Rui Wang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Ze Fan
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China ,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Danlei Luo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Guohong Cai
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Xinyang Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Jiao Han
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lixia Zhuo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Li Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Haifeng Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Shengxi Wu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
12
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
13
|
Hu X, Wang F, Yang S, Yuan X, Yang T, Zhou Y, Li Y. Rabbit microbiota across the whole body revealed by 16S rRNA gene amplicon sequencing. BMC Microbiol 2021; 21:312. [PMID: 34758744 PMCID: PMC8579649 DOI: 10.1186/s12866-021-02377-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Background Rabbit can produce meat, fur and leather, and serves as an important biomedical animal model. Understanding the microbial community of rabbits helps to raise rabbits healthily and better support their application as animal models. Results In this study, we selected 4 healthy Belgium gray rabbits to collect the microbial samples from 12 body sites, including skin, lung, uterus, mouth, stomach, duodenum, ileum, jejunum, colon, cecum, cecal appendix and rectum. The microbiota across rabbit whole body was investigated via 16S rRNA gene amplicon sequencing. After quality control, 46 samples were retained, and 3,148 qualified ASVs were obtained, representing 23 phyla and 264 genera. Based on the weighted UniFrac distances, these samples were divided into the large intestine (Lin), stomach and small intestine (SSin), uterus (Uter), and skin, mouth and lung (SML) groups. The diversity of Lin microbiota was the highest, followed by those of the SSin, Uter and SML groups. In the whole body, Firmicutes (62.37%), Proteobacteria (13.44%) and Bacteroidota (11.84%) were the most predominant phyla. The relative abundance of Firmicutes in the intestinal tract was significantly higher than that in the non-intestinal site, while Proteobacteria was significantly higher in the non-intestinal site. Among the 264 genera, 35 were the core microbiota distributed in all body sites. Sixty-one genera were specific in the SML group, while 13, 8 and 1 were specifically found in the Lin, SSin and Uter groups, respectively. The Lin group had the most difference with other groups, there were average 72 differential genera between the Lin and other groups. The functional prediction analysis showed that microbial function within each group was similar, but there was a big difference between the intestinal tracts and the non-intestinal group. Notably, the function of microorganism in uterus and mouth were the most different from those in the gastrointestinal sites; rabbit’s coprophagy of consuming soft feces possibly resulted in little differences of microbial function between stomach and large intestinal sites. Conclusion Our findings improve the knowledge about rabbit microbial communities throughout whole body and give insights into the relationship of microbial communities among different body sites in health rabbits. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02377-x.
Collapse
Affiliation(s)
- Xiaofen Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Fei Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shanshan Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xu Yuan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Tingyu Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yunxiao Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
14
|
Guo Y, Cai X, Lu H, Li Q, Zheng Y, Lin Z, Cheng Z, Yang M, Zhang L, Xiang L, Yang X. 17β-Estradiol Promotes Apoptosis of HepG2 Cells Caused by Oxidative Stress by Increasing Foxo3a Phosphorylation. Front Pharmacol 2021; 12:607379. [PMID: 33790784 PMCID: PMC8005602 DOI: 10.3389/fphar.2021.607379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Liver cancer is associated with high mortality, particularly in patients infected with the hepatitis B virus. Treatment methods remain very limited. Here, we explored the effects of 17β-estradiol (E2) on apoptosis of various liver cell lines (LO2, HepG2, and HepG2.2.15 cells). Within a certain concentration range, 17β-estradiol induced oxidative stress and apoptosis of HepG2 cells, downregulated ERα-36 expression, and increased Akt and Foxo3a phosphorylation. p-Foxo3a became localized around the nucleus but did not enter the organelle. The levels of mRNAs encoding manganese superoxide dismutase (MnSOD) and catalase, to the promoters of which Foxo3a binds to trigger gene expression, were significantly reduced in HepG2 cells. 17β-estradiol had no obvious effects on LO2 or HepG2.2.15 cells. We speculate that 17β-estradiol may induce oxidative stress in HepG2 cells by increasing Foxo3a phosphorylation, thus promoting apoptosis. This may serve as a new treatment for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yusheng Guo
- Clinical Laboratory, First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Medical Laboratory, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangsheng Cai
- Clinical Laboratory, First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Center for Medical Experiments, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Xiaorong Yang, ; Lei Xiang, ; Xiangsheng Cai,
| | - Hanwei Lu
- Clinical Laboratory, First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiqi Li
- Department of Medical Laboratory, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Zheng
- Department of Medical Laboratory, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zefang Lin
- Department of Medical Laboratory, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zexiong Cheng
- Department of Medical Laboratory, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Maoxiang Yang
- Center for Medical Experiments, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
| | - Li Zhang
- Clinical Laboratory, First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Xiang
- Center for Medical Experiments, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
- Department of Integrative Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Xiaorong Yang, ; Lei Xiang, ; Xiangsheng Cai,
| | - Xiaorong Yang
- Clinical Laboratory, First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Medical Laboratory, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Xiaorong Yang, ; Lei Xiang, ; Xiangsheng Cai,
| |
Collapse
|