1
|
Riaz Z, Hussain M, Parveen S, Sultana M, Saeed S, Ishaque U, Faiz Z, Tayyab M. In Silico Analysis: Genome-Wide Identification, Characterization and Evolutionary Adaptations of Bone Morphogenetic Protein (BMP) Gene Family in Homo sapiens. Mol Biotechnol 2024; 66:3336-3356. [PMID: 37914865 DOI: 10.1007/s12033-023-00944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
We systematically analyzed BMP gene family in H. sapiens to elucidate genetic structure, phylogenetic relationships, adaptive evolution and tissue-specific expression pattern. Total of 13 BMPs genes were identified in the H. sapiens genome. Bone morphogenetic proteins (BMPs) are composed of a variable number of exons ranging from 2 to 21. They exhibit a molecular weight ranging from 31,081.81 to 82,899.61 Da. These proteins possess hydrophilic characteristics, display thermostability, and exhibit a pH range from acidic to basic. We identified four segmental and two tandem duplication events in BMP gene family of H. sapiens. All of the vertebrate species that were studied show the presence of BMPs 1, 2, 3, 4, 5, 6, 7, 8A, and 15, however only Homo sapiens demonstrated the presence of BMP9 and BMP11. The pathway and process enrichment analysis of BMPs genes showed that these were considerably enriched in positive regulation of pathway-restricted SMAD protein phosphorylation (92%) and cartilage development (77%) biological processes. These genes exhibited positive selection signals that were shown to be conserved across vertebrate lineages. The results showed that BMP2/3/5/6/8a/15 proteins underwent adaptive selection at many amino acid locations and increased positive selection was detected in TGF-β propeptide and TGF-β super family domains which were involved in dorso-ventral patterning, limb bud development. More over the expression pattern of BMP genes revealed that BMP1 and BMP5; BMP4 and BMP6 exhibited substantially identical expression patterns in all tissues while BMP10, BMP15, and BMP3 showed tissue-specific expression.
Collapse
Affiliation(s)
- Zainab Riaz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Hussain
- Department of Veterinary and Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Shakeela Parveen
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan.
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Punjab, Pakistan.
| | - Mehwish Sultana
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Saba Saeed
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
- Institue of Zoology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Urwah Ishaque
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Zunaira Faiz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Tayyab
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| |
Collapse
|
2
|
Gu M, Wang Y, Yu Y. Ovarian fibrosis: molecular mechanisms and potential therapeutic targets. J Ovarian Res 2024; 17:139. [PMID: 38970048 PMCID: PMC11225137 DOI: 10.1186/s13048-024-01448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024] Open
Abstract
Ovarian fibrosis, characterized by the excessive proliferation of ovarian fibroblasts and the accumulation of extracellular matrix (ECM), serves as one of the primary causes of ovarian dysfunction. Despite the critical role of ovarian fibrosis in maintaining the normal physiological function of the mammalian ovaries, research on this condition has been greatly underestimated, which leads to a lack of clinical treatment options for ovarian dysfunction caused by fibrosis. This review synthesizes recent research on the molecular mechanisms of ovarian fibrosis, encompassing TGF-β, extracellular matrix, inflammation, and other profibrotic factors contributing to abnormal ovarian fibrosis. Additionally, we summarize current treatment approaches for ovarian dysfunction targeting ovarian fibrosis, including antifibrotic drugs, stem cell transplantation, and exosomal therapies. The purpose of this review is to summarize the research progress on ovarian fibrosis and to propose potential therapeutic strategies targeting ovarian fibrosis for the treatment of ovarian dysfunction.
Collapse
Affiliation(s)
- Mengqing Gu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Yibo Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
3
|
Xiong G, Zhang H, Peng Y, Shi H, Han M, Hu T, Wang H, Zhang S, Wu X, Xu G, Zhang J, Liu Y. Subchronic co-exposure of polystyrene nanoplastics and 3-BHA significantly aggravated the reproductive toxicity of ovaries and uterus in female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124101. [PMID: 38710361 DOI: 10.1016/j.envpol.2024.124101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Both nanoplastics (NPs) and 3-tert-butyl-4-hydroxyanisole (3-BHA) are environmental contaminants that can bio-accumulate through the food chain. However, the combined effects of which on mammalian female reproductive system remain unclear. Here, the female ICR-CD1 mice were used to evaluate the damage effects of ovaries and uterus after NPs and 3-BHA co-treatment for 35 days. Firstly, co-exposure significantly reduced the body weight and organ index of ovaries and uterus in mice. Secondly, combined effects of NPs and 3-BHA exacerbated the histopathological abnormalities to the ovaries and uterus and decreased female sex hormones such as FSH and LH while increased antioxidant activities including CAT and GSH-Px. Moreover, the apoptotic genes, inflammatory cytokines and the key reproductive development genes such as FSTL1 were significantly up-regulated under co-exposure conditions. Thirdly, through transcriptional and bioinformatics analysis, immunofluorescence and western blotting assays, together with molecular docking simulation, we determined that co-exposure up-regulated the FSTL1, TGF-β and p-Smad1/5/9 but down-regulated the expression of BMP4. Finally, the pharmacological rescue experiments further demonstrated that co-exposure of NPs and 3-BHA mainly exacerbated the female reproductive toxicity through FSTL1-mediated BMP4/TGF-β/SMAD signaling pathway. Taken together, our studies provided the theoretical basis of new environmental pollutants on the reproductive health in female mammals.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Haiyan Zhang
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China; College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Yulin Peng
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Huangqi Shi
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Meiling Han
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Tianle Hu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Hongcheng Wang
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Shangrong Zhang
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xiaoqing Wu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Gaoxiao Xu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Yong Liu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China.
| |
Collapse
|
4
|
Zhang Y, Yu J, Han R, Ma Z, Zhang M, Li Y, Tang Y, Nie G, Zhou C. Genome-wide identification and structural analysis of the BMP gene family in Triplophysa dalaica. BMC Genomics 2024; 25:194. [PMID: 38373886 PMCID: PMC10875767 DOI: 10.1186/s12864-024-10049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are part of the transforming growth factor beta (TGF-β) superfamily and play crucial roles in bone development, as well as in the formation and maintenance of various organs. Triplophysa dalaica, a small loach fish that primarily inhabits relatively high elevations and cooler water bodies, was the focus of this study. Understanding the function of BMP genes during the morphogenesis of T. dalaica helps to clarify the mechanisms of its evolution and serves as a reference for the study of BMP genes in other bony fishes. The data for the T. dalaica transcriptome and genome used in this investigation were derived from the outcomes of our laboratory sequencing. RESULTS This study identified a total of 26 BMP genes, all of which, except for BMP1, possess similar TGF-β structural domains. We conducted an analysis of these 26 BMP genes, examining their physicochemical properties, subcellular localization, phylogenetic relationships, covariance within and among species, chromosomal localization, gene structure, conserved motifs, conserved structural domains, and expression patterns. Our findings indicated that three BMP genes were associated with unstable proteins, while 11 BMP genes were located within the extracellular matrix. Furthermore, some BMP genes were duplicated, with the majority being enriched in the GO:0008083 pathway, which is related to growth factor activity. It was hypothesized that genes within the BMP1/3/11/15 subgroup (Group I) play a significant role in the growth and development of T. dalaica. By analyzing the expression patterns of proteins in nine tissues (gonad, kidney, gill, spleen, brain, liver, fin, heart, and muscle), we found that BMP genes play diverse regulatory roles during different stages of growth and development and exhibit characteristics of division of labor. CONCLUSIONS This study contributes to a deeper understanding of BMP gene family member expression patterns in high-altitude, high-salinity environments and provides valuable insights for future research on the BMP gene family in bony fishes.
Collapse
Affiliation(s)
- Yizheng Zhang
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Jinhui Yu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Rui Han
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Zhigang Ma
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Meng Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yikai Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yongtao Tang
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Guoxing Nie
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| | - Chuanjiang Zhou
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
5
|
Gu R, Dai F, Xiang C, Chen J, Yang D, Tan W, Wang Z, Liu H, Cheng Y. BMP4 participates in the pathogenesis of PCOS by regulating glucose metabolism and autophagy in granulosa cells under hyperandrogenic environment. J Steroid Biochem Mol Biol 2023; 235:106410. [PMID: 37858799 DOI: 10.1016/j.jsbmb.2023.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex reproductive endocrine disease characterized by ovulation dysfunction with multiple etiologies and manifestations, and it is widely believed that the disorders of hyper-androgen and glucose metabolism play a key role in its progression. There has been evidence that bone morphogenetic protein 4 (BMP4) is essential for the regulation of granulosa cells, but whether it regulates metabolism level of granulosa cells under hyperandrogenic environment remains unclear. In this study, Gene Expression Omnibus, clinical data and serum of PCOS patient were collected to detect androgen and BMP4 levels. KGN cells exposed to androgens as a model for simulating PCOS granulosa cells. Lactate/pyruvate kits, and Extracellular Acidification Rate and Oxygen Consumption Rate assay were performed to detect glycolysis and autophagy levels of granulosa cells. Lentivirus infection was used to investigate the effects of BMP4 on granulosa cells. RNA-seq were performed to explore the special mechanism. We found that BMP4 was increased in PCOS patients with hyper-androgen and granulosa cells with dihydrotestosterone treatment. Mechanically, on the one hand, hyperandrogenemia can up-regulate BMP4 secretion and induce glycolysis and autophagy levels. On the other hand, we found that hyperandrogenic-induced YAP1 upregulation may mediate BMP4 to increase glycolysis level and decrease autophagy, which plays a protective role in granulosa cells to ensure subsequent energy utilization and mitochondrial function. Overall, we innovated on the protective effect of BMP4 on glycolysis and autophagy disorders induced by excessive androgen in granulosa cells. Our study will provide guidance for future understanding of PCOS from a metabolic perspective and for exploring treatment options.
Collapse
Affiliation(s)
- Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Chunrong Xiang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei 430100, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Zitao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| |
Collapse
|
6
|
Chen X, Jin R, Yang A, Li J, Song Y, Zhao B, Chen Y, Wu X. Behavioral and Physiological Differences in Female Rabbits at Different Stages of the Estrous Cycle. Animals (Basel) 2023; 13:3414. [PMID: 37958169 PMCID: PMC10648029 DOI: 10.3390/ani13213414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Estrus involves a series of complex physiological signs and changes in behavior before ovulation, which play a crucial role in animal reproduction. However, there have been few studies that evaluate behaviors during the different stages of estrus cycle in female rabbits. Therefore, more detailed information is needed on distinguishing the various stages of the estrous cycle. This study explored the behavioral and physiological differences at various estrous cycle stages in female New Zealand White rabbits. The continuous recording method was employed to record the daily behaviors of twenty postpartum female rabbits during the estrous cycle. Compared with the diestrus stage, the duration of foraging and drinking behavior in estrus decreased significantly, and the frequency of grooming and biting behaviors increased (p < 0.05). Differences in reproductive hormone levels (FSH, LH, P4, and E2) and follicle development were measured at each stage via ELISA and HE staining. The FSH and LH levels showed an increasing trend and then decreased, with the lowest being in late estrus (p < 0.05). The P4 level was the lowest in estrus (p < 0.05), and E2 showed a gradually increasing trend. There was no significant difference in the number of primordial follicles at each stage, but the number of primary follicles in estrus was significantly higher than at the other stages (p < 0.05). To further understand the molecular regulation mechanism of the estrous cycle in female rabbits, we analyzed the ovarian transcription patterns of female rabbits in diestrus (D group) and estrus (E group) employing RNA-seq. A total of 967 differentially expressed genes (DEGs) were screened from the ovaries of female rabbits between the diestrus and estrus groups. A KEGG analysis of DEGs enriched in the estrogen signaling pathway, aldosterone synthesis, and secretion pathway, such as CYP19A1 and IGF1R, was performed. The rabbits' behavior, related physiological hormones, and molecular regulation also differed at different estrous cycle stages. The results provide recommendations for the adequate management practices of postpartum re-estrus and breeding female rabbits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.C.); (R.J.); (A.Y.); (J.L.); (Y.S.); (B.Z.)
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.C.); (R.J.); (A.Y.); (J.L.); (Y.S.); (B.Z.)
| |
Collapse
|
7
|
Lei L, Zhu J, Chen C, Wang Y, Wu C, Qi M, Wang Y, Liu X, Hong X, Yu L, Chen H, Wei C, Liu Y, Li W, Zhu X. Genome-wide identification, evolution and expression analysis of bone morphogenetic protein (BMP) gene family in chinese soft-shell turtle ( Pelodiscus sinensis). Front Genet 2023; 14:1109478. [PMID: 36816024 PMCID: PMC9928969 DOI: 10.3389/fgene.2023.1109478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction: Bone morphogenetic proteins (BMPs) play a crucial role in bone formation and differentiation. Recent RNA-Seq results suggest that BMPs may be involved in the sex differentiation of P. sinensis, yet more relevant studies about BMPs in P. sinensis are lacking. Methods: Herein, we identified BMP gene family members, analyzed the phylogeny, collinear relationship, scaffold localization, gene structures, protein structures, transcription factors and dimorphic expression by using bioinformatic methods based on genomic and transcriptomic data of P. sinensis. Meanwhile, qRT-PCR was used to verify the RNA-Seq results and initially explore the function of the BMPs in the sex differentiation of P. sinensis. Results: A total of 11 BMP genes were identified, 10 of which were localized to their respective genomic scaffolds. Phylogenetic analysis revealed that BMP genes were divided into eight subfamilies and shared similar motifs ("WII", "FPL", "TNHA", "CCVP", and "CGC") and domain (TGF-β superfamily). The results of the sexually dimorphic expression profile and qRT-PCR showed that Bmp2, Bmp3, Bmp15l, Bmp5, Bmp6 and Bmp8a were significantly upregulated in ovaries, while Bmp2lb, Bmp7, Bmp2bl and Bmp10 were remarkable upregulated in testes, suggesting that these genes may play a role in sex differentiation of P. sinensis. Discussion: Collectively, our comprehensive results enrich the basic date for studying the evolution and functions of BMP genes in P. sinensis.
Collapse
Affiliation(s)
- Luo Lei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Junxian Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Yongchang Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Congcong Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Ming Qi
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Yakun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Lingyun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Haigang Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Yihui Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China,*Correspondence: Xinping Zhu, ; Wei Li,
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China,*Correspondence: Xinping Zhu, ; Wei Li,
| |
Collapse
|
8
|
Vignjević Petrinović S, Jauković A, Milošević M, Bugarski D, Budeč M. Targeting Stress Erythropoiesis Pathways in Cancer. Front Physiol 2022; 13:844042. [PMID: 35694408 PMCID: PMC9174937 DOI: 10.3389/fphys.2022.844042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer-related anemia (CRA) is a common multifactorial disorder that adversely affects the quality of life and overall prognosis in patients with cancer. Safety concerns associated with the most common CRA treatment options, including intravenous iron therapy and erythropoietic-stimulating agents, have often resulted in no or suboptimal anemia management for many cancer patients. Chronic anemia creates a vital need to restore normal erythropoietic output and therefore activates the mechanisms of stress erythropoiesis (SE). A growing body of evidence demonstrates that bone morphogenetic protein 4 (BMP4) signaling, along with glucocorticoids, erythropoietin, stem cell factor, growth differentiation factor 15 (GDF15) and hypoxia-inducible factors, plays a pivotal role in SE. Nevertheless, a chronic state of SE may lead to ineffective erythropoiesis, characterized by the expansion of erythroid progenitor pool, that largely fails to differentiate and give rise to mature red blood cells, further aggravating CRA. In this review, we summarize the current state of knowledge on the emerging roles for stress erythroid progenitors and activated SE pathways in tumor progression, highlighting the urgent need to suppress ineffective erythropoiesis in cancer patients and develop an optimal treatment strategy as well as a personalized approach to CRA management.
Collapse
Affiliation(s)
- Sanja Vignjević Petrinović
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Milošević
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirela Budeč
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|