1
|
Khader N, Shchuka VM, Dorogin A, Shynlova O, Mitchell JA. SOX4 exerts contrasting regulatory effects on labor-associated gene promoters in myometrial cells. PLoS One 2024; 19:e0297847. [PMID: 38635533 PMCID: PMC11025800 DOI: 10.1371/journal.pone.0297847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/13/2024] [Indexed: 04/20/2024] Open
Abstract
The uterine muscular layer, or myometrium, undergoes profound changes in global gene expression during its progression from a quiescent state during pregnancy to a contractile state at the onset of labor. In this study, we investigate the role of SOX family transcription factors in myometrial cells and provide evidence for the role of SOX4 in regulating labor-associated genes. We show that Sox4 has elevated expression in the murine myometrium during a term laboring process and in two mouse models of preterm labor. Additionally, SOX4 differentially affects labor-associated gene promoter activity in cooperation with activator protein 1 (AP-1) dimers. SOX4 exerted no effect on the Gja1 promoter; a JUND-specific activation effect at the Fos promoter; a positive activation effect on the Mmp11 promoter with the AP-1 dimers; and surprisingly, we noted that the reporter expression of the Ptgs2 promoter in the presence of JUND and FOSL2 was repressed by the addition of SOX4. Our data indicate SOX4 may play a diverse role in regulating gene expression in the laboring myometrium in cooperation with AP-1 factors. This study enhances our current understanding of the regulatory network that governs the transcriptional changes associated with the onset of labor and highlights a new molecular player that may contribute to the labor transcriptional program.
Collapse
Affiliation(s)
- Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Virlana M. Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Anna Dorogin
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jennifer A. Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Wang C, Wang YJ, Ying L, Wong RJ, Quaintance CC, Hong X, Neff N, Wang X, Biggio JR, Mesiano S, Quake SR, Alvira CM, Cornfield DN, Stevenson DK, Shaw GM, Li J. Integrative analysis of noncoding mutations identifies the druggable genome in preterm birth. SCIENCE ADVANCES 2024; 10:eadk1057. [PMID: 38241369 PMCID: PMC10798565 DOI: 10.1126/sciadv.adk1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Preterm birth affects ~10% of pregnancies in the US. Despite familial associations, identifying at-risk genetic loci has been challenging. We built deep learning and graphical models to score mutational effects at base resolution via integrating the pregnant myometrial epigenome and large-scale patient genomes with spontaneous preterm birth (sPTB) from European and African American cohorts. We uncovered previously unidentified sPTB genes that are involved in myometrial muscle relaxation and inflammatory responses and that are regulated by the progesterone receptor near labor onset. We studied genomic variants in these genes in our recruited pregnant women administered progestin prophylaxis. We observed that mutation burden in these genes was predictive of responses to progestin treatment for preterm birth. To advance therapeutic development, we screened ~4000 compounds, identified candidate molecules that affect our identified genes, and experimentally validated their therapeutic effects on regulating labor. Together, our integrative approach revealed the druggable genome in preterm birth and provided a generalizable framework for studying complex diseases.
Collapse
Affiliation(s)
- Cheng Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Computational Health Sciences Institute, Parker Institute for Cancer Immunotherapy, and Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yuejun Jessie Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Computational Health Sciences Institute, Parker Institute for Cancer Immunotherapy, and Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lihua Ying
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J. Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Cecele C. Quaintance
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph R. Biggio
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Obstetrics and Gynecology, Ochsner Health, New Orleans, LA, USA
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University and Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Stephen R. Quake
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina M. Alvira
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David N. Cornfield
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K. Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingjing Li
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Computational Health Sciences Institute, Parker Institute for Cancer Immunotherapy, and Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
Li WN, Dickson MJ, DeMayo FJ, Wu SP. The role of progesterone receptor isoforms in the myometrium. J Steroid Biochem Mol Biol 2022; 224:106160. [PMID: 35931328 PMCID: PMC9895129 DOI: 10.1016/j.jsbmb.2022.106160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 02/08/2023]
Abstract
Myometrial contraction is stringently controlled throughout pregnancy and parturition. Progesterone signaling, effecting through the progesterone receptor (PR), is pivotal in modulating uterine activity. Evidence has shown that two major PR isoforms, PR-A and PR-B, have distinct activities on gene regulation, and the ratio between these isoforms determines the contractility of the myometrium at different gestational stages. Herein, we focus on the regulation of PR activity in the myometrium, especially the differential actions of the two PR isoforms, which maintain uterine quiescence during pregnancy and regulate the switch to a contractile state at the onset of labor. To demonstrate the PR regulatory network and its mechanisms of actions on myometrial activity, we summarized the findings into three parts: Regulation of PR Expression and Isoform Levels, Progesterone Receptor Interacting Factors, and Biological Processes Regulated by Myometrial Progesterone Receptor Isoforms. Recent genomic and epigenomic data, from human specimens and mouse models, are recruited to support the existing knowledge and offer new insights and future directions in myometrial biology.
Collapse
Affiliation(s)
- Wan-Ning Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mackenzie J Dickson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
4
|
Wu SP, Wang T, Yao ZC, Peavey MC, Li X, Zhou L, Larina IV, DeMayo FJ. Myometrial progesterone receptor determines a transcription program for uterine remodeling and contractions during pregnancy. PNAS NEXUS 2022; 1:pgac155. [PMID: 36120506 PMCID: PMC9470376 DOI: 10.1093/pnasnexus/pgac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023]
Abstract
The uterine myometrium expands and maintains contractile quiescence before parturition. While the steroid hormone progesterone blocks labor, the role of progesterone signaling in myometrial expansion remains elusive. This study investigated the myometrial functions of the progesterone receptor, PGR. Pgr ablation in mouse smooth muscle leads to subfertility, oviductal embryo retention, and impaired myometrial adaptation to pregnancy. While gross morphology between mutant and control uteri are comparable, mutant uteri manifest a decrease of 76.6% oxytocin-stimulated contractility in a pseudopregnant context with a reduced expression of intracellular calcium homeostasis genes including Pde5a and Plcb4. At mid-pregnancy, the mutant myometrium exhibits discontinuous myofibers and disarrayed extracellular matrix at the conceptus site. Transcriptome of the mutant mid-pregnant uterine wall manifests altered muscle and extracellular matrix profiles and resembles that of late-pregnancy control tissues. A survey of PGR occupancy, H3K27ac histone marks, and chromatin looping annotates cis-acting elements that may direct gene expression of mid-pregnancy uteri for uterine remodeling. Further analyses suggest that major muscle and matrix regulators Myocd and Ccn2 and smooth muscle building block genes are PGR direct downstream targets. Cataloging enhancers that are topologically associated with progesterone downstream genes reveals distinctive patterns of transcription factor binding motifs in groups of enhancers and identifies potential regulatory partners of PGR outside its occupying sites. Finally, conserved correlations are found between estimated PGR activities and RNA abundance of downstream muscle and matrix genes in human myometrial tissues. In summary, PGR is pivotal to direct the molecular program for the uterus to remodel and support pregnancy.
Collapse
Affiliation(s)
- San-Pin Wu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Zheng-Chen Yao
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary C Peavey
- Department of Obstetrics & Gynecology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xilong Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Irina V Larina
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|