1
|
Tóth AD, Turu G, Hunyady L. Functional consequences of spatial, temporal and ligand bias of G protein-coupled receptors. Nat Rev Nephrol 2024; 20:722-741. [PMID: 39039165 DOI: 10.1038/s41581-024-00869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/24/2024]
Abstract
G protein-coupled receptors (GPCRs) regulate every aspect of kidney function by mediating the effects of various endogenous and exogenous substances. A key concept in GPCR function is biased signalling, whereby certain ligands may selectively activate specific pathways within the receptor's signalling repertoire. For example, different agonists may induce biased signalling by stabilizing distinct active receptor conformations - a concept that is supported by advances in structural biology. However, the processes underlying functional selectivity in receptor signalling are extremely complex, involving differences in subcellular compartmentalization and signalling dynamics. Importantly, the molecular mechanisms of spatiotemporal bias, particularly its connection to ligand binding kinetics, have been detailed for GPCRs critical to kidney function, such as the AT1 angiotensin receptor (AT1R), V2 vasopressin receptor (V2R) and the parathyroid hormone 1 receptor (PTH1R). This expanding insight into the multifaceted nature of biased signalling paves the way for innovative strategies for targeting GPCR functions; the development of novel biased agonists may represent advanced pharmacotherapeutic approaches to the treatment of kidney diseases and related systemic conditions, such as hypertension, diabetes and heart failure.
Collapse
MESH Headings
- Humans
- Ligands
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptors, Vasopressin/metabolism
- Receptors, Vasopressin/physiology
- Animals
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Parathyroid Hormone, Type 1/physiology
- Kidney Diseases/metabolism
- Kidney/metabolism
Collapse
Affiliation(s)
- András D Tóth
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Mathieu NM, Nakagawa P, Grobe JL, Sigmund CD. Insights Into the Role of Angiotensin-II AT 1 Receptor-Dependent β-Arrestin Signaling in Cardiovascular Disease. Hypertension 2024; 81:6-16. [PMID: 37449411 PMCID: PMC10787814 DOI: 10.1161/hypertensionaha.123.19419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
β-arrestins are a family of intracellular signaling proteins that play a key role in regulating the activity of G protein-coupled receptors. The angiotensin-II type 1 receptor is an important G protein-coupled receptor involved in the regulation of cardiovascular function and has been implicated in the progression of cardiovascular diseases. In addition to canonical G protein signaling, G protein-coupled receptors including the angiotensin-II type 1 receptor can signal via β-arrestin. Dysregulation of β-arrestin signaling has been linked to several cardiovascular diseases including hypertension, atherosclerosis, and heart failure. Understanding the role of β-arrestins in these conditions is critical to provide new therapeutic targets for the treatment of cardiovascular disease. In this review, we will discuss the beneficial and maladaptive physiological outcomes of angiotensin-II type 1 receptor-dependent β-arrestin activation in different cardiovascular diseases.
Collapse
Affiliation(s)
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
3
|
Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Structural basis of GPCR coupling to distinct signal transducers: implications for biased signaling. Trends Biochem Sci 2022; 47:570-581. [PMID: 35396120 DOI: 10.1016/j.tibs.2022.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Three classes of G-protein-coupled receptor (GPCR) partners - G proteins, GPCR kinases, and arrestins - preferentially bind active GPCRs. Our analysis suggests that the structures of GPCRs bound to these interaction partners available today do not reveal a clear conformational basis for signaling bias, which would have enabled the rational design of biased GRCR ligands. In view of this, three possibilities are conceivable: (i) there are no generalizable GPCR conformations conducive to binding a particular type of partner; (ii) subtle differences in the orientation of individual residues and/or their interactions not easily detectable in the receptor-transducer structures determine partner preference; or (iii) the dynamics of GPCR binding to different types of partners rather than the structures of the final complexes might underlie transducer bias.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | |
Collapse
|
4
|
Hosseini-Sharifabad A, Alaei Z, Rabbani M, Seyedabadi M. The Role of Cyclooxygenase 2 in the Cognitive Impairment Induced by Alcohol or Stress in Rats. Adv Biomed Res 2022; 10:44. [PMID: 35071112 PMCID: PMC8744420 DOI: 10.4103/abr.abr_287_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 02/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Cognitive impairment is an unpleasant and progressive mental disorder characterized by learning and memory disabilities. Stress and alcohol are two known environmental factors that increase cognitive impairment. This study was designed to evaluate the relative role of cyclooxygenase 2 in alcohol or stress-induced cognitive impairment. Materials and Methods: Male Wistar rats were randomly divided into groups with six rats in each. The groups included sham, control, alcohol (15% ethanol in drinking water), and restraint stress (restraint 6 h per day). Three separated groups received celecoxib at a dose of 20 mg/kg in addition to those listed above. The treatments continued daily for 28 days. The object recognition task (ORT) and Morris water maze (MWM) are used to evaluate the learning and memory. Results: Alcohol or restrain stress significantly increased the time and distance needed to find the hidden platform in MWM. Furthermore, they decreased the recognition index in ORT compared to the control group. Administration of celecoxib significantly decreased the required time and traveled distance to reach the platform in alcohol-treated animals but not in the stress-exposed rats. Celecoxib also significantly increased the recognition index both in alcohol- or restraint stress-exposed animals. Conclusion: We found that either alcohol or restraint stress impairs memory in rats. In MWM, celecoxib improved the alcohol-induced memory impairment but could not show a reduction in memory deterioration due to restraint stress. In ORT, celecoxib reversed memory impairment due to both alcohol and restraint stress.
Collapse
Affiliation(s)
- Ali Hosseini-Sharifabad
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Alaei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rabbani
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules 2021; 11:biom11020218. [PMID: 33557162 PMCID: PMC7913897 DOI: 10.3390/biom11020218] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Arrestins are a small family of four proteins in most vertebrates that bind hundreds of different G protein-coupled receptors (GPCRs). Arrestin binding to a GPCR has at least three functions: precluding further receptor coupling to G proteins, facilitating receptor internalization, and initiating distinct arrestin-mediated signaling. The molecular mechanism of arrestin–GPCR interactions has been extensively studied and discussed from the “arrestin perspective”, focusing on the roles of arrestin elements in receptor binding. Here, we discuss this phenomenon from the “receptor perspective”, focusing on the receptor elements involved in arrestin binding and emphasizing existing gaps in our knowledge that need to be filled. It is vitally important to understand the role of receptor elements in arrestin activation and how the interaction of each of these elements with arrestin contributes to the latter’s transition to the high-affinity binding state. A more precise knowledge of the molecular mechanisms of arrestin activation is needed to enable the construction of arrestin mutants with desired functional characteristics.
Collapse
|
6
|
Esmaeeli A, Keshavarz Z, Dehdar F, Assadi M, Seyedabadi M. The effects of carvedilol, metoprolol and propranolol on cisplatin-induced kidney injury. Drug Chem Toxicol 2020; 45:1558-1564. [PMID: 33198524 DOI: 10.1080/01480545.2020.1846551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The β-adrenoceptor blockers may have anti-oxidant properties or induce β-arrestin recruitment beyond classical desensitization of receptor/G protein coupling, offering potential therapeutic benefits. Here, we investigated the effects of carvedilol, metoprolol and propranolol in an animal model of cisplatin-induced nephrotoxicity. Rats received the β-blockers (3 or 12 mg/kg/day) with or without cisplatin, and kidney function was investigated using renal scintigraphy, histopathology, and serum variables. Metoprolol and propranolol as well as low-dose carvedilol did not alter kidney function, per se. Meanwhile, high-dose carvedilol reduced renal accumulation of Technetium-99m (99mTc)-labeled dimercaptosuccinic acid (99mTc-DMSA) without significant effect on other variables. Furthermore, low-dose carvedilol prevented cisplatin-induced reduction of tracer uptake, but high-dose of this drug aggravated the situation. In this regard, both low and high -doses of carvedilol significantly inhibited cisplatin effects on kidney histology, BUN and creatinine levels. Also, high-dose propranolol inhibited cisplatin adverse effects on radiotracer uptake, histological manifestations, BUN and creatinine levels, while metoprolol failed to cause a notable effect. Taken together, carvedilol and high-dose propranolol may offer potential benefits in cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Abdolhamid Esmaeeli
- Department of Pathology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Keshavarz
- Department of Pathology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Firoozeh Dehdar
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|