1
|
Jahi H, Eslami M, Sayyah M, Karimzadeh F, Alesheikh M. Curcumin Lowers the Accelerated Speed of Epileptogenesis by Traumatic Brain Injury. IRANIAN BIOMEDICAL JOURNAL 2024; 28:113-9. [PMID: 38562043 PMCID: PMC11186616 DOI: 10.61186/ibj.3978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 04/04/2024]
Abstract
Background Traumatic brain injury or TBI can underlie epilepsy. Prevention of PTE has been of great interest to scientists. Given the antiepileptic, antioxidant and anti-inflammatory activities of curcumin, we examined whether this compound can affect epileptogenesis in rats after TBI. Methods Curcumin was injected once a day for two weeks. TBI was induced in the temporal cortex of anesthetized rats using a controlled cortical impact device. One day after TBI, pentylenetetrazole (PTZ), 35 mg/kg, was injected i.p. every other day until manifestation of generalized seizures. The number of PTZ injections was then recorded. Moreover, the extent of cortical and hippocampal IL-1β and glial fibrillary acidic protein (GFAP) expression in the epileptic rats were measured by Western blot analysis. Results Curcumin 50 and 150 mg/kg prevented the development of kindling, whereas TBI accelerated the rate of kindling. Curcumin 20 mg/kg prohibited kindling facilitation by TBI, and reduced the expression of IL-1β and GFAP induced by TBI. Conclusion Curcumin can stop the acceleration of epileptogenesis after TBI in rats. Inhibiting hippocampal and cortical overexpression of IL-1β and GFAP seems to be involved in this activity.
Collapse
Affiliation(s)
- Hanieh Jahi
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Basic Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Eslami
- Department of Basic Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Alesheikh
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Pijet B, Kostrzewska-Księzyk A, Pijet-Kucicka M, Kaczmarek L. Matrix Metalloproteinase-9 Contributes to Epilepsy Development after Ischemic Stroke in Mice. Int J Mol Sci 2024; 25:896. [PMID: 38255970 PMCID: PMC10815104 DOI: 10.3390/ijms25020896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Epilepsy, a neurological disorder affecting over 50 million individuals globally, is characterized by an enduring predisposition and diverse consequences, both neurobiological and social. Acquired epilepsy, constituting 30% of cases, often results from brain-damaging injuries like ischemic stroke. With one third of epilepsy cases being resistant to existing drugs and without any preventive therapeutics for epileptogenesis, identifying anti-epileptogenic targets is crucial. Stroke being a leading cause of acquired epilepsy, particularly in the elderly, prompts the need for understanding post-stroke epileptogenesis. Despite the challenges in studying stroke-evoked epilepsy in rodents due to poor long-term survival rates, in this presented study the use of an animal care protocol allowed for comprehensive investigation. We highlight the role of matrix metalloproteinase-9 (MMP-9) in post-stroke epileptogenesis, emphasizing MMP-9 involvement in mouse models and its potential as a therapeutic target. Using a focal Middle Cerebral Artery occlusion model, this study demonstrates MMP-9 activation following ischemia, influencing susceptibility to seizures. MMP-9 knockout reduces epileptic features, while overexpression exacerbates them. The findings show that MMP-9 is a key player in post-stroke epileptogenesis, presenting opportunities for future therapies and expanding our understanding of acquired epilepsy.
Collapse
Affiliation(s)
- Barbara Pijet
- Laboratory of Neurobiology, Braincity, Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland; (A.K.-K.)
| | | | | | | |
Collapse
|
3
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
4
|
Phoswa WN, Mokgalaboni K. Immunological Imbalances Associated with Epileptic Seizures in Type 2 Diabetes Mellitus. Brain Sci 2023; 13:brainsci13050732. [PMID: 37239204 DOI: 10.3390/brainsci13050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE OF THE REVIEW Type 2 diabetes mellitus (T2DM) is a global health burden that leads to an increased morbidity and mortality rate arising from microvascular and macrovascular complications. Epilepsy leads to complications that cause psychological and physical distress to patients and carers. Although these conditions are characterized by inflammation, there seems to be a lack of studies that have evaluated inflammatory markers in the presence of both conditions (T2DM and epilepsy), especially in low-middle-income countries where T2DM is epidemic. Summary findings: In this review, we describe the role of immunity in the seizure generation of T2DM. Current evidence shows an increase in the levels of biomarkers such as interleukin (IL-1β, IL-6, and IL-8), tumour necrosis factor-α (TNF-α), high mobility group box-1 (HMGB1), and toll-like receptors (TLRs) in epileptic seizures and T2DM. However, there is limited evidence to show a correlation between inflammatory markers in the central and peripheral levels of epilepsy. CONCLUSIONS Understanding the pathophysiological mechanism behind epileptic seizures in T2DM through an investigation of immunological imbalances might improve diagnosis and further counter the risks of developing complications. This might also assist in delivering safe and effective therapies to T2DM patients affected, thus reducing morbidity and mortality by preventing or reducing associated complications. Moreover, this review also provides an overview approach on inflammatory cytokines that can be targeted when developing alternative therapies, in case these conditions coexist.
Collapse
Affiliation(s)
- Wendy N Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| | - Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| |
Collapse
|
5
|
A Comprehensive Review on Anti-Inflammatory Response of Flavonoids in Experimentally-Induced Epileptic Seizures. Brain Sci 2023; 13:brainsci13010102. [PMID: 36672083 PMCID: PMC9856497 DOI: 10.3390/brainsci13010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Flavonoids, a group of natural compounds with phenolic structure, are becoming popular as alternative medicines obtained from plants. These compounds are reported to have various pharmacological properties, including attenuation of inflammatory responses in multiple health issues. Epilepsy is a disorder of the central nervous system implicated with the activation of the inflammatory cascade in the brain. The aim of the present study was to summarize the role of various neuroinflammatory mediators in the onset and progression of epilepsy, and, thereafter, to discuss the flavonoids and their classes, including their biological properties. Further, we highlighted the modulation of anti-inflammatory responses achieved by these substances in different forms of epilepsy, as evident from preclinical studies executed on multiple epilepsy models. Overall, the review summarizes the available evidence of the anti-inflammatory potential of various flavonoids in epilepsy.
Collapse
|
6
|
Tiwari MN, Mohan S, Biala Y, Shor O, Benninger F, Yaari Y. Corticotropin Releasing Factor Mediates K Ca3.1 Inhibition, Hyperexcitability, and Seizures in Acquired Epilepsy. J Neurosci 2022; 42:5843-5859. [PMID: 35732494 PMCID: PMC9337610 DOI: 10.1523/jneurosci.2475-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 01/29/2023] Open
Abstract
Temporal lobe epilepsy (TLE), the most common focal seizure disorder in adults, can be instigated in experimental animals by convulsant-induced status epilepticus (SE). Principal hippocampal neurons from SE-experienced epileptic male rats (post-SE neurons) display markedly augmented spike output compared with neurons from nonepileptic animals (non-SE neurons). This enhanced firing results from a cAMP-dependent protein kinase A-mediated inhibition of KCa3.1, a subclass of Ca2+-gated K+ channels generating the slow afterhyperpolarizing Ca2+-gated K+ current (IsAHP). The inhibition of KCa3.1 in post-SE neurons leads to a marked reduction in amplitude of the IsAHP that evolves during repetitive firing, as well as in amplitude of the associated Ca2+-dependent component of the slow afterhyperpolarization potential (KCa-sAHP). Here we show that KCa3.1 inhibition in post-SE neurons is induced by corticotropin releasing factor (CRF) through its Type 1 receptor (CRF1R). Acute application of CRF1R antagonists restores KCa3.1 activity in post-SE neurons, normalizing KCa-sAHP/IsAHP amplitudes and neuronal spike output, without affecting these variables in non-SE neurons. Moreover, pharmacological antagonism of CRF1Rs in vivo reduces the frequency of spontaneous recurrent seizures in post-SE chronically epileptic rats. These findings may provide a new vista for treating TLE.SIGNIFICANCE STATEMENT Epilepsy, a common neurologic disorder, often develops following a brain insult. Identifying key cellular mechanisms underlying acquired epilepsy is critical for developing effective antiepileptic therapies. In an experimental model of acquired epilepsy, principal hippocampal neurons manifest hyperexcitability because of downregulation of KCa3.1, a subtype of Ca2+-gated K+ ion channels. We show that KCa3.1 downregulation is mediated by corticotropin releasing factor (CRF) acting through its Type 1 receptor (CRF1R). Congruently, acute application of selective CRF1R antagonists restores KCa3.1 channel activity, leading to normalization of neuronal excitability. In the same model, injection of a CRF1R antagonist to epileptic animals markedly decreases the frequency of electrographic seizures. Therefore, targeting CRF1Rs may provide a new strategy in the treatment of acquired epilepsy.
Collapse
Affiliation(s)
- Manindra Nath Tiwari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel 9112102
| | - Sandesh Mohan
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel 9112102
| | - Yoav Biala
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel 9112102
| | - Oded Shor
- Felsenstein Medical Research Center, Beilinson Hospital, Petach Tikva, Israel 4941492
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Felix Benninger
- Felsenstein Medical Research Center, Beilinson Hospital, Petach Tikva, Israel 4941492
- Department of Neurology, Rabin Medical Center, Petach Tikva, Israel 49141492
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Yoel Yaari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel 9112102
| |
Collapse
|
7
|
Su FZ, Bai CX, Luo Y, Zhang WS, Cui N, Wang YY, Sun YP, Zhu WB, Zhao MY, Yang BY, Kuang HX, Wang QH. Cattle Bile Arisaema Aqueous Extracts Protect Against Febrile Seizures in Rats Through Regulating Neurotransmitters and Suppressing Neuroinflammation. Front Pharmacol 2022; 13:889055. [PMID: 35712708 PMCID: PMC9196122 DOI: 10.3389/fphar.2022.889055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Cattle bile Arisaema (CBA) is a traditional medicine used for the treatment of febrile seizures (FS) for thousands of years in China. However, its application is greatly limited due to cost reasons, and pig bile Arisaema (PBA) is the main commercial product instead. Additionally, the underlying mechanism of CBA for the treatment of FS still remains unknown. In this study, we investigated the anti-convulsant effect and potential mechanism of the CBA aqueous extract for the first time through a hot-water bath-induced FS rat model. Our results showed that pre-treatment with CBA dramatically lowered the incidence rate and generation times and prolonged the latency of FS. In addition, CBA effectively ameliorated neuronal damage and regulated neurotransmitter disorder induced by FS in the rat hippocampus. The enzyme-linked immunosorbent assay, western blotting, immunohistochemical, and qRT-PCR results exhibited that CBA suppressed the expression of GFAP, TLR4, NF-κB, HMGB1, NLRP3, TNF-α, IL-1β, and IL-6 and consequently inhibited the neuroinflammation induced by FS. Interestingly, although the CBA and PBA aqueous extracts possessed the same trend on the changes caused by FS, the improvement of FS by CBA is markedly better than that by PBA. These findings indicate that CBA exerts a protective effect on febrile seizures through regulating neurotransmitter disorder and suppressing neuroinflammation.
Collapse
Affiliation(s)
- Fa-Zhi Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Chen-Xi Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yumeng Luo
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wen-Sen Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Na Cui
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yang-Yang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yan-Ping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wen-Bo Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Ming-Yang Zhao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Hai-Xue Kuang, ; Qiu-Hong Wang,
| | - Qiu-Hong Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Hai-Xue Kuang, ; Qiu-Hong Wang,
| |
Collapse
|
8
|
García-Rodríguez C, Bravo-Tobar ID, Duarte Y, Barrio LC, Sáez JC. Contribution of non-selective membrane channels and receptors in epilepsy. Pharmacol Ther 2021; 231:107980. [PMID: 34481811 DOI: 10.1016/j.pharmthera.2021.107980] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
Overcoming refractory epilepsy's resistance to the combination of antiepileptic drugs (AED), mitigating side effects, and preventing sudden unexpected death in epilepsy are critical goals for therapy of this disorder. Current therapeutic strategies are based primarily on neurocentric mechanisms, overlooking the participation of astrocytes and microglia in the pathophysiology of epilepsy. This review is focused on a set of non-selective membrane channels (permeable to ions and small molecules), including channels and ionotropic receptors of neurons, astrocytes, and microglia, such as: the hemichannels formed by Cx43 and Panx1; the purinergic P2X7 receptors; the transient receptor potential vanilloid (TRPV1 and TRPV4) channels; calcium homeostasis modulators (CALHMs); transient receptor potential canonical (TRPC) channels; transient receptor potential melastatin (TRPM) channels; voltage-dependent anion channels (VDACs) and volume-regulated anion channels (VRACs), which all have in common being activated by epileptic activity and the capacity to exacerbate seizure intensity. Specifically, we highlight evidence for the activation of these channels/receptors during epilepsy including neuroinflammation and oxidative stress, discuss signaling pathways and feedback mechanisms, and propose the functions of each of them in acute and chronic epilepsy. Studying the role of these non-selective membrane channels in epilepsy and identifying appropriate blockers for one or more of them could provide complementary therapies to better alleviate the disease.
Collapse
Affiliation(s)
- Claudia García-Rodríguez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile.
| | - Iván D Bravo-Tobar
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Luis C Barrio
- Hospital Ramon y Cajal-IRYCIS, Centro de Tecnología Biomédica de la Universidad Politécnica, Madrid, Spain
| | - Juan C Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile.
| |
Collapse
|
9
|
Advances in the Development of Biomarkers for Poststroke Epilepsy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5567046. [PMID: 33959658 PMCID: PMC8075663 DOI: 10.1155/2021/5567046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
Stroke is the main cause of acquired epilepsy in elderly people. Poststroke epilepsy (PSE) not only affects functional recovery after stroke but also brings considerable social consequences. While some factors such as cortical involvement, hemorrhagic transformation, and stroke severity are associated with increased seizure risk, so far that remains controversial. In recent years, there are an increasing number of studies on potential biomarkers of PSE as tools for diagnosing and predicting epileptic seizures. Biomarkers such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), glutamate, and S100 calcium-binding protein B (S100B) in blood are associated with the occurrence of PSE. This review is aimed at summarizing the progress on potential biomarkers of PSE.
Collapse
|
10
|
Anticonvulsant effect of pterostilbene and its influence on the anxiety- and depression-like behavior in the pentetrazol-kindled mice: behavioral, biochemical, and molecular studies. Psychopharmacology (Berl) 2021; 238:3167-3181. [PMID: 34333674 PMCID: PMC8605980 DOI: 10.1007/s00213-021-05933-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/08/2021] [Indexed: 01/03/2023]
Abstract
RATIONALE Pterostilbene is the 3,5-dimethoxy derivative of resveratrol with numerous beneficial effects including neuroprotective properties. Experimental studies revealed its anticonvulsant action in the acute seizure tests. OBJECTIVES The purpose of the present study was to evaluate the effect of pterostilbene in the pentetrazol (PTZ)-induced kindling model of epilepsy in mice as well as to assess some possible mechanisms of its anticonvulsant action in this model. METHODS Mice were repeatedly treated with pterostilbene (50-200 mg/kg) and its effect on the development of seizure activity in the PTZ kindling was estimated. Influence of pterostilbene on the locomotor activity and anxiety- and depression-like behavior in the PTZ-kindled mice was also assessed. To understand the possible mechanisms of anticonvulsant activity of pterostilbene, γ-aminobutyric acid (GABA) and glutamate concentrations in the prefrontal cortex and hippocampus of the PTZ-kindled mice were measured using LC-MS/MS method. Moreover, mRNA expression of BDNF, TNF-α, IL-1β, IL-6, GABRA1A, and GRIN2B was determined by RT-qPCR technique. RESULTS We found that pterostilbene at a dose of 200 mg/kg considerably reduced seizure activity but did not influence the locomotor activity and depression- and anxiety-like behavior in the PTZ-kindled mice. In the prefrontal cortex and hippocampus, pterostilbene reversed the kindling-induced decrease of GABA concentration. Neither in the prefrontal cortex nor hippocampus pterostilbene affected mRNA expression of IL-1β, IL-6, GABRA1A, and GRIN2B augmented by PTZ kindling. Pterostilbene at a dose of 100 mg/kg significantly decreased BDNF and TNF-α mRNA expression in the hippocampus of the PTZ-kindled mice. CONCLUSIONS Although further studies are necessary to understand the mechanism of anticonvulsant properties of pterostilbene, our findings suggest that it might be considered a candidate for a new antiseizure drug.
Collapse
|