1
|
Panduga S, Vasishta S, Subramani R, Vincent S, Mutalik S, Joshi MB. Epidrugs in the clinical management of atherosclerosis: Mechanisms, challenges and promises. Eur J Pharmacol 2024; 980:176827. [PMID: 39038635 DOI: 10.1016/j.ejphar.2024.176827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Atherosclerosis is a complex and multigenic pathology associated with significant epigenetic reprogramming. Traditional factors (age, sex, obesity, hyperglycaemia, dyslipidaemia, hypertension) and non-traditional factors (foetal indices, microbiome alteration, clonal hematopoiesis, air pollution, sleep disorders) induce endothelial dysfunction, resulting in reduced vascular tone and increased vascular permeability, inflammation and shear stress. These factors induce paracrine and autocrine interactions between several cell types, including vascular smooth muscle cells, endothelial cells, monocytes/macrophages, dendritic cells and T cells. Such cellular interactions lead to tissue-specific epigenetic reprogramming regulated by DNA methylation, histone modifications and microRNAs, which manifests in atherosclerosis. Our review outlines epigenetic signatures during atherosclerosis, which are viewed as potential clinical biomarkers that may be adopted as new therapeutic targets. Additionally, we emphasize epigenetic modifiers referred to as 'epidrugs' as potential therapeutic molecules to correct gene expression patterns and restore vascular homeostasis during atherosclerosis. Further, we suggest nanomedicine-based strategies involving the use of epidrugs, which may selectively target cells in the atherosclerotic microenvironment and reduce off-target effects.
Collapse
Affiliation(s)
- Sushma Panduga
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India; PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ramamoorthy Subramani
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Sthevaan Vincent
- Department of Pathology, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Wang Y, Wang S, Wang Y, Gao P, Wang L, Wang Q, Zhang Y, Liu K, Xia Q, Tu P. The natural compound sinometumine E derived from Corydalis decumbens promotes angiogenesis by regulating HIF-1/ VEGF pathway in vivo and in vitro. Biomed Pharmacother 2024; 178:117113. [PMID: 39067164 DOI: 10.1016/j.biopha.2024.117113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024] Open
Abstract
The rhizome of Corydalis decumbens is a traditional Chinese medicine commonly utilized in the clinical treatment of acute ischemic stroke. Numerous phytochemical and biological investigations have demonstrated that protoberberine alkaloids from C. decumbens exhibit diverse pharmaceutical activities against various diseases. Sinometumine E (SE), a protoberberine alkaloid isolated from C. decumbens for the first time, is characterized by a complex 6/6/6/6/6/6 hexacyclic skeleton. In the current study, we investigated the protective effects of SE on endothelial cell injury and its angiogenesis effects in zebrafish. The results suggested that SE showed significant anti-ischemic effects on OGD/R-induced HBEC-5i and HUVECs cell ischemia/reperfusion injury model. Furthermore, it promoted angiogenesis in PTK787-induced, MPTP-induced, and atorvastatin-induced vessel injury models of zebrafish, while also suppressing hypoxia-induced locomotor impairment in zebrafish. Transcriptome sequencing analysis provided a sign that SE likely to promotes angiogenesis through the HIF-1/VEGF signaling pathway to exert anti-ischemic effects. Consistently, SE modulated several genes related to HIF-1/VEGF signal pathway, such as hif-1, vegf, vegfr-2, pi3k, erk, akt and plcγ. Molecular docking analysis revealed that VEGFR-2 exhibited high binding affinity with SE, and western blot analysis confirmed that SE treatment enhanced the expression of VEGFR-2. In conclusion, our study profiled the angiogenic activities of SE in vitro and in vivo. The key targets and related pathways involved in anti-ischemic effects of SE, shedding light on the pharmacodynamic components and mechanisms of Corydalis decumbens, and provides valuable insights for identifying effective substances for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yuqi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuhui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanhang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Le Wang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Qiqi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Dagli-Hernandez C, Ferreira GM, Freitas RCCD, Borges JB, Oliveira VFD, Gonçalves RM, Faludi AA, Marçal EDSR, Bastos GM, Bortolin RH, Hirata MH, Hirata RDC. Predicted deleterious variants in ABCA1, LPL, LPA and KIF6 are associated with statin response and adverse events in patients with familial hypercholesterolemia and disturb protein structure and stability. Pharmacogenet Genomics 2024; 34:91-104. [PMID: 38682317 DOI: 10.1097/fpc.0000000000000524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
OBJECTIVES This study explored the association of deleterious variants in pharmacodynamics (PD) genes with statin response and adverse effects in patients with familial hypercholesterolemia (FH) and analyzed their potential effects on protein structure and stability. METHODS Clinical and laboratory data were obtained from 144 adult FH patients treated with statins. A panel of 32 PD genes was analyzed by exon-targeted gene sequencing. Deleterious variants were identified using prediction algorithms and their structural effects were analyzed by molecular modeling studies. RESULTS A total of 102 variants were predicted as deleterious (83 missense, 8 stop-gain, 4 frameshift, 1 indel, 6 splicing). The variants ABCA1 rs769705621 (indel), LPA rs41267807 (p.Tyr2023Cys) and KIF6 rs20455 (p.Trp719Arg) were associated with reduced low-density lipoprotein cholesterol (LDLc) response to statins, and the LPL rs1801177 (p.Asp36Asn) with increased LDLc response (P < 0.05). LPA rs3124784 (p.Arg2016Cys) was predicted to increase statin response (P = 0.022), and ABCA1 rs769705621 to increase the risk of statin-related adverse events (SRAE) (P = 0.027). LPA p.Arg2016Cys and LPL p.Asn36Asp maintained interactions with solvent, LPA p.Tyr2023Cys reduced intramolecular interaction with Gln1987, and KIF6 p.Trp719Arg did not affect intramolecular interactions. DDMut analysis showed that LPA p.Arg2016Cys and p.Tyr2023Cys and LPL p.Asp36Asn caused energetically favorable changes, and KIF6 p.Trp719Arg resulted in unfavorable energetic changes, affecting protein stability. CONCLUSION Deleterious variants in ABCA1, LPA, LPL and KIF6 are associated with variability in LDLc response to statins, and ABCA1 rs769705621 is associated with SRAE risk in FH patients. Molecular modeling studies suggest that LPA p.Tyr2023Cys and KIF6 p.Trp719Arg disturb protein conformational structure and stability.
Collapse
Affiliation(s)
- Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Granat MM, Eifler-Zydel J, Kolmas J. Statins-Their Role in Bone Tissue Metabolism and Local Applications with Different Carriers. Int J Mol Sci 2024; 25:2378. [PMID: 38397055 PMCID: PMC10888549 DOI: 10.3390/ijms25042378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Statins, widely prescribed for lipid disorders, primarily target 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase competitively and reversibly, resulting in reduced low-density lipoprotein cholesterol (LDL-C). This mechanism proves effective in lowering the risk of lipid-related diseases such as ischemic cerebrovascular and coronary artery diseases. Beyond their established use, statins are under scrutiny for potential applications in treating bone diseases. The focus of research centers mainly on simvastatin, a lipophilic statin demonstrating efficacy in preventing osteoporosis and aiding in fracture and bone defect healing. Notably, these effects manifest at elevated doses (20 mg/kg/day) of statins, posing challenges for systematic administration due to their limited bone affinity. Current investigations explore intraosseous statin delivery facilitated by specialized carriers. This paper outlines various carrier types, characterizing their structures and underscoring various statins' potential as local treatments for bone diseases.
Collapse
Affiliation(s)
- Marcin Mateusz Granat
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| | - Joanna Eifler-Zydel
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| | - Joanna Kolmas
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| |
Collapse
|
5
|
Zhu Q, Tan Y, Zou X, Lu L. Association of high LDL concentrations with erectile dysfunction from a Mendelian randomization study. Sci Rep 2023; 13:22252. [PMID: 38097781 PMCID: PMC10721885 DOI: 10.1038/s41598-023-49771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
Lipid metabolism plays a key role in erectile dysfunction. Our purpose was to evaluate the influence of lipid-lowering drugs on erectile dysfunction employing a two-sample Mendelian randomization (MR) study. Genetic instruments were employed to represent the exposure of lipid-lowering drugs. Inverse variance-weighted MR (IVWMR) was employed to calculate the estimation of effects. IVW-MR analysis showed that the positive relationship between the expression of HMGCR and the risk of erectile dysfunction (odds ratio [OR] = 1.27, 95% confidence interval [CI] 1.03-1.57; p = 0.028). No significant relationship was detected between NPC1L1, PSK9 expression and erectile dysfunction. This MR study suggested that HMGCR inhibitors are a more desirable treatment modality for patients with ED.
Collapse
Affiliation(s)
- Quan Zhu
- Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Xuyan Zou
- The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Liqing Lu
- Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Maslub MG, Radwan MA, Daud NAA, Sha'aban A. Association between CYP3A4/CYP3A5 genetic polymorphisms and treatment outcomes of atorvastatin worldwide: is there enough research on the Egyptian population? Eur J Med Res 2023; 28:381. [PMID: 37759317 PMCID: PMC10523700 DOI: 10.1186/s40001-023-01038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION Atorvastatin is regarded as the most frequently prescribed statin worldwide for dyslipidemia. However, clinical response and risk of adverse effects to statin therapy are associated with genetic variations. Numerous research linked statins pharmacokinetics (PK) variations to genetic polymorphisms in cytochromes P450 (CYPs) metabolic enzymes. OBJECTIVE This article reviews the association between CYP3A4/5 genetic variations and response to atorvastatin therapy globally, which includes atorvastatin PK, and the risk for adverse reactions, with a hint to the Egyptians. METHODS Up to March 30, 2022, electronic medical databases like PubMed, Web of Science, MEDLINE, and Egyptian Knowledge Bank (EKB) were searched. All articles that highlighted the relationship between CYP3A4/5 genetic polymorphisms and atorvastatin efficacy/safety profile were included in this review. RESULTS Initially, 492 articles were retrieved after an exhaustive search. There were 24 articles included according to the inclusion criteria. Findings of association studies of CYP3A4/5 genetic polymorphisms with response to atorvastatin varied among different ethnicities. CYP3A4*1B was associated with better therapeutic outcomes after atorvastatin therapy in Chileans and vice versa in Americans. Caucasians with myalgia while using atorvastatin were at significant risk of suffering severe muscle damage if they were carriers of CYP3A5*3/*3. As far as we can report for the Egyptian population, the impact of CYP3A4/5 genetic variations on the response to atorvastatin therapy was understudied. CONCLUSION More pharmacogenetic studies amongst diverse populations worldwide, like the Egyptian population, are necessary to detect further atorvastatin-gene interactions.
Collapse
Affiliation(s)
- Mohammed G Maslub
- Pharmacy Practice/Clinical Pharmacy Department, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt.
| | - Mahasen A Radwan
- Pharmacy Practice/Clinical Pharmacy Department, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Nur Aizati Athirah Daud
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Abubakar Sha'aban
- Division of Population Medicine, Cardiff University, Cardiff, CF14 4YS, Wales, UK
| |
Collapse
|
7
|
Abbes H, Boujaafar S, Ajmi M, Omezzine A, Bouslama A. Apport de la pharmacogénétique dans le domaine cardio-vasculaire, l’exemple des statines. ACTUALITES PHARMACEUTIQUES 2022. [DOI: 10.1016/j.actpha.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Dagli-Hernandez C, Borges JB, Marçal EDSR, de Freitas RCC, Mori AA, Gonçalves RM, Faludi AA, de Oliveira VF, Ferreira GM, Bastos GM, Zhou Y, Lauschke VM, Cerda A, Hirata MH, Hirata RDC. Genetic Variant ABCC1 rs45511401 Is Associated with Increased Response to Statins in Patients with Familial Hypercholesterolemia. Pharmaceutics 2022; 14:944. [PMID: 35631530 PMCID: PMC9144204 DOI: 10.3390/pharmaceutics14050944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Statins are the first-line treatment for familial hypercholesterolemia (FH), but response is highly variable due to genetic and nongenetic factors. Here, we explored the association between response and genetic variability in 114 Brazilian adult FH patients. Specifically, a panel of 84 genes was analyzed by exon-targeted gene sequencing (ETGS), and the functional impact of variants in pharmacokinetic (PK) genes was assessed using an array of functionality prediction methods. Low-density lipoprotein cholesterol (LDL-c) response to statins (reduction ≥ 50%) and statin-related adverse event (SRAE) risk were assessed in carriers of deleterious variants in PK-related genes using multivariate linear regression analyses. Fifty-eight (50.8%) FH patients responded to statins, and 24 (21.0%) had SRAE. Results of the multivariate regression analysis revealed that ABCC1 rs45511401 significantly increased LDL-c reduction after statin treatment (p < 0.05). In silico analysis of the amino-acid change using molecular docking showed that ABCC1 rs45511401 possibly impairs statin efflux. Deleterious variants in PK genes were not associated with an increased risk of SRAE. In conclusion, the deleterious variant ABCC1 rs45511401 enhanced LDL-c response in Brazilian FH patients. As such, this variant might be a promising candidate for the individualization of statin therapy.
Collapse
Affiliation(s)
- Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
- Department of Physiology and Pharmacology, Karolinska Institutet, 171177 Stockholm, Sweden; (Y.Z.); (V.M.L.)
| | - Jéssica Bassani Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil;
| | - Elisangela da Silva Rodrigues Marçal
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil;
| | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Augusto Akira Mori
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Rodrigo Marques Gonçalves
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil; (R.M.G.); (A.A.F.)
| | - Andre Arpad Faludi
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil; (R.M.G.); (A.A.F.)
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Gisele Medeiros Bastos
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil;
- Department of Teaching and Research, Real e Benemerita Associação Portuguesa de Beneficiencia, Sao Paulo 01323-001, Brazil
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171177 Stockholm, Sweden; (Y.Z.); (V.M.L.)
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171177 Stockholm, Sweden; (Y.Z.); (V.M.L.)
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- University of Tuebingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany
| | - Alvaro Cerda
- Center of Excellence in Translational Medicine, CEMT-BIOREN & Department of Basic Sciences, Universidad de La Frontera, Av. Alemania 0458, Temuco 4810296, Chile;
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (J.B.B.); (E.d.S.R.M.); (R.C.C.d.F.); (A.A.M.); (V.F.d.O.); (G.M.F.); (M.H.H.)
| |
Collapse
|
9
|
Vanwong N, Tipnoppanon S, Na Nakorn C, Srisawasdi P, Rodcharoen P, Medhasi S, Chariyavilaskul P, Siwamogsatham S, Vorasettakarnkij Y, Sukasem C. Association of Drug-Metabolizing Enzyme and Transporter Gene Polymorphisms and Lipid-Lowering Response to Statins in Thai Patients with Dyslipidemia. Pharmgenomics Pers Med 2022; 15:119-130. [PMID: 35210819 PMCID: PMC8860396 DOI: 10.2147/pgpm.s346093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose Statins are increasingly widely used in the primary and secondary prevention of cardiovascular disease. However, there is an inter-individual variation in statin response among patients. The study aims to determine the association between genetic variations in drug-metabolizing enzyme and transporter (DMET) genes and lipid-lowering response to a statin in Thai patients with hyperlipidemia. Patients and Methods Seventy-nine patients who received statin at steady-state concentrations were recruited. Serum lipid profile was measured at baseline and repeated after 4-month on a statin regimen. The genotype profile of 1936 DMET markers was obtained using Affymetrix DMET Plus genotyping microarrays. Results In this DMET microarray platform, five variants; SLCO1B3 (rs4149117, rs7311358, and rs2053098), QPRT (rs13331798), and SLC10A2 (rs188096) showed a suggestive association with LDL-cholesterol-lowering response. HDL-cholesterol-lowering responses were found to be related to CYP7A1 gene variant (rs12542233). Seven variants, SLCO1B3 (rs4149117, rs7311358, and rs2053098); SULT1E1 (rs3736599 and rs3822172); and ABCB11 (rs4148768 and rs3770603), were associated with the total cholesterol-lowering response. One variant of the ABCB4 gene (rs2109505) was significantly associated with triglyceride-lowering response. Conclusion This pharmacogenomic study identifies new genetic variants of DMET genes that are associated with the lipid-lowering response to statins. Genetic polymorphisms in DMET genes may impact the pharmacokinetics and lipid-lowering response to statin. The validation studies confirmations are needed in future pharmacogenomic studies.
Collapse
Affiliation(s)
- Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
| | - Sayanit Tipnoppanon
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chalitpon Na Nakorn
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Pornpen Srisawasdi
- Division of Clinical Chemistry, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Punyanuch Rodcharoen
- Division of Clinical Chemistry, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sadeep Medhasi
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pajaree Chariyavilaskul
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Sarawut Siwamogsatham
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
- Chula Clinical Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yongkasem Vorasettakarnkij
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- Correspondence: Chonlaphat Sukasem, Division of Pharmacogenetics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand, Tel +66-2-200-4331, Fax +66-2-200-4332, Email
| |
Collapse
|