1
|
Koopaie M, Akhbari P, Fatahzadeh M, Kolahdooz S. Identification of common salivary miRNA in oral lichen planus and oral squamous cell carcinoma: systematic review and meta-analysis. BMC Oral Health 2024; 24:1177. [PMID: 39367474 PMCID: PMC11452954 DOI: 10.1186/s12903-024-04986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Oral lichen planus (OLP) is a chronic inflammatory condition that can impact patients' quality of life. While its exact etiology remains unclear, it is associated with an increased risk of malignant transformation. Currently, the diagnosis of OLP relies on clinical examination and histopathological analysis, which can be invasive. Therefore, there is an urgent need for non-invasive and accurate diagnostic biomarkers. This systematic review and meta-analysis aims to investigate the potential of salivary microRNAs as promising candidates for OLP diagnosis. This meta-analysis seeks to identify specific microRNAs that are differentially expressed and could serve as reliable biomarkers for OLP diagnosis. METHODS Our strategy involved searching for pertinent keywords in multiple academic databases including Cochrane Library, Embase, LIVIVO, MEDLINE, Ovid, ProQuest, Scopus, Web of Science, Espacenet, and Google Scholar search engine. Upon identification, articles were screened and data extracted from the eligible studies. Split component synthesis method was utilized to assess specificity, sensitivity, likelihood and diagnostic odds ratios. The random-effects meta-analysis approach was used to combine study findings and develop pooled diagnostic performance metrics. Hierarchical summary receiver operating characteristic (ROC) plots were generated to determine area under the curve. Subgroup analyses concerning the type of saliva and control groups were also performed. RESULTS Among the fourteen studies included in our systematic review, five were eligible for meta-analysis. Salivary microRNAs showed the pooled sensitivity of 0.80 (95% Confidence Interval (95% CI): 0.68-0.88), specificity of 0.89 (95% CI: 0.82-0.94), diagnostic odds ratio of 28.45 (95% CI: 10.40-77.80), and area under the curve (AUC) of 0.93 for OLP diagnosis. Unstimulated saliva had higher sensitivity and specificity than oral swirl samples as the biomarker medium for OLP diagnosis. Meta-analysis uncovered that miR-27a, miR-137, miR-1290, miR-27b, miR-4484, miR-142, and miR-1246 had the highest diagnostic odds ratio for OLP. CONCLUSIONS Our systematic review and meta-analysis demonstrate that salivary microRNAs can serve as valuable biomarkers for the diagnosis of OLP. The findings highlight the exceptional accuracy of salivary microRNAs in differentiating OLP patients from healthy controls and assessing the risk of malignant transformation.
Collapse
Affiliation(s)
- Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O. BOX: 14395-433, Tehran, 14399-55991, Iran.
| | - Parisa Akhbari
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O. BOX: 14395-433, Tehran, 14399-55991, Iran
| | - Mahnaz Fatahzadeh
- Division of Oral Medicine, Department of Oral Medicine, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, 07103, USA
| | - Sajad Kolahdooz
- Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wang Y, Li Q, Zhou S, Tan P. Contents of exosomes derived from adipose tissue and their regulation on inflammation, tumors, and diabetes. Front Endocrinol (Lausanne) 2024; 15:1374715. [PMID: 39220365 PMCID: PMC11361949 DOI: 10.3389/fendo.2024.1374715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Adipose tissue (AT) serves as an energy-capacitive organ and performs functions involving paracrine- and endocrine-mediated regulation via extracellular vesicles (EVs) secretion. Exosomes, a subtype of EVs, contain various bioactive molecules with regulatory effects, such as nucleic acids, proteins, and lipids. AT-derived exosomes (AT-exos) include exosomes derived from various cells in AT, including adipocytes, adipose-derived stem cells (ADSCs), macrophages, and endothelial cells. This review aimed to comprehensively evaluate the impacts of different AT-exos on the regulation of physiological and pathological processes. The contents and functions of adipocyte-derived exosomes and ADSC-derived exosomes are compared simultaneously, highlighting their similarities and differences. The contents of AT-exos have been shown to exert complex regulatory effects on local inflammation, tumor dynamics, and insulin resistance. Significantly, differences in the cargoes of AT-exos have been observed among diabetes patients, obese individuals, and healthy individuals. These differences could be used to predict the development of diabetes mellitus and as therapeutic targets for improving insulin sensitivity and glucose tolerance. However, further research is needed to elucidate the underlying mechanisms and potential applications of AT-exos.
Collapse
Affiliation(s)
- Yanwen Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangbai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pohching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Sun S, Li M, Wang M, Zheng J, Yin C, Wu Z, Abdalmegeed D, Shu P, Xin Z. Anti-photoaging effect and the mechanism of Coreopsis tinctoria okanin against UVB-induced skin damage in mice. Int Immunopharmacol 2024; 139:112657. [PMID: 39024749 DOI: 10.1016/j.intimp.2024.112657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Long-term exposure to ultraviolet radiation may cause photoaging of skin tissues. Coreopsis tinctoria Nutt. riches a variety of flavonoids with strong antioxidant activities. In the present study, the main antioxidant flavonoid was isolated from C. tinctoria and identified as okanin by Mass spectrum and Nuclear Magnetic Resonance Spectroscopy. Okanin was found to effectively reduce the malondialdehyde content, increase various intracellular antioxidant enzyme activities, relieve epidermal hyperplasia and dermal damage caused by UVB irradiation, and increase the collagen fibers' content in the dorsal skin tissue of mice. Immunohistochemical analysis showed that okanin effectively counteracted the photoaging effect of UVB-induced by down-regulating IL-1, IL-6, TNF-α, and COX-2, and up-regulating COL-1, COL-3, and HYP expression. In addition, okanin can inhibit skin photoaging by regulating TNF-β/Smad2-3, MAPK, P13K/AKT, and NF-κB signaling pathways. In particular, the three key markers of photoaging, MMP (MMP-1/-3/-9), were down-regulated and five collagen synthesis genes (COL1A1, COL3A1, COL5A2, COL6A1, and COL7A1) were up-regulated, underlines the direct anti-photoaging mechanism of okanin in preventing collagen degradation and promoting collagen synthesis. The current investigation provides new insights into the great potential of okanin in alleviating skin photoaging and lays theoretical references for the development ofanti-photoaging products.
Collapse
Affiliation(s)
- Sen Sun
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China; Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingjie Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Mengxi Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jie Zheng
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chenyue Yin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zichao Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dyaaaldin Abdalmegeed
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China.
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
4
|
Fan X, Zhang Y, Liu W, Shao M, Gong Y, Wang T, Xue S, Nian R. A comprehensive review of engineered exosomes from the preparation strategy to therapeutic applications. Biomater Sci 2024; 12:3500-3521. [PMID: 38828621 DOI: 10.1039/d4bm00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Exosomes exhibit high bioavailability, biological stability, targeted specificity, low toxicity, and low immunogenicity in shuttling various bioactive molecules such as proteins, lipids, RNA, and DNA. Natural exosomes, however, have limited production, targeting abilities, and therapeutic efficacy in clinical trials. On the other hand, engineered exosomes have demonstrated long-term circulation, high stability, targeted delivery, and efficient intracellular drug release, garnering significant attention. The engineered exosomes bring new insights into developing next-generation drug delivery systems and show enormous potential in therapeutic applications, such as tumor therapies, diabetes management, cardiovascular disease, and tissue regeneration and repair. In this review, we provide an overview of recent advancements associated with engineered exosomes by focusing on the state-of-the-art strategies for cell engineering and exosome engineering. Exosome isolation methods, including traditional and emerging approaches, are systematically compared along with advancements in characterization methods. Current challenges and future opportunities are further discussed in terms of the preparation and application of engineered exosomes.
Collapse
Affiliation(s)
- Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Yiwen Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Mingzheng Shao
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Yibo Gong
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Tingya Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Song Xue
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| |
Collapse
|
5
|
Gao W, Yuan L, Zhang Y, Huang F, Ai C, Lv T, Chen J, Wang H, Ling Y, Wang YS. miR-1246-overexpressing exosomes improve UVB-induced photoaging by activating autophagy via suppressing GSK3β. Photochem Photobiol Sci 2024; 23:957-972. [PMID: 38613601 DOI: 10.1007/s43630-024-00567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Stem cell paracrine has shown potential application in skin wound repair and photoaging treatment. Our previous study demonstrated that miR-1246-overexpressing Exosomes (OE-EXs) isolated from adipose-derived stem cells (ADSCs) showed superior photo-protecting effects on UVB-induced photoaging than that of the vector, however, the underlying mechanism was unclear. The simultaneous bioinformatics analysis indicated that miR-1246 showed potential binding sites with GSK3β which acted as a negative regulator for autophagy. This study was aimed to explore whether OE-EXs ameliorate skin photoaging by activating autophagy via targeting GSK3β. The results demonstrated that OE-EXs significantly decreased GSK3β expression, enhanced autophagy flux and autophagy-related proteins like LC3II, while suppressed p62 expression. Meanwhile, OE-EXs markedly reversed the levels of intracellular ROS, MMP-1, procollagen type I and DNA damage in human skin fibroblasts caused by UVB irradiation, but the ameliorating effects were significantly inhibited when 3-Methyladenine (3-MA) was introduced to block the autophagy pathway. Further, OE-EXs could reverse UVB-induced wrinkles, epidermal hyperplasia, and collagen fibers reduction in Kunming mice, nevertheless, the therapeutical effects of OE-EXs were attenuated when it was combinative treated with 3-MA. In conclusion, OE-EXs could cure UVB induced skin photoaging by activating autophagy via targeting GSK3β.
Collapse
Affiliation(s)
- Wei Gao
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Limin Yuan
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yue Zhang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Fangzhou Huang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Chen Ai
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Tianci Lv
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Jiale Chen
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Hui Wang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yixin Ling
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yu-Shuai Wang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Department of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China.
| |
Collapse
|
6
|
Jibing C, Weiping L, Yuwei Y, Bingzheng F, Zhiran X. Exosomal microRNA-Based therapies for skin diseases. Regen Ther 2024; 25:101-112. [PMID: 38178928 PMCID: PMC10765304 DOI: 10.1016/j.reth.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024] Open
Abstract
Based on engineered cell/exosome technology and various skin-related animal models, exosomal microRNA (miRNA)-based therapies derived from natural exosomes have shown good therapeutic effects on nine skin diseases, including full-thickness skin defects, diabetic ulcers, skin burns, hypertrophic scars, psoriasis, systemic sclerosis, atopic dermatitis, skin aging, and hair loss. Comparative experimental research showed that the therapeutic effect of miRNA-overexpressing exosomes was better than that of their natural exosomes. Using a dual-luciferase reporter assay, the targets of all therapeutic miRNAs in skin cells have been screened and confirmed. For these nine types of skin diseases, a total of 11 animal models and 21 exosomal miRNA-based therapies have been developed. This review provides a detailed description of the animal models, miRNA therapies, disease evaluation indicators, and treatment results of exosomal miRNA therapies, with the aim of providing a reference and guidance for future clinical trials. There is currently no literature on the merits or drawbacks of miRNA therapies compared with standard treatments.
Collapse
Affiliation(s)
| | | | | | - Feng Bingzheng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xu Zhiran
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
7
|
Gui Q, Ding N, Yao Z, Wu M, Fu R, Wang Y, Zhao Y, Zhu L. Extracellular vesicles derived from mesenchymal stem cells: the wine in Hebe's hands to treat skin aging. PRECISION CLINICAL MEDICINE 2024; 7:pbae004. [PMID: 38516531 PMCID: PMC10955876 DOI: 10.1093/pcmedi/pbae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Owing to its constant exposure to the external environment and various stimuli, skin ranks among the organs most vulnerable to manifestations of aging. Preventing and delaying skin aging has become one of the prominent research subjects in recent years. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from mesoderm with high self-renewal ability and multilineage differentiation potential. MSC-derived extracellular vesicles (MSC-EVs) are nanoscale biological vesicles that facilitate intercellular communication and regulate biological behavior. Recent studies have shown that MSC-EVs have potential applications in anti-aging therapy due to their anti-inflammatory, anti-oxidative stress, and wound healing promoting abilities. This review presents the latest progress of MSC-EVs in delaying skin aging. It mainly includes the MSC-EVs promoting the proliferation and migration of keratinocytes and fibroblasts, reducing the expression of matrix metalloproteinases, resisting oxidative stress, and regulating inflammation. We then briefly discuss the recently discovered treatment methods of MSC-EVs in the field of skin anti-aging. Moreover, the advantages and limitations of EV-based treatments are also presented.
Collapse
Affiliation(s)
- Qixiang Gui
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| | - Neng Ding
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery of Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Minjuan Wu
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
| | - Ruifeng Fu
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
| | - Yue Wang
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China
| | - Yunpeng Zhao
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
| | - Lie Zhu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| |
Collapse
|
8
|
Hajialiasgary Najafabadi A, Soheilifar MH, Masoudi-Khoram N. Exosomes in skin photoaging: biological functions and therapeutic opportunity. Cell Commun Signal 2024; 22:32. [PMID: 38217034 PMCID: PMC10785444 DOI: 10.1186/s12964-023-01451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024] Open
Abstract
Exosomes are tiny extracellular vesicles secreted by most cell types, which are filled with proteins, lipids, and nucleic acids (non-coding RNAs, mRNA, DNA), can be released by donor cells to subsequently modulate the function of recipient cells. Skin photoaging is the premature aging of the skin structures over time due to repeated exposure to ultraviolet (UV) which is evidenced by dyspigmentation, telangiectasias, roughness, rhytides, elastosis, and precancerous changes. Exosomes are associated with aging-related processes including, oxidative stress, inflammation, and senescence. Anti-aging features of exosomes have been implicated in various in vitro and pre-clinical studies. Stem cell-derived exosomes can restore skin physiological function and regenerate or rejuvenate damaged skin tissue through various mechanisms such as decreased expression of matrix metalloproteinase (MMP), increased collagen and elastin production, and modulation of intracellular signaling pathways as well as, intercellular communication. All these evidences are promising for the therapeutic potential of exosomes in skin photoaging. This review aims to investigate the molecular mechanisms and the effects of exosomes in photoaging.
Collapse
Affiliation(s)
- Amirhossein Hajialiasgary Najafabadi
- Department of Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Goettingen, Germany
- Department of Pathology, Research Group Translational Epigenetics, University of Goettingen, 37075, Goettingen, Germany
| | | | - Nastaran Masoudi-Khoram
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Hormozi A, Hasanzadeh S, Ebrahimi F, Daei N, Hajimortezayi Z, Mehdizadeh A, Zamani M. Treatment with Exosomes Derived from Mesenchymal Stem Cells: A New Window of Healing Science in Regenerative Medicine. Curr Stem Cell Res Ther 2024; 19:879-893. [PMID: 37622719 DOI: 10.2174/1574888x18666230824165014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023]
Abstract
Many studies have been conducted on the potential applications of mesenchymal stem cells (MSCs) over recent years due to their growing importance in regenerative medicine. Exosomes are considered cargos capable of transporting proteins, peptides, lipids, mRNAs, and growth factors. MSCsderived exosomes are also involved in the prevention or treatment of a variety of diseases, including cardiovascular diseases, neurological diseases, skin disorders, lung diseases, osteoarthritis, damaged tissue repair, and other diseases. This review attempted to summarize the importance of employing MSCs in regenerative medicine by gathering and evaluating information from current literature. The role of MSCs and the potential applications of MSCs-derived exosomes have also been discussed.
Collapse
Affiliation(s)
- Arezoo Hormozi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajedeh Hasanzadeh
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Faezeh Ebrahimi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Narges Daei
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zahra Hajimortezayi
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Huang X, Sun W, Nie B, Li JJ, Jing F, Zhou XL, Ni XY, Ni XC. Adipose-derived stem cells repair radiation-induced chronic lung injury via inhibiting TGF-β1/Smad 3 signaling pathway. Open Med (Wars) 2023; 18:20230850. [PMID: 38025537 PMCID: PMC10655693 DOI: 10.1515/med-2023-0850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
To investigate the effect of adipose-derived stem cells (ASCs) transplantation on radiation-induced lung injury (RILI), Sprague-Dawley rats were divided into phosphate-buffered saline (PBS) group, ASCs group, Radiation + PBS group, and Radiation + ASCs group. Radiation + PBS and Radiation + ASCs groups received single dose of 30 Gy X-ray radiation to the right chest. The Radiation + PBS group received 1 mL PBS suspension and Radiation + ASCs group received 1 mL PBS suspension containing 1 × 107 CM-Dil-labeled ASCs. The right lung tissue was collected on Days 30, 90, and 180 after radiation. Hematoxylin-eosin and Masson staining were performed to observe the pathological changes and collagen fiber content in the lung tissue. Immunohistochemistry (IHC) and western blot (WB) were used to detect levels of fibrotic markers collagen I (Collal), fibronectin (FN), as well as transforming growth factor-β1 (TGF-β1), p-Smad 3, and Smad 3. Compared with the non-radiation groups, the radiation groups showed lymphocyte infiltration on Day 30 after irradiation and thickened incomplete alveolar walls, collagen deposition, and fibroplasia on Days 90 and 180. ASCs relieved these changes on Day 180 (Masson staining, P = 0.0022). Compared with Radiation + PBS group, on Day 180 after irradiation, the Radiation + ASCs group showed that ASCs could significantly decrease the expressions of fibrosis markers Collal (IHC: P = 0.0022; WB: P = 0.0087) and FN (IHC: P = 0.0152; WB: P = 0.026) and inhibit the expressions of TGF-β1 (IHC: P = 0.026; WB: P = 0.0152) and p-Smad 3 (IHC: P = 0.0043; WB: P = 0.0087) in radiation-induced injured lung tissue. These indicated that ASCs could relieve RILI by inhibiting TGF-β1/Smad 3 signaling pathway.
Collapse
Affiliation(s)
- Xin Huang
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Wei Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Bin Nie
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Juan-juan Li
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Fei Jing
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Xiao-li Zhou
- Department of Pathology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Xin-ye Ni
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Xin-chu Ni
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, No. 68, Gehuzhonglu Road, Wujin District, Changzhou, Jiangsu, 213000, China
| |
Collapse
|
11
|
Cai CS, He GJ, Xu FW. Advances in the Applications of Extracellular Vesicle for the Treatment of Skin Photoaging: A Comprehensive Review. Int J Nanomedicine 2023; 18:6411-6423. [PMID: 37954453 PMCID: PMC10638935 DOI: 10.2147/ijn.s433611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Skin photoaging is a complex biological process characterized by the accumulation of oxidative damage and structural changes in the skin, resulting from chronic exposure to ultraviolet (UV) radiation. Despite the growing demand for effective treatments, current therapeutic options for skin photoaging remain limited. However, emerging research has highlighted the potential of extracellular vesicles (EVs), including exosomes, micro-vesicles, apoptotic bodies and liposomes, as promising therapeutic agents in skin rejuvenation. EVs are involved in intercellular communication and can deliver bioactive molecules, including proteins, nucleic acids, and lipids, to recipient cells, thereby influencing various cellular processes. This comprehensive review aims to summarize the current research progress in the application of EVs for the treatment of skin photoaging, including their isolation and characterization methods, roles in skin homeostasis, therapeutic potential and clinical applications for skin photoaging. Additionally, challenges and future directions in EVs-based therapies for skin rejuvenation are discussed.
Collapse
Affiliation(s)
- Chan-Sheng Cai
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Gui-Juan He
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People’s Republic of China
| | - Fa-Wei Xu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People’s Republic of China
| |
Collapse
|
12
|
Wang Y, Shen X, Song S, Chen Y, Wang Y, Liao J, Chen N, Zeng L. Mesenchymal stem cell-derived exosomes and skin photoaging: From basic research to practical application. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:556-566. [PMID: 37605539 DOI: 10.1111/phpp.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Skin photoaging is a condition caused by long-term exposure to ultraviolet irradiation, resulting in a variety of changes in the skin, such as capillary dilation, increased or absent pigmentation, dryness, sagging, and wrinkles. Stem cells possess a remarkable antioxidant capacity and the ability to proliferate, differentiate, and migrate, and their main mode of action is through paracrine secretion, with exosomes being the primary form of secretion. Stem cell-derived exosomes contain a variety of growth factors and cytokines and may have great potential to promote skin repair and delay skin ageing. METHODS This review focuses on the mechanisms of UV-induced skin photoaging, the research progress of stem cell exosomes against skin photoaging, emerging application approaches and limitations in the application of exosome therapy. RESULT Exosomes derived from various stem cells have the potential to prevent skin photoaging. CONCLUSION The combination with novel materials may be a key step for their practical application, which could be an important direction for future basic research and practical applications.
Collapse
Affiliation(s)
- Yihao Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xu Shen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Shenghua Song
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yan Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yiping Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Junlin Liao
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Nian Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Li Zeng
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
13
|
Gao W, Zhang Y, Yuan L, Huang F, Wang YS. Long Non-coding RNA H19-Overexpressing Exosomes Ameliorate UVB-Induced Photoaging by Upregulating SIRT1 Via Sponging miR-138. Photochem Photobiol 2023; 99:1456-1467. [PMID: 36916469 DOI: 10.1111/php.13801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
UVB-induced photoaging is characterized by wrinkle formation, slackness and senile plaques, affecting the health and beauty of human being. Our previous study revealed that exosomes derived from adipose-derived stem cells (ADSCs) could efficiently alleviate UVB-induced photodamage. However, the functional ingredients in exosomes were undefined. LncRNA H19, one of the well-researched lncRNAs in exosomes, exhibits multiple physiological effects. This study aims to demonstrate the photo-protective role of lncRNA H19 on skin photoaging in UVB-irradiated human skin fibroblasts cells (HSFs) and Kunming mice. LncRNA H19-overexpressing exosomes (H19-Exo) were isolated from the supernatant of ADSCs infected with lncRNA H19-loaded lentivirus. The results showed that H19-Exo significantly inhibited MMPs production, DNA damage and ROS generation while enhancing procollagen type I synthesis in UVB-irradiated HSFs. Meanwhile, H19-Exo markedly reversed epidermal thickening and collagen degradation in UVB-irradiated mice. Furthermore, luciferase reporter assays indicated that lncRNA H19 acted as a sponge for miR-138 expression, and SIRT1 was targeted by miR-138. Evidence from both in vitro and in vivo studies also revealed that H19-Exo could enhance SIRT1 expression by knocking down miR-138. In conclusion, lncRNA H19 served as a therapeutic candidate in treating UVB-induced skin photoaging by upregulation of SIRT1 via miR-138.
Collapse
Affiliation(s)
- Wei Gao
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui, China
| | - Yue Zhang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui, China
| | - Limin Yuan
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui, China
| | - Fangzhou Huang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui, China
| | - Yu-Shuai Wang
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
14
|
Guo Y, Zhang Y, Wang YS, Ma L, Liu H, Gao W. Protective effect of Salvia plebeia R. Br ethanol extract on UVB-induced skin photoaging in vitro and in vivo. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:466-477. [PMID: 37165910 DOI: 10.1111/phpp.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND UV exposure is one of the primary factors responsible for photoaging, causing the increase in matrix metalloproteinases (MMPs) and the reduction in collagen. Salvia plebeia R. Br (SP), as an herbaceous plant, contains abundant flavonoids and possesses excellent anti-inflammatory and antioxidant activities. This study aimed to investigate the photoprotective effects of SP on UVB-induced photodamage in immortalized human keratinocytes (HaCaTs) and Kunming mice, as well as its main active components such as homoplantaginin (HP). METHODS CCK-8 was applied to detect the cell viability in UVB-irradiated or non-irradiated HaCaTs. Commercial kits were used to evaluate the levels of ROS, MDA, SA-β-Gal, MMP-1, and IL-6. The expression of MAPK and TGF-β/Smad pathways was detected by western blot. HE and Masson's trichrome staining were performed to examine the epidermis thickness and collagen degradation of Kunming mice. RESULTS Our results found that SP and HP notably decreased UVB-induced ROS, MDA, and SA-β-Gal production, and inhibited MMP-1 and IL-6 secretion by inhibiting the MAPK signaling pathway. In addition, SP and HP significantly promoted type I procollagen synthesis by activation of TGF-β/Smad pathway. Consistently, the in vivo experiments also indicated that SP and HP had a photoprotective effect, which significantly reversed UVB-induced epidermis thickness and collagen degradation. CONCLUSION This study demonstrated that SP effectively could protect skin from UVB-induced photoaging, while HP acted as the active substance in SP. All these findings provided a new strategy for skin photoaging treatment.
Collapse
Affiliation(s)
- Yu Guo
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yue Zhang
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yu-Shuai Wang
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - LinYan Ma
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Hao Liu
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Wei Gao
- Department of Pharmacy, Bengbu Medical College, Bengbu, China
| |
Collapse
|
15
|
Tienda-Vázquez MA, Hanel JM, Márquez-Arteaga EM, Salgado-Álvarez AP, Scheckhuber CQ, Alanis-Gómez JR, Espinoza-Silva JI, Ramos-Kuri M, Hernández-Rosas F, Melchor-Martínez EM, Parra-Saldívar R. Exosomes: A Promising Strategy for Repair, Regeneration and Treatment of Skin Disorders. Cells 2023; 12:1625. [PMID: 37371095 PMCID: PMC10296902 DOI: 10.3390/cells12121625] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The skin is the organ that serves as the outermost layer of protection against injury, pathogens, and homeostasis with external factors; in turn, it can be damaged by factors such as burns, trauma, exposure to ultraviolet light (UV), infrared radiation (IR), activating signaling pathways such as Toll-like receptors (TLR) and Nuclear factor erythroid 2-related factor 2 (NRF2), among others, causing a need to subsequently repair and regenerate the skin. However, pathologies such as diabetes lengthen the inflammatory stage, complicating the healing process and, in some cases, completely inhibiting it, generating susceptibility to infections. Exosomes are nano-sized extracellular vesicles that can be isolated and purified from different sources such as blood, urine, breast milk, saliva, urine, umbilical cord bile cells, and mesenchymal stem cells. They have bioactive compounds that, thanks to their paracrine activity, have proven to be effective as anti-inflammatory agents, inducers of macrophage polarization and accelerators of skin repair and regeneration, reducing the possible complications relating to poor wound repair, and prolonged inflammation. This review provides information on the use of exosomes as a promising therapy against damage from UV light, infrared radiation, burns, and skin disorders.
Collapse
Affiliation(s)
- Mario Adrián Tienda-Vázquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.A.T.-V.); (C.Q.S.)
- Biomedical Engineering Program, Faculty of Engineering, Anahuac Queretaro University, Querétaro 76246, Mexico; (J.M.H.); (E.M.M.-A.); (A.P.S.-Á.); (J.R.A.-G.); (F.H.-R.)
| | - Juan Manuel Hanel
- Biomedical Engineering Program, Faculty of Engineering, Anahuac Queretaro University, Querétaro 76246, Mexico; (J.M.H.); (E.M.M.-A.); (A.P.S.-Á.); (J.R.A.-G.); (F.H.-R.)
| | - Elsa Margarita Márquez-Arteaga
- Biomedical Engineering Program, Faculty of Engineering, Anahuac Queretaro University, Querétaro 76246, Mexico; (J.M.H.); (E.M.M.-A.); (A.P.S.-Á.); (J.R.A.-G.); (F.H.-R.)
| | - Ana Paola Salgado-Álvarez
- Biomedical Engineering Program, Faculty of Engineering, Anahuac Queretaro University, Querétaro 76246, Mexico; (J.M.H.); (E.M.M.-A.); (A.P.S.-Á.); (J.R.A.-G.); (F.H.-R.)
| | - Christian Quintus Scheckhuber
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.A.T.-V.); (C.Q.S.)
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, Mexico City 14380, Mexico
| | - José Rafael Alanis-Gómez
- Biomedical Engineering Program, Faculty of Engineering, Anahuac Queretaro University, Querétaro 76246, Mexico; (J.M.H.); (E.M.M.-A.); (A.P.S.-Á.); (J.R.A.-G.); (F.H.-R.)
- Division Research and Postgraduate Division, Faculty of Engineering, Autonomous University of Querétaro, Querétaro 76010, Mexico
| | | | - Manuel Ramos-Kuri
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey 64710, Mexico;
| | - Fabiola Hernández-Rosas
- Biomedical Engineering Program, Faculty of Engineering, Anahuac Queretaro University, Querétaro 76246, Mexico; (J.M.H.); (E.M.M.-A.); (A.P.S.-Á.); (J.R.A.-G.); (F.H.-R.)
- Research Center, Anahuac Queretaro University, Querétaro 76246, Mexico
| | - Elda M. Melchor-Martínez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.A.T.-V.); (C.Q.S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.A.T.-V.); (C.Q.S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|