1
|
Fu M, Li Y, Liu J, Liu J, Wei J, Qiao Y, Zhong H, Han D, Lu H, Yao L. Zhishi Xiebai Guizhi Decoction modulates hypoxia and lipid toxicity to alleviate pulmonary vascular remodeling of pulmonary hypertension in rats. Chin Med 2024; 19:173. [PMID: 39696593 DOI: 10.1186/s13020-024-01039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a severe cardio-pulmonary vascular disease, involves complex molecular mechanism especially during the pathological process of pulmonary vascular remodeling, brings a significant challenge to clinical treatment and thus resulting in high mortality rates. Classic Traditional Chinese medicine formula, Zhishi Xiebai Guizhi Decoction (ZXGD), holds therapeutic potential for PH. In present study, we sought to explore therapeutic potential of ZXGD against PH in rats. METHODS We employed a combination methods of chemical profiling, echocardiographic, morphologic measurements, molecular biology, rats models and cultured pulmonary artery smooth muscle cells (PASMCs) to achieve this. RESULTS Eighteen compounds were precisely identified in ZXGD using UHPLC-QTOF-MS/MS. Our data demonstrated ZXGD could alleviate PH by reducing pulmonary artery pressure and alleviating pulmonary vascular remodeling in rats. Specifically, ZXGD was found to intervene in abnormal expansion of PASMCs, thereby attenuating pulmonary vascular remodeling. ZXGD was also observed to modulate expressions of HIF-1α, ROS, and Nrf2 to alleviate hypoxia and oxidative stress. Additionally, ZXGD significantly regulated disorders in pro-inflammatory cytokines, thus mitigating inflammation. Furthermore, ZXGD decreased levels of decadienyl-L-carnitine and LDL-C, while elevating HDL-C and lipid droplet counts, thereby reducing cholesterol and lipid toxicity and preserving mitochondrial function. Importantly, inhibition of HIF-1α reversed expression of key pathological triggers for pulmonary vascular remodeling. Neohesperidin and naringin in ZXGD extract were identified as the primary contributors to its pharmacological effects against PH. CONCLUSION Altogether, our study empirically explored therapeutic potential and pharmacological mechanisms of ZXGD in treating PH, offering a groundwork for the development of novel anti-PH drugs.
Collapse
Affiliation(s)
- Min Fu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuan Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jingjing Liu
- School of Chinese Medicine, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Traditional Chinese Medicine Phenome Research Center, Hong Kong Baptist University, Hong Kong, 999077, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junjie Liu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiaoxia Wei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuxin Qiao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hanxin Zhong
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Dongyang Han
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Haitao Lu
- School of Chinese Medicine, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Traditional Chinese Medicine Phenome Research Center, Hong Kong Baptist University, Hong Kong, 999077, China.
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Li Yao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Chou TW, Kuo CC, Chen KM, Belcastro F. Influence of Qigong Wuqinxi on Pain, Sleep, and Tongue Features in Older Adults. J Nurs Res 2024; 32:e358. [PMID: 39593225 DOI: 10.1097/jnr.0000000000000646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Chronic pain and sleep disorders are commonly seen symptoms in community-dwelling older adults at traditional Chinese medicine (TCM) clinics. TCM modalities such as herbal medication and acupuncture have side effects and usage limitations. Therefore, nonpharmacological and noninvasive interventions may be applied to relieve the symptoms of these conditions. PURPOSE This study was designed to test the effect of Qigong Wuqinxi exercise on chronic pain, sleep quality, TCM constitutions, and tongue features in community-dwelling older adults. METHODS This was a cluster randomized controlled trial. Older adults in two community care centers who met the inclusion criteria were assigned by drawing lots to either the experimental group (n = 32) or the control group (n = 31). Experimental group members practiced the Qigong Wuqinxi exercise for 50 minutes three times each week for 12 weeks, whereas those in the control group maintained their normal daily routine. Before and after the 12-week study, data on chronic pain, sleep quality, TCM constitutions, and tongue features were collected from all participants to assess the effectiveness of the intervention. Between-group pretest and posttest comparisons were analyzed using independent samples t tests, and within-group differences were analyzed using paired t tests. RESULTS The experimental group reported significantly greater average posttest improvements in chronic pain, yang deficiency, phlegm-stasis, thick fur, and red dots than the control group (all ps < .05). The maximum change in pretest to posttest pain scores favored the experimental group (-0.56 ± 0.76 vs. 0.39 ± 1.91, p = .011). Also, the experimental group had a significantly better change in the pain interference index (-3.31 ± 3.30 vs. -0.58 ± 1.91, p < .001). In addition, the experimental group exhibited greater improvements in yang-deficiency tendency (-2.38 ± 4.89 vs. 0.35 ± 4.67, p = .027), phlegm and stasis tendency (-2.19 ± 4.52 vs. 1.77 ± 2.47, p < .001), thick fur (1.44 ± 11.28 vs. 6.03 ± 6.04, p = .049), and red dots (-5.09 ± 21.45 vs. 2.81 ± 4.03, p = .048). However, no significant between-group difference in posttest sleep quality (p = .357) was observed. CONCLUSIONS/IMPLICATIONS FOR PRACTICE The Qigong Wuqinxi exercise was found to positively improve chronic pain and TCM constitutions in community-dwelling older adults and may be promoted in community care centers to improve the health status of older adults.
Collapse
Affiliation(s)
- Tzu-Wei Chou
- MS, MD, Attending Physician, Department of Chinese Medicine, New Age Chinese Medicine and Healthcare Clinic, Kaohsiung, Taiwan
| | - Che-Chang Kuo
- PhD, Assistant Professor, School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Kuei-Min Chen
- PhD, RN, FAAN, Professor, College of Nursing, and Center for Long-term Care Research, Kaohsiung Medical University, Kaohsiung, Taiwan; and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Frank Belcastro
- PhD, Professor, Department of Education and Psychology, University of Dubuque, Iowa, USA
| |
Collapse
|
3
|
Liu Y, Zhang Z, Luo Y, An P, Qi J, Zhang X, Zhou S, Li Y, Xu C, Luo J, Wang J. Product of Traditional Chinese Medicine Longgui Yangxinwan Protects the Human Body from Altitude Sickness Damage by Reducing Oxidative Stress and Preventing Mitochondrial Dysfunction. High Alt Med Biol 2024. [PMID: 38995860 DOI: 10.1089/ham.2024.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Yu Liu, Zhengyang Zhang, Yongting Luo, Peng An, Jingyi Qi, Xu Zhang, Shuaishuai Zhou, Yongzhi Li, Chong Xu, Junjie Luo, and Jiaping Wang. Product of traditional Chinese medicine longgui yangxinwan protects the human body from altitude sickness damage by reducing oxidative stress and preventing mitochondrial dysfunction. High Alt Med Biol. 00:00-00, 2024. Background: Plateau reaction, caused by high-altitude exposure, results in symptoms like headaches, dyspnea, palpitations, fatigue, shortness of breath, and insomnia due to reduced oxygen levels. Mitochondria are crucial for high-altitude acclimatization as they regulate oxygen metabolism and cellular energy, reducing oxidative stress and maintaining bodily functions. Methods: The study participants were randomly divided into placebo group, Rhodiola group and longgui yangxinwan (Original name: taikong yangxinwan) group, with 20 people in each group. Three groups of subjects were sampled at three time points (PI: pre-intervention; P-D1: high-altitude day 1; P-D7: high-altitude day 7), and blood pressure, blood oxygen, heart rate, hemoglobin, and red blood cell count were measured. The ATP content, mitochondrial DNA copy number, expression of mitochondria-related genes, reactive oxygen species (ROS), glutathione peroxidase (GSH-PX) and malondialdehyde (MDA) levels, and mitochondrial morphology were measured in blood at each time point. Results: Our study results demonstrate that longgui yangxinwan keeps the selected human physiological indicators stable and prevents mitochondrial dysfunction in the high altitude. Mechanically, longgui yangxinwan decreases the level of ROS in human serum, whereas increases the activity of the antioxidant enzyme GSH-PX. At high-altitude day 1 (P-D1) and high-altitude day 7 (P-D7), ROS in the placebo group were 1.5 and 2.2-fold higher than those of the longgui yangxinwan group, respectively. In addition, longgui yangxinwan enhances ATP production capacity, restores the levels of mitochondrial respiratory chain complexes, and effectively maintains mitochondrial morphology and integrity. At P-D1 and P-D7, the ATP levels in the longgui yangxinwan group were 19-fold and 26-fold higher than those in the placebo group, respectively. Conclusions: Our study highlights longgui yangxinwan as a potential drug for protecting humans from high-altitude damage by reducing oxidative stress and preventing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yu Liu
- China Astronaut Research and Training Center, Beijing, China
| | - Zhengyang Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jingyi Qi
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xu Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shuaishuai Zhou
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing, China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jiaping Wang
- China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
4
|
Li D, Yu Q, Wu R, Tuo Z, Wang J, Ye L, Shao F, Chaipanichkul P, Yoo KH, Wei W, Okoli UA, Deng S, Ke M, Cho WC, Heavey S, Feng D. Interactions between oxidative stress and senescence in cancer: Mechanisms, therapeutic implications, and future perspectives. Redox Biol 2024; 73:103208. [PMID: 38851002 PMCID: PMC11201350 DOI: 10.1016/j.redox.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Recently, numerous studies have reported the interaction between senescence and oxidative stress in cancer. However, there is a lack of a comprehensive understanding of the precise mechanisms involved. AIM Therefore, our review aims to summarize the current findings and elucidate by presenting specific mechanisms that encompass functional pathways, target genes, and related aspects. METHODS Pubmed and Web of Science databases were retrieved to search studies about the interaction between senescence and oxidative stress in cancer. Relevant publications in the reference list of enrolled studies were also checked. RESULTS In carcinogenesis, oxidative stress-induced cellular senescence acts as a barrier against the transformation of stimulated cells into cancer cells. However, the senescence-associated secretory phenotype (SASP) is positively linked to tumorigenesis. In the cancer progression stage, targeting specific genes or pathways that promote oxidative stress-induced cellular senescence can suppress cancer progression. In terms of treatment, many current clinical therapies combine with novel drugs to overcome resistance and reduce side effects by attenuating oxidative stress-induced senescence. Notably, emerging drugs control cancer development by enhancing oxidative stress-induced senescence. These studies highlight the complacted effects of the interplay between oxidative stress and senescence at different cancer stages and among distinct cell populations. Future research should focus on characterizing the roles of distinct senescent cell types in various tumor stages and identifying the specific components of SASP. CONCLUDSION We've summarized the mechanisms of senescence and oxidative stress in cancer and provided illustrative figures to guide future research in this area.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | | | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London, UK; Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Shi Deng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, UK.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China; Division of Surgery & Interventional Science, University College London, London, UK; Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
| |
Collapse
|
5
|
Valenti D, Atlante A. Sound Matrix Shaping of Living Matter: From Macrosystems to Cell Microenvironment, Where Mitochondria Act as Energy Portals in Detecting and Processing Sound Vibrations. Int J Mol Sci 2024; 25:6841. [PMID: 38999952 PMCID: PMC11241420 DOI: 10.3390/ijms25136841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Vibration and sound are the shaping matrix of the entire universe. Everything in nature is shaped by energy vibrating and communicating through its own sound trail. Every cell within our body vibrates at defined frequencies, generating its peculiar "sound signature". Mitochondria are dynamic, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. Novel research has shown that the mitochondrial function of mammalian cells can be modulated by various energetic stimuli, including sound vibrations. Regarding acoustic vibrations, definite types of music have been reported to produce beneficial impacts on human health. In very recent studies, the effects of different sound stimuli and musical styles on cellular function and mitochondrial activity were evaluated and compared in human cells cultured in vitro, investigating the underlying responsible molecular mechanisms. This narrative review will take a multilevel trip from macro to intracellular microenvironment, discussing the intimate vibrational sound activities shaping living matter, delving deeper into the molecular mechanisms underlying the sound modulation of biological systems, and mainly focusing our discussion on novel evidence showing the competence of mitochondria in acting as energy portals capable of sensing and transducing the subtle informational biofields of sound vibration.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
6
|
Chen Z, Chen L, Tan J, Mao Y, Hao M, Li Y, Wang Y, Li J, Wang J, Jin L, Zheng HX. Natural selection shaped the protective effect of the mtDNA lineage against obesity in Han Chinese populations. J Genet Genomics 2024:S1673-8527(24)00129-2. [PMID: 38880354 DOI: 10.1016/j.jgg.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Mitochondria play a key role in lipid metabolism, and mitochondrial DNA (mtDNA) mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function. In this study, we investigated mtDNA variants that may affect obesity risk in 2877 Han Chinese individuals from three independent populations. The association analysis of 16 basal mtDNA haplogroups with body mass index, waist circumference, and waist-to-hip ratio revealed that only haplogroup M7 was significantly negatively correlated with all three adiposity-related anthropometric traits in the overall cohort, verified by the analysis of a single population, i.e., the Zhengzhou population. Furthermore, subhaplogroup analysis suggested that M7b1a1 was the most likely haplogroup associated with a decreased obesity risk, and the variation T12811C (causing Y159H in ND5) harbored in M7b1a1 may be the most likely candidate for altering the mitochondrial function. Specifically, we found that proportionally more nonsynonymous mutations accumulated in M7b1a1 carriers, indicating that M7b1a1 was either under positive selection or subject to a relaxation of selective constraints. We also found that nuclear variants, especially in DACT2 and PIEZO1, may functionally interact with M7b1a1.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Lu Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yizhen Mao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Meng Hao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Jinxi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China; Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China; Research Unit of Dissecting Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Center for Evolutionary Biology, Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China.
| |
Collapse
|
7
|
Zhang Y, Chu J, Hou Q, Qian S, Wang Z, Yang Q, Song W, Dong L, Shi Z, Gao Y, Meng M, Zhang M, Zhang X, Chen Q. Ageing microenvironment mediates lymphocyte carcinogenesis and lymphoma drug resistance: From mechanisms to clinical therapy (Review). Int J Oncol 2024; 64:65. [PMID: 38757347 PMCID: PMC11095602 DOI: 10.3892/ijo.2024.5653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Cellular senescence has a complex role in lymphocyte carcinogenesis and drug resistance of lymphomas. Senescent lymphoma cells combine with immunocytes to create an ageing environment that can be reprogrammed with a senescence‑associated secretory phenotype, which gradually promotes therapeutic resistance. Certain signalling pathways, such as the NF‑κB, Wnt and PI3K/AKT/mTOR pathways, regulate the tumour ageing microenvironment and induce the proliferation and progression of lymphoma cells. Therefore, targeting senescence‑related enzymes or their signal transduction pathways may overcome radiotherapy or chemotherapy resistance and enhance the efficacy of relapsed/refractory lymphoma treatments. Mechanisms underlying drug resistance in lymphomas are complex. The ageing microenvironment is a novel factor that contributes to drug resistance in lymphomas. In terms of clinical translation, some senolytics have been used in clinical trials on patients with relapsed or refractory lymphoma. Combining immunotherapy with epigenetic drugs may achieve better therapeutic effects; however, senescent cells exhibit considerable heterogeneity and lymphoma has several subtypes. Extensive research is necessary to achieve the practical application of senolytics in relapsed or refractory lymphomas. This review summarises the mechanisms of senescence‑associated drug resistance in lymphoma, as well as emerging strategies using senolytics, to overcome therapeutic resistance in lymphoma.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jingwen Chu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qi Hou
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Siyu Qian
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zeyuan Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qing Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yuyang Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Miaomiao Meng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qingjiang Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
8
|
Li DX, Yu QX, Wu RC, Wang J, Feng DC, Deng S. Efficiency of bladder-sparing strategies for bladder cancer: an umbrella review. Ther Adv Med Oncol 2024; 16:17588359241249068. [PMID: 38736553 PMCID: PMC11088297 DOI: 10.1177/17588359241249068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Bladder preservation (BP) has emerged as a clinical alternative to radical cystectomy (RC) for alleviating the substantial physical and psychological burden imposed on localized bladder cancer patients. Nevertheless, disparities persist in the comparative evaluations of BP and RC. We aimed to address the disparities between BP and RC. An umbrella review and meta-analysis were conducted to explore these disparities. We extracted data from meta-analyses and randomized controlled trials (RCTs) selected after searching PubMed, Embase, Web of Science, and the Cochrane Database of Systematic Reviews. Review Manager 5.4.0 and R x64 4.1.3 were used to evaluate the collected data. Our study included 11 meta-analyses and 3 RCTs. In terms of progression-free survival, all the meta-analyses reported that patients with localized bladder cancer who underwent BP exhibited outcomes comparable to those who underwent RC. Meta-analyses regarding the outcomes of cancer-specific survival (CSS) and overall survival (OS) are controversial. To solve these issues, we conducted a pooled analysis of CSS data, which supported the similarity of CSS between BP and RC with no significant heterogeneity [odds ratio (OR): 1.2; 95% confidence interval (CI): 0.71-2.02; I2 = 26%]. Similarly, the pooled OS results extracted from three RCTs indicated the comparability of OS between BP and RC with no significant heterogeneity (OR: 1.12; 95% CI: 0.41-3.07; I2 = 33%). A combination of umbrella review and meta-analysis results suggested that BP had survival rates comparable to those of RC. We suggest that BP may be a more eligible therapy than RC for patients with localized muscle-invasive bladder cancer. This conclusion warrants further validation through randomized controlled trials.
Collapse
Affiliation(s)
- Deng-xiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing-xin Yu
- Ningbo Diagnostic Pathology Center, Ningbo City, Zhejiang, China
| | - Rui-cheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - De-chao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, Sichuan 610041, China
| | - Shi Deng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Li D, Yu Q, Wu R, Tuo Z, Zhu W, Wang J, Shao F, Ye L, Ye X, Yoo KH, Ke M, Yang Y, Wei W, Feng D. Chronobiology of the Tumor Microenvironment: Implications for Therapeutic Strategies and Circadian-Based Interventions. Aging Dis 2024:AD.2024.0327. [PMID: 38607733 DOI: 10.14336/ad.2024.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Numerous research works have emphasized the critical role that circadian rhythm plays in the tumor microenvironment (TME). The goal of clarifying chrono-pharmacological strategies for improving cancer treatment in clinical settings is a continuous endeavor. Consequently, to enhance the use of time-based pharmaceutical therapies in oncology, combining existing knowledge on circadian rhythms' roles within the TME is essential. This perspective elucidates the functions of circadian rhythms in the TME across various stages of cancer development, progression, and metastasis. Specifically, aging, angiogenesis, and inflammation are implicated in modulating circadian rhythm within the TME. Furthermore, circadian rhythm exerts a profound influence on current cancer treatments and thereby generates chronotheray to manage tumors. From a TME perspective, circadian rhythm offers promising opportunities for cancer prevention and treatment; nevertheless, further study is needed to address unanswered scientific problems.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxin Yu
- Department of pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xing Ye
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Korea
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK
| |
Collapse
|
10
|
Liu J, Gao Z, Liu X. Mitochondrial dysfunction and therapeutic perspectives in osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1325317. [PMID: 38370357 PMCID: PMC10870151 DOI: 10.3389/fendo.2024.1325317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disorder characterized by reduced bone mass and structural deterioration of bone tissue, resulting in heightened vulnerability to fractures due to increased bone fragility. This condition primarily arises from an imbalance between the processes of bone resorption and formation. Mitochondrial dysfunction has been reported to potentially constitute one of the most crucial mechanisms influencing the pathogenesis of osteoporosis. In essence, mitochondria play a crucial role in maintaining the delicate equilibrium between bone formation and resorption, thereby ensuring optimal skeletal health. Nevertheless, disruption of this delicate balance can arise as a consequence of mitochondrial dysfunction. In dysfunctional mitochondria, the mitochondrial electron transport chain (ETC) becomes uncoupled, resulting in reduced ATP synthesis and increased generation of reactive oxygen species (ROS). Reinforcement of mitochondrial dysfunction is further exacerbated by the accumulation of aberrant mitochondria. In this review, we investigated and analyzed the correlation between mitochondrial dysfunction, encompassing mitochondrial DNA (mtDNA) alterations, oxidative phosphorylation (OXPHOS) impairment, mitophagy dysregulation, defects in mitochondrial biogenesis and dynamics, as well as excessive ROS accumulation, with regards to OP (Figure 1). Furthermore, we explore prospective strategies currently available for modulating mitochondria to ameliorate osteoporosis. Undoubtedly, certain therapeutic strategies still require further investigation to ensure their safety and efficacy as clinical treatments. However, from a mitochondrial perspective, the potential for establishing effective and safe therapeutic approaches for osteoporosis appears promising.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- School of Medicine, Ezhou Vocational University, Ezhou, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Tao Y, He C, Lin D, Gu Z, Pu W. Comprehensive Identification of Mitochondrial Pseudogenes (NUMTs) in the Human Telomere-to-Telomere Reference Genome. Genes (Basel) 2023; 14:2092. [PMID: 38003036 PMCID: PMC10671835 DOI: 10.3390/genes14112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Practices related to mitochondrial research have long been hindered by the presence of mitochondrial pseudogenes within the nuclear genome (NUMTs). Even though partially assembled human reference genomes like hg38 have included NUMTs compilation, the exhaustive NUMTs within the only complete reference genome (T2T-CHR13) remain unknown. Here, we comprehensively identified the fixed NUMTs within the reference genome using human pan-mitogenome (HPMT) from GeneBank. The inclusion of HPMT serves the purpose of establishing an authentic mitochondrial DNA (mtDNA) mutational spectrum for the identification of NUMTs, distinguishing it from the polymorphic variations found in NUMTs. Using HPMT, we identified approximately 10% of additional NUMTs in three human reference genomes under stricter thresholds. And we also observed an approximate 6% increase in NUMTs in T2T-CHR13 compared to hg38, including NUMTs on the short arms of chromosomes 13, 14, and 15 that were not assembled previously. Furthermore, alignments based on 20-mer from mtDNA suggested the presence of more mtDNA-like short segments within the nuclear genome, which should be avoided for short amplicon or cell free mtDNA detection. Finally, through the assay of transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) on cell lines before and after mtDNA elimination, we concluded that NUMTs have a minimal impact on bulk ATAC-seq, even though 16% of sequencing data originated from mtDNA.
Collapse
Affiliation(s)
- Yichen Tao
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.T.); (D.L.)
| | - Chengpeng He
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China;
| | - Deng Lin
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.T.); (D.L.)
| | - Zhenglong Gu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.T.); (D.L.)
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China;
| | - Weilin Pu
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China;
| |
Collapse
|
12
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
13
|
Yao Z, Guo J, Du B, Hong L, Zhu Y, Feng X, Hou Y, Shi A. Effects of Shenling Baizhu powder on intestinal microflora metabolites and liver mitochondrial energy metabolism in nonalcoholic fatty liver mice. Front Microbiol 2023; 14:1147067. [PMID: 37538846 PMCID: PMC10394096 DOI: 10.3389/fmicb.2023.1147067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Background & purpose Non-alcoholic fatty liver disease (NAFLD) is characterised by the excessive accumulation of triglycerides in the liver. Shenling Baizhu powder (SLBZP) is formulated from various natural medicinal plants that protect the liver and are used to treat intestinal diseases. SLBZP improves the symptoms of NAFLD. However, its mechanism of action remains unclear. Herein, we investigated the ameliorative effect of SLBZP on model mice with high-fat-diet (HFD)-induced NAFLD. Additionally, we evaluated the impact of SLBZP on the intestinal flora and its metabolites and mitochondrial energy metabolism in NAFLD. Methods We used HFD to establish a mouse model of NAFLD. Different drug interventions were administered. We measured serum biochemical indices. Liver sections were visualised with hematoxylin-eosin and oil red O staining. 16S rDNA amplicon sequencing technology was used to analyse the diversity and abundance of the intestinal flora. Short-chain fatty acids (SCFAs) in the intestinal contents were detected using GC-MS. Liver tissue was sampled to detect mitochondrial membrane functional indices. Western blotting was used to determine the levels of mitochondrial pathway-related proteins, namely, uncoupling protein 2 (UCP2), adenosine monophosphate-activated protein kinase (AMPK) and inhibitory factor 1 (IF1) of F1Fo ATP synthesis/hydrolase, in the liver. Results The spleen-invigorating classic recipe of SLBZP reduced liver lipid deposition in mice with HFD-induced NAFLD. Additionally, SCFAs produced by intestinal flora metabolism regulated the UCP2/AMPK/IF1 signalling pathway involved in liver mitochondrial energy metabolism to improve the liver mitochondrial membrane permeability, respiratory state and oxidative phosphorylation efficiency of mice with NAFLD. Finally, SLBZP increased the liver ATP level. Conclusion Our results suggest that the therapeutic effect of SLBZP on NAFLD is related to the regulation of hepatic mitochondrial energy metabolism by intestinal flora and its metabolites and is possibly associated with the UCP2/AMPK/IF1 signalling pathway.
Collapse
Affiliation(s)
- Zheng Yao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming, China
| | - Jia Guo
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- Dongtai City Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Du
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Harbin, China
| | - Li Hong
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- Wuhan Special Service Recuperation Center, Wuhan, China
| | - Ying Zhu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Feng
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanlu Hou
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Anhua Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming, China
| |
Collapse
|
14
|
Li L, Jiang D, Zhang Q, Liu H, Xu F, Guo C, Qin Z, Wang H, Feng J, Liu Y, Chen W, Zhang X, Bai L, Tian S, Tan S, Xu C, Song Q, Liu Y, Zhong Y, Chen T, Zhou P, Zhao JY, Hou Y, Ding C. Integrative proteogenomic characterization of early esophageal cancer. Nat Commun 2023; 14:1666. [PMID: 36966136 PMCID: PMC10039899 DOI: 10.1038/s41467-023-37440-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is malignant while the carcinogenesis is still unclear. Here, we perform a comprehensive multi-omics analysis of 786 trace-tumor-samples from 154 ESCC patients, covering 9 histopathological stages and 3 phases. Proteogenomics elucidates cancer-driving waves in ESCC progression, and reveals the molecular characterization of alcohol drinking habit associated signatures. We discover chromosome 3q gain functions in the transmit from nontumor to intraepithelial neoplasia phases, and find TP53 mutation enhances DNA replication in intraepithelial neoplasia phase. The mutations of AKAP9 and MCAF1 upregulate glycolysis and Wnt signaling, respectively, in advanced-stage ESCC phase. Six major tracks related to different clinical features during ESCC progression are identified, which is validated by an independent cohort with another 256 samples. Hyperphosphorylated phosphoglycerate kinase 1 (PGK1, S203) is considered as a drug target in ESCC progression. This study provides insight into the understanding of ESCC molecular mechanism and the development of therapeutic targets.
Collapse
Affiliation(s)
- Lingling Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Hui Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Fujiang Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Chunmei Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yang Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Weijie Chen
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Xue Zhang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Lin Bai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yalan Liu
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yunshi Zhong
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Tianyin Chen
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| | - Jian-Yuan Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
- Institute for Development and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Department of Anatomy and Neuroscience Research Institute , School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
15
|
Ma G, Li C, Ji P, Chen Y, Li A, Hu Q, Song Z, Tang BQ, Jia D, Wei Y, Li T. Association of traditional Chinese medicine body constitution and cold syndrome with leukocyte mitochondrial functions: An observational study. Medicine (Baltimore) 2023; 102:e32694. [PMID: 36749256 PMCID: PMC9902006 DOI: 10.1097/md.0000000000032694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 02/08/2023] Open
Abstract
Body constitution in traditional Chinese medicine (TCM) refers to the holistic and relatively durable state of an individual, based on the qi and blood assessment, and TCM syndrome is defined as the theoretical abstraction of disease-symptom profiles. The biological basis as related to mitochondria, which produce most of the cellular energy, has not been well studied. This study aimed to elucidate the association of mitochondrial function with TCM body constitution and cold syndrome. Body constitution and cold syndrome in TCM were assessed using the Constitution in Chinese Medicine Questionnaire (CCMQ). The mitochondrial function of peripheral leukocytes was evaluated based on oxygen consumption rate (OCR) and enzyme activity; OCR reflects mitochondrial activity and the capacity to produce adenosine triphosphate (ATP). Cellular adenosine nucleotides and malondialdehyde levels were determined using high-performance liquid chromatography to assess the potential bioenergetic mechanisms. A total of 283 adults participated in this study. Leukocytes from subjects with a balanced constitution had higher OCRs than those with unbalanced constitutions. Yang deficiency and cold syndrome also demonstrated lower energy metabolism, as indicated by reduced basal metabolic rate and cellular levels of ATP and malondialdehyde. Decreased mitochondrial enzyme activity has been observed in individuals with the cold syndrome. Unbalanced body constitutions in TCM impair mitochondrial function in leukocytes, which may contribute to the high disease susceptibility. Cold syndrome is characterized by reduced mitochondrial mass, which may explain its symptoms of low-energy metabolism and cold intolerance.
Collapse
Affiliation(s)
- Guangyin Ma
- Ennova Institute of Life Science and Technology, Langfang, China
| | - Caixia Li
- Ennova Institute of Life Science and Technology, Langfang, China
| | - Peng Ji
- Ennova Institute of Life Science and Technology, Langfang, China
| | - Yanjie Chen
- Ennova Institute of Life Science and Technology, Langfang, China
| | - Ang Li
- Ennova Institute of Life Science and Technology, Langfang, China
| | - Qingchuan Hu
- Ennova Institute of Life Science and Technology, Langfang, China
| | - Zehua Song
- Ennova Institute of Life Science and Technology, Langfang, China
| | - Bruce Qing Tang
- Ennova Institute of Life Science and Technology, Langfang, China
| | - Dexian Jia
- Beijing University of Chinese Medicine, Beijing, China
| | - Yulong Wei
- Beijing University of Chinese Medicine, Beijing, China
| | - Tongju Li
- Ennova Institute of Life Science and Technology, Langfang, China
| |
Collapse
|
16
|
Liu Y, Huang Y, Xu C, An P, Luo Y, Jiao L, Luo J, Li Y. Mitochondrial Dysfunction and Therapeutic Perspectives in Cardiovascular Diseases. Int J Mol Sci 2022; 23:16053. [PMID: 36555691 PMCID: PMC9788331 DOI: 10.3390/ijms232416053] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
High mortality rates due to cardiovascular diseases (CVDs) have attracted worldwide attention. It has been reported that mitochondrial dysfunction is one of the most important mechanisms affecting the pathogenesis of CVDs. Mitochondrial DNA (mtDNA) mutations may result in impaired oxidative phosphorylation (OXPHOS), abnormal respiratory chains, and ATP production. In dysfunctional mitochondria, the electron transport chain (ETC) is uncoupled and the energy supply is reduced, while reactive oxygen species (ROS) production is increased. Here, we discussed and analyzed the relationship between mtDNA mutations, impaired mitophagy, decreased OXPHOS, elevated ROS, and CVDs from the perspective of mitochondrial dysfunction. Furthermore, we explored current potential therapeutic strategies for CVDs by eliminating mtDNA mutations (e.g., mtDNA editing and mitochondrial replacement), enhancing mitophagy, improving OXPHOS capacity (e.g., supplement with NAD+, nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and nano-drug delivery), and reducing ROS (e.g., supplement with Coenzyme Q10 and other antioxidants), and dissected their respective advantages and limitations. In fact, some therapeutic strategies are still a long way from achieving safe and effective clinical treatment. Although establishing effective and safe therapeutic strategies for CVDs remains challenging, starting from a mitochondrial perspective holds bright prospects.
Collapse
Affiliation(s)
- Yu Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yuejia Huang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lei Jiao
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China
| |
Collapse
|