1
|
Yan X, Liu Y, Zhang X, Zhang Q, Liu Y, Guo Y, Shi Z, Xu L, Xiong Z, Ouyang J, Chen Y, Ostrikov KK. Atmospheric pressure plasma preconditioning reduces oxygen and glucose deprivation induced human neuronal SH-SY5Y cells apoptosis by activating protective autophagy and ROS/AMPK/mTOR pathway. Cell Signal 2024; 123:111350. [PMID: 39168260 DOI: 10.1016/j.cellsig.2024.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Reactive oxygen species (ROS)/reactive nitrogen species (RNS) exert a "double edged" effect on the occurrence and development of ischemic stroke. We previously indicate that atmospheric pressure plasma (APP) shows a neuroprotective effect in vitro based on the ROS/RNS generations. However, the mechanism is still unknown. In this work, SH-SY5Y cells were treated with oxygen and glucose deprivation (OGD) injuries for stimulating the ischemic stroke pathological injury process. A helium APP was used for SH-SY5Y cell treatment for evaluating the neuroprotective impacts of APP preconditioning against OGD injuries with the optimized parameters. During the preconditioning, APP significantly raised the extracellular and intracellular ROS/RNS production. As a result, APP preconditioning increased SH-SY5Y cell autophagy by elevating LC3-II/LC3-I ratio and autophagosome formation. Meanwhile, APP preconditioning reduced cell apoptosis caused by OGD with the increased APP treatment time, which was abolished by pretreatment with autophagy inhibitor 3-methyladenine (3-MA). The ROS scavenger N-acetyl-L-cysteine (NAC) alone or combined with NO scavenger carboxy-PTIO abolished the APP preconditioning induced SH-SY5Y autophagy and the cytoprotection, whereas the NO scavenger alone did not. In addition, we observed the elevated phosphorylation of AMP-activated protein kinase (AMPK) and decreased phosphorylation of mammalian target of rapamycin (mTOR) in APP treated SH-SY5Y cells. This effect was attenuated by AMPK inhibitor Compound C (CC), the ROS scavenger NAC and autophagy inhibitor 3-MA. Furthermore, the cytoprotective effect of APP was preliminarily confirmed in the rats of middle cerebral artery occlusion (MCAO) model. Results showed that APP inhalation by rats during MCAO process could improve neurological functions, reduce cell apoptosis in brain tissues and decrease cerebral infarct volume. Our data suggested that ROS produced by APP preconditioning played a vital role in the neuroprotective effect of SH-SY5Y cells against OGD injuries by activating autophagy and ROS/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Xu Yan
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China.
| | - Yuqing Liu
- School of Physics, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Xi Zhang
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Qi Zhang
- Ultrastructural pathology department, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Yixiao Liu
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Yuqi Guo
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Lixin Xu
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Zilan Xiong
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.
| | - Jiting Ouyang
- School of Physics, Beijing Institute of Technology, Beijing, People's Republic of China.
| | - Ye Chen
- Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China; Department of Pathology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing 100050, China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
2
|
Qin H, Qiu H, Liu K, Hong B, Liu Y, Li C, Li M, An X, Song L, Robert E, Tong Y, Fan H, Wang R. Cold atmospheric plasma can effectively disinfect SARS-CoV-2 in the wastewater. EXPLORATION (BEIJING, CHINA) 2024; 4:20230012. [PMID: 38939868 PMCID: PMC11189572 DOI: 10.1002/exp.20230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/01/2023] [Indexed: 06/29/2024]
Abstract
COVID-19 is currently pandemic and the detection of SARS-CoV-2 variants in wastewater is causing widespread concern. Herein, cold atmospheric plasma (CAP) is proposed as a novel wastewater disinfection technology that effectively inactivates SARS-CoV-2 transcription- and replication-competent virus-like particles, coronavirus GX_P2V, pseudotyped SARS-CoV-2 variants, and porcine epidemic diarrhoea virus in a large volume of water within 180 s (inhibition rate > 99%). Further, CAP disinfection did not adversely affect the viability of various human cell lines. It is identified that CAP produced peroxynitrite (ONOO-), ozone (O3), superoxide anion radicals (O2 -), and hydrogen peroxide (H2O2) as the major active substances for coronavirus disinfection. Investigation of the mechanism showed that active substances not only reacted with the coronavirus spike protein and affected its infectivity, but also destroyed the nucleocapsid protein and genome, thus affecting virus replication. This method provides an efficient and environmentally friendly strategy for the elimination of SARS-CoV-2 and other coronaviruses from wastewater.
Collapse
Affiliation(s)
- Hongbo Qin
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Hengju Qiu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Ke Liu
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Bixia Hong
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Yuchen Liu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chun Li
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Mengzhe Li
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Xiaoping An
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Lihua Song
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | | | - Yigang Tong
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Huahao Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Ruixue Wang
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
3
|
Puca V, Marinacci B, Pinti M, Di Cintio F, Sinjari B, Di Marcantonio MC, Mincione G, Acharya TR, Kaushik NK, Choi EH, Sallese M, Guarnieri S, Grande R, Perrotti V. Antimicrobial efficacy of direct air gas soft jet plasma for the in vitro reduction of oral bacterial biofilms. Sci Rep 2024; 14:10882. [PMID: 38740792 DOI: 10.1038/s41598-024-61438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
The aim of this study was to evaluate the antimicrobial efficacy of an air gas soft jet CAP for its potential use in removing oral biofilms, given that plasma-based technologies have emerged as promising methods in periodontology. Two types of biofilms were developed, one by Streptococcus mutans UA 159 bacterial strain and the other by a complex mixture of saliva microorganisms isolated from a patient with periodontitis. This latter biofilm was characterized via Next Generation Sequencing to determine the main bacterial phyla. The CAP source was applied at a distance of 6 mm for different time points. A statistically significant reduction of both CFU count and XTT was already detected after 60 s of CAP treatment. CLSM analysis supported CAP effectiveness in killing the microorganisms inside the biofilm and in reducing the thickness of the biofilm matrix. Cytotoxicity tests demonstrated the possible use of CAP without important side effects towards human gingival fibroblasts cell line. The current study showed that CAP treatment was able to significantly reduce preformed biofilms developed by both S. mutans and microorganisms isolated by a saliva sample. Further studies should be conducted on biofilms developed by additional saliva donors to support the potential of this innovative strategy to counteract oral pathogens responsible for periodontal diseases.
Collapse
Affiliation(s)
- Valentina Puca
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Morena Pinti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Federica Di Cintio
- Department of Oral, Medical and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Bruna Sinjari
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Tirtha Raj Acharya
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Michele Sallese
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Vittoria Perrotti
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
- UdA-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
4
|
Martins GM, da Silva Braz JKF, de Macedo MF, de Oliveira Vitoriano J, Alves Júnior C, Santos CS, Feijó FMC, de Oliveira MF, de Moura CEB. Enhancing Titanium Disk Performance through In-Pack Cold Atmospheric Plasma Treatment. ACS Biomater Sci Eng 2024; 10:1765-1773. [PMID: 38357873 DOI: 10.1021/acsbiomaterials.3c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
While titanium dental implants have already been clinically established, ongoing research is continuously being conducted to advance the fields of osseointegration and bacterial resistance, seeking further improvements in these areas. In this study, we introduce an innovative method for treating titanium surfaces within tightly sealed packaging. Specifically, titanium discs, enclosed in surgical-grade packaging, underwent treatment using cold atmospheric plasma (CAP). The surfaces were thoroughly characterized in terms of wettability, crystalline structure, and chemical composition. Hemocompatibility analyses were conducted using blood diluted in sodium citrate (1:9) exposed to titanium discs for 30 min inside a CO2 incubator at 37 °C. Subsequently, various blood parameters were evaluated, including prothrombin time (PT), activated partial thromboplastin time (APTT), and platelet adhesion. Microbiological analyses were also performed using Pseudomonas aeruginosa (ATCC 27853) for 4 h at 37 °C. The treatment with CAP Jet resulted in a reduction in contact angle without causing any changes in the crystalline structure. No statistically significant differences were observed in the blood parameters. The plasma-treated samples exhibited lower PT and APTT values compared to those of the control group. The surfaces treated with CAP Jet showed increased platelet activation, platelet density, and thrombus formation when compared with the untreated samples. Moreover, the treated surfaces demonstrated lower bacterial colony formation compared with other surfaces.
Collapse
Affiliation(s)
- Gabriel Moura Martins
- Department of Health Sciences, Federal University of Rio Grande do Norte (UFRN), Campus Universitário UFRN, Lagoa Nova, 9078-970 Natal, RN, Brazil
| | | | - Michelly Fernandes de Macedo
- Department of Animal Sciences, Federal Rural University of Semi-Arid Region (UFERSA), Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| | - Jussier de Oliveira Vitoriano
- Plasma Laboratory Applied to Agriculture, Health and Environment, UFERSA, Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| | - Clodomiro Alves Júnior
- Department of Health Sciences, Federal University of Rio Grande do Norte (UFRN), Campus Universitário UFRN, Lagoa Nova, 9078-970 Natal, RN, Brazil
- Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes, 50 - Vila das Acacias, 12228-900 São José dos Campos, SP, Brazil
- Plasma Laboratory Applied to Agriculture, Health and Environment, UFERSA, Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| | - Caio Sérgio Santos
- Laboratory of Veterinary Microbiology, Center of Agrarian Sciences, Federal Rural, UFERSA, 59625-900 Mossoró, Brazil
| | | | - Moacir Franco de Oliveira
- Department of Animal Sciences, Federal Rural University of Semi-Arid Region (UFERSA), Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| | - Carlos Eduardo Bezerra de Moura
- Department of Animal Sciences, Federal Rural University of Semi-Arid Region (UFERSA), Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| |
Collapse
|
5
|
Bhartiya P, Jaiswal A, Negi M, Kaushik N, Ha Choi E, Kumar Kaushik N. Unlocking melanoma Suppression: Insights from Plasma-Induced potent miRNAs through PI3K-AKT-ZEB1 axis. J Adv Res 2024:S2090-1232(24)00084-5. [PMID: 38447612 DOI: 10.1016/j.jare.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Melanoma is a rare but highly malignant form of skin cancer. Although recent targeted and immune-based therapies have improved survival rates by 10-15%, effective melanoma treatment remains challenging. Therefore, novel, combinatorial therapy options such as non-thermal atmospheric pressure plasma (NTP) are being investigated to inhibit and prevent chemoresistance. Although several studies have reported the apoptotic and inhibitory effects of reactive oxygen species produced by NTP in the context of melanoma, the intricate molecular network that determines the role of microRNAs (miRNAs) in regulating NTP-mediated cell death remains unexplored. OBJECTIVES This study aimed to explore the molecular mechanisms and miRNA networks regulated by NTP-induced oxidative stress in melanoma cells. METHODS Melanoma cells were exposed to NTP and then subjected to high-throughput miRNA sequencing to identify NTP-regulated miRNAs. Various biological processes and underlying molecular mechanisms were assessed using Alamar Blue, propidium iodide (PI) uptake, cell migration, and clonogenic assays followed by qRT-PCR and flow cytometry. RESULTS NTP exposure for 3 min was sufficient to modulate the expression of several miRNAs, inhibiting cell growth. Persistent NTP exposure for 5 min increased differential miRNA regulation, PI uptake, and the expression of genes involved in cell cycle arrest and death. qPCR confirmed that miR-200b-3p and miR-215-5p upregulation contributed to decreased cell viability and migration. Mechanistically, inhibiting miR-200b-3p and miR-215-5p in SK-2 cells enhancedZEB1, PI3K, and AKT expression, increasing cell proliferation and viability. CONCLUSION This study demonstrated that NTP exposure for 5 min results in the differential regulation of miRNAs related to the PI3K-AKT-ZEB1 axis and cell cycle dysregulation to facilitate melanoma suppression.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea; Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Manorma Negi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
6
|
Ashokkumar S, Kaushik NK, Han I, Uhm HS, Park JS, Cho GS, Oh YJ, Shin YO, Choi EH. Persistence of Coronavirus on Surface Materials and Its Control Measures Using Nonthermal Plasma and Other Agents. Int J Mol Sci 2023; 24:14106. [PMID: 37762409 PMCID: PMC10531613 DOI: 10.3390/ijms241814106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e., paper, wood, and masks) and non-porous (i.e., plastic, stainless steel, and glass) materials. The persistence of viruses on materials depends on porosity, adsorption, evaporation, isoelectric point, and environmental conditions, such as temperature, pH, and relative humidity. Disinfection techniques are crucial for preventing viral contamination on animated and inanimate surfaces. Currently, there are few effective methodologies for preventing SARS-CoV-2 and other coronaviruses without any side effects. Before infection can occur, measures must be taken to prevent the persistence of the coronavirus on the surfaces of both porous and non-porous inanimate materials. This review focuses on coronavirus persistence in surface materials (inanimate) and control measures. Viruses are inactivated through chemical and physical methods; the chemical methods particularly include alcohol, chlorine, and peroxide, whereas temperature, pH, humidity, ultraviolet irradiation (UV), gamma radiation, X-rays, ozone, and non-thermal, plasma-generated reactive oxygen and nitrogen species (RONS) are physical methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yung Oh Shin
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
7
|
Kniazeva V, Tzerkovsky D, Baysal Ö, Kornev A, Roslyakov E, Kostevitch S. Adjuvant composite cold atmospheric plasma therapy increases antitumoral effect of doxorubicin hydrochloride. Front Oncol 2023; 13:1171042. [PMID: 37409254 PMCID: PMC10318895 DOI: 10.3389/fonc.2023.1171042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Cancer is a global health concern, with a significant impact on mortality rates. Despite advancements in targeted antitumor drugs, the development of new therapies remains challenging due to high costs and tumor resistance. The exploration of novel treatment approaches, such as combined chemotherapy, holds promise for improving the effectiveness of existing antitumor agents. Cold atmospheric plasma has demonstrated antineoplastic effects in preclinical studies, but its potential in combination with specific ions for lymphosarcoma treatment has not been investigated. Methods An in vivo study was conducted using a Pliss lymphosarcoma rat model to evaluate the antitumor effects of composite cold plasma and controlled ionic therapy. Groups of rats were exposed to composite cold plasma for 3, 7, and 14 days, while the control group received no treatment. Additionally, a combination of chemotherapy with cold plasma therapy was assessed, with doxorubicin hydrochloride administered at a dosage of 5 mg/kg. PERENIO IONIC SHIELD™ emitted a controlled ionic formula during the treatment period. Results The in vivo study demonstrated tumor growth inhibition in groups exposed to composite cold plasma for 3, 7, and 14 days compared to the control group. Furthermore, combining chemotherapy with cold plasma therapy resulted in a threefold reduction in tumor volume. The most significant antitumor effects were observed when doxorubicin hydrochloride at a dosage of 5 mg/kg was combined with 14 days of PERENIO IONIC SHIELD™ ionic therapy. Discussion The use of composite cold plasma therapy, in conjunction with a controlled ionic formula emitted by PERENIO IONIC SHIELD™, in the complex treatment of lymphosarcoma in rats showed promising antitumor effects. The combination therapy, particularly when combined with doxorubicin hydrochloride, demonstrated enhanced efficacy. These findings suggest the potential for utilizing cold atmospheric plasma and controlled ions as an adjunctive treatment approach in lymphosarcoma therapy. Further research is warranted to explore the mechanisms underlying these effects and to evaluate the safety and efficacy in human clinical trials.
Collapse
Affiliation(s)
- Volha Kniazeva
- Bioresearch Department, R. S. C. Real Scientists Cyprus Ltd., Limassol, Cyprus
| | - Dzmitry Tzerkovsky
- Laboratory of Morphology, Molecular and Cellular Biology with a Group of Experimental Medicine, N. N. Alexandrov National Cancer Center of Belarus, Lesnoy, Belarus
| | - Ömür Baysal
- Faculty of Science, Department of Molecular Biology and Genetics, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Kötekli, Türkiye
| | - Alexander Kornev
- Bioresearch Department, R. S. C. Real Scientists Cyprus Ltd., Limassol, Cyprus
| | - Evgeny Roslyakov
- Bioresearch Department, R. S. C. Real Scientists Cyprus Ltd., Limassol, Cyprus
| | - Serhei Kostevitch
- Bioresearch Department, R. S. C. Real Scientists Cyprus Ltd., Limassol, Cyprus
| |
Collapse
|
8
|
Lin L, McCraw MR, Uluutku B, Liu Y, Yan D, Soni V, Horkowitz A, Yao X, Limanowski R, Solares SD, Beilis II, Keidar M. Cell Membrane Oscillations under Radiofrequency Electromagnetic Modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3320-3331. [PMID: 36802616 DOI: 10.1021/acs.langmuir.2c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cell responses to external radiofrequencies (RF) are a fundamental problem of much scientific research, clinical applications, and even daily lives surrounded by wireless communication hardware. In this work, we report an unexpected observation that the cell membrane can oscillate at the nanometer scale in phase with the external RF radiation from kHz to GHz. By analyzing the oscillation modes, we reveal the mechanism behind the membrane oscillation resonance, membrane blebbing, the resulting cell death, and the selectivity of plasma-based cancer treatment based on the difference in the membrane's natural frequencies among cell lines. Therefore, a selectivity of treatment can be achieved by aiming at the natural frequency of the target cell line to focus the membrane damage on the cancer cells and avoid normal tissues nearby. This gives a promising cancer therapy that is especially effective in the mixing lesion of the cancer cells and normal cells such as glioblastoma where surgical removal is not applicable. Along with these new phenomena, this work provides a general understanding of the cell coupling with RF radiation from the externally stimulated membrane behavior to the cell apoptosis and necrosis.
Collapse
Affiliation(s)
- Li Lin
- Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, 800 22nd St. NW, Suite 3100, Washington, D.C. 20052, United States of America
| | - Marshall R McCraw
- Scanning Probe Microscopy Laboratory, School of Engineering and Applied Science, George Washington University, 800 22nd St. NW, Suite 3900, Washington, D.C. 20052, United States of America
| | - Berkin Uluutku
- Scanning Probe Microscopy Laboratory, School of Engineering and Applied Science, George Washington University, 800 22nd St. NW, Suite 3900, Washington, D.C. 20052, United States of America
| | - Yi Liu
- School of Mechanical Engineering, Shanghai Jiaotong University, 800th Dongchuan Rd., Shanghai 200240, People's Republic of China
| | - Dayun Yan
- Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, 800 22nd St. NW, Suite 3100, Washington, D.C. 20052, United States of America
| | - Vikas Soni
- Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, 800 22nd St. NW, Suite 3100, Washington, D.C. 20052, United States of America
| | - Alex Horkowitz
- Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, 800 22nd St. NW, Suite 3100, Washington, D.C. 20052, United States of America
| | - Xiaoliang Yao
- Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, 800 22nd St. NW, Suite 3100, Washington, D.C. 20052, United States of America
| | - Ruby Limanowski
- Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, 800 22nd St. NW, Suite 3100, Washington, D.C. 20052, United States of America
| | - Santiago D Solares
- Scanning Probe Microscopy Laboratory, School of Engineering and Applied Science, George Washington University, 800 22nd St. NW, Suite 3900, Washington, D.C. 20052, United States of America
| | - Isak I Beilis
- School of Electrical Engineering, Tel Aviv University, Wolfson Building, Chaim Levanon St 30, 6997801 Tel Aviv-Yafo, Israel
| | - Michael Keidar
- Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, 800 22nd St. NW, Suite 3100, Washington, D.C. 20052, United States of America
| |
Collapse
|
9
|
Plasma-Generated Nitric Oxide Water Mediates Environmentally Transmitted Pathogenic Bacterial Inactivation via Intracellular Nitrosative Stress. Int J Mol Sci 2023; 24:ijms24031901. [PMID: 36768225 PMCID: PMC9915551 DOI: 10.3390/ijms24031901] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/17/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Over time, the proportion of resistant bacteria will increase. This is a major concern. Therefore, effective and biocompatible therapeutic strategies against these bacteria are urgently needed. Non-thermal plasma has been exhaustively characterized for its antibacterial activity. This study aims to investigate the inactivation efficiency and mechanisms of plasma-generated nitric oxide water (PG-NOW) on pathogenic water, air, soil, and foodborne Gram-negative and Gram-positive bacteria. Using a colony-forming unit assay, we found that PG-NOW treatment effectively inhibited the growth of bacteria. Moreover, the intracellular nitric oxide (NO) accumulation was evaluated by 4-amino-5-methylamino-2',7'-dichlorofluorescein diacetate (DAF-FM DA) staining. The reduction of viable cells unambiguously indicates the anti-microbial effect of PG-NOW. The soxR and soxS genes are associated with nitrosative stress, and oxyR regulation corresponds to oxidative stress in bacterial cells. To support the nitrosative effect mediated by PG-NOW, we have further assessed the soxRS and oxyR gene expressions after treatment. Accordingly, soxRS expression was enhanced, whereas the oxyR expression was decreased following PG-NOW treatment. The disruption of cell morphology was observed using scanning electron microscopy (SEM) analysis. In conclusion, our findings furnish evidence of an initiation point for the further progress and development of PG-NOW-based antibacterial treatments.
Collapse
|
10
|
Assessment of the Effect of Cold Atmospheric Plasma (CAP) on the Hairtail ( Trichiurus lepturus) Quality under Cold Storage Conditions. Foods 2022; 11:foods11223683. [PMID: 36429278 PMCID: PMC9689270 DOI: 10.3390/foods11223683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Cold Atmospheric Plasma (CAP) is a novel non-thermal preservation method that extends the shelf-life of food. Therefore, this study investigated the effect of CAP on the quality parameters of hairtail (Trichiurus lepturus) during cold storage conditions (at 4 °C and RH range 45−55%). For that reason, different quality parameters including the total bacteria count (TBC), total volatile basic nitrogen (TVB-N), pH, thiobarbituric acid reacting substances value (TBARS), color, texture, and sensory evaluation have been measured. The hairtail was exposed to CAP at 50 kV voltage for 2, 3, 4, and 5 min. The results showed that the samples treated with CAP at 50 kV for 5 min had significantly lower (p < 0.05) TBC (7.04 ± 0.26 log CFU/g) compared with the control sample (8.69 ± 0.06 log CFU/g). Similar results were found concerning TVB-N, which strongly decreased in the treated samples (16.63 ± 0.03 mg N/100 g) in comparison with the control sample (22.79 ± 0.03 mg N/100 g). In addition, the CAP-treated samples had lower (p < 0.05) changes in color than those of the control group. With reference to the sensory evaluation, the shelf-life of CAP-treated samples (at 50 kV for 5 min) was longer than the untreated samples by about 6 days. These results led us to the conclusion that CAP can effectively delay spoilage and deterioration, slow the rise in pH, and maintain the sensory attributes of hairtail during cold storage conditions.
Collapse
|
11
|
Low Temperature Plasma Strategies for Xylella fastidiosa Inactivation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The quarantine bacterium Xylella fastidiosa was first detected in Salento (Apulia, Italy) in 2013 and caused severe symptoms in olives, leading to plant death. The disease, named Olive Quick Decline Syndrome (OQDS), is caused by the strain “De Donno” ST53 of the subspecies pauca of this bacterium (XfDD), which is spread by the insect Philaenus spumarius. The epidemic poses a serious threat to the agricultural economy and the landscape, as X. fastidiosa infects several plant species and there is yet no recognized solution. Research on OQDS is focused on finding strategies to control its spread or mitigate its symptoms. As a perspective solution, we investigated the efficacy of the low-temperature plasma and plasma-activated water to kill bacterial cells. Experiments were conducted in vitro to test the biocidal effect of the direct application of a Surface Dielectric Barrier Discharge (SDBD) plasma on bacteria cells and Plasma Activated Water (PAW). PAW activity was tested as a possible biocidal agent that can move freely in the xylem network paving the way to test the strategy on infected plants. The results showed a high decontamination rate even for cells of XfDD embedded in biofilms grown on solid media and complete inactivation in liquid culture medium.
Collapse
|
12
|
Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of thermal and non-thermal atmospheric pressure plasma to solve problems related to agriculture and biomedicine is the focus of this paper. Plasma in thermal equilibrium is used where heat is required. In agriculture, it is used to treat soil and land contaminated by the products of biomass, plastics, post-hospital and pharmaceutical waste combustion, and also by ecological phenomena that have recently been observed, such as droughts, floods and storms, leading to environmental pollution. In biomedical applications, thermal plasma is used in so-called indirect living tissue treatment. The sources of thermal plasma are arcs, plasma torches and microwave plasma reactors. In turn, atmospheric pressure cold (non-thermal) plasma is applied in agriculture and biomedicine where heat adversely affects technological processes. The thermodynamic imbalance of cold plasma makes it suitable for organic syntheses due its low power requirements and the possibility of conducting chemical reactions in gas at relatively low and close to ambient temperatures. It is also suitable in the treatment of living tissues and sterilisation of medical instruments made of materials that are non-resistant to high temperatures. Non-thermal and non-equilibrium discharges at atmospheric pressure that include dielectric barrier discharges (DBDs) and atmospheric pressure plasma jets (APPJs), as well as gliding arc (GAD), can be the source of cold plasma. This paper presents an overview of agriculture and soil protection problems and biomedical and health protection problems that can be solved with the aid of plasma produced with electrical discharges. In particular, agricultural processes related to water, sewage purification with ozone and with advanced oxidation processes, as well as those related to contaminated soil treatment and pest control, are presented. Among the biomedical applications of cold plasma, its antibacterial activity, wound healing, cancer treatment and dental problems are briefly discussed.
Collapse
|
13
|
Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomedicines 2022; 10:biomedicines10040823. [PMID: 35453573 PMCID: PMC9029215 DOI: 10.3390/biomedicines10040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
Collapse
|
14
|
Periodic Exposure of Plasma-Activated Medium Alters Fibroblast Cellular Homoeostasis. Int J Mol Sci 2022; 23:ijms23063120. [PMID: 35328541 PMCID: PMC8949019 DOI: 10.3390/ijms23063120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/19/2022] Open
Abstract
Excess amounts of redox stress and failure to regulate homeostatic levels of reactive species are associated with several skin pathophysiologic conditions. Nonmalignant cells are assumed to cope better with higher reactive oxygen and nitrogen species (RONS) levels. However, the effect of periodic stress on this balance has not been investigated in fibroblasts in the field of plasma medicine. In this study, we aimed to investigate intrinsic changes with respect to cellular proliferation, cell cycle, and ability to neutralize the redox stress inside fibroblast cells following periodic redox stress in vitro. Soft jet plasma with air as feeding gas was used to generate plasma-activated medium (PAM) for inducing redox stress conditions. We assessed cellular viability, energetics, and cell cycle machinery under oxidative stress conditions at weeks 3, 6, 9, and 12. Fibroblasts retained their usual physiological properties until 6 weeks. Fibroblasts failed to overcome the redox stress induced by periodic PAM exposure after 6 weeks, indicating its threshold potential. Periodic stress above the threshold level led to alterations in fibroblast cellular processes. These include consistent increases in apoptosis, while RONS accumulation and cell cycle arrest were observed at the final stages. Currently, the use of NTP in clinical settings is limited due to a lack of knowledge about fibroblasts’ behavior in wound healing, scar formation, and other fibrotic disorders. Understanding fibroblasts’ physiology could help to utilize nonthermal plasma in redox-related skin diseases. Furthermore, these results provide new information about the threshold capacity of fibroblasts and an insight into the adaptation mechanism against periodic oxidative stress conditions in fibroblasts.
Collapse
|
15
|
Non-Thermal Atmospheric Plasma for Microbial Decontamination and Removal of Hazardous Chemicals: An Overview in the Circular Economy Context with Data for Test Applications of Microwave Plasma Torch. Processes (Basel) 2022. [DOI: 10.3390/pr10030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transformation of our linear “take-make-waste” system to a cyclic flow of materials and energy is a priority task for society, but the circular use of waste streams from one industry/sector as a material input for another must be completely safe. The need for new advanced technologies and methods ensuring both microbiological safety and the removal of potential chemical residues in used materials and products is urgent. Non-thermal atmospheric plasma (cold atmospheric plasma—CAP) has recently attracted great research interest as an alternative for operative solutions of problems related to safety and quality control. CAP is a powerful tool for the inactivation of different hazardous microorganisms and viruses, and the effective decontamination of surfaces and liquids has been demonstrated. Additionally, the plasma’s active components are strong oxidizers and their synergetic effect can lead to the degradation of toxic chemical compounds such as phenols and azo-dyes.
Collapse
|
16
|
Choi EH, Kaushik NK, Hong YJ, Lim JS, Choi JS, Han I. Plasma bioscience for medicine, agriculture and hygiene applications. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2022; 80:817-851. [PMID: 35261432 PMCID: PMC8895076 DOI: 10.1007/s40042-022-00442-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Nonthermal biocompatible plasma (NBP) sources operating in atmospheric pressure environments and their characteristics can be used for plasma bioscience, medicine, and hygiene applications, especially for COVID-19 and citizen. This review surveyed the various NBP sources, including a plasma jet, micro-DBD (dielectric barrier discharge) and nanosecond discharged plasma. The electron temperatures and the plasma densities, which are produced using dielectric barrier discharged electrode systems, can be characterized as 0.7 ~ 1.8 eV and (3-5) × 1014-15 cm-3, respectively. Herein, we introduce a general schematic view of the plasma ultraviolet photolysis of water molecules for reactive oxygen and nitrogen species (RONS) generation inside biological cells or living tissues, which would be synergistically important with RONS diffusive propagation into cells or tissues. Of the RONS, the hydroxyl radical [OH] and hydrogen peroxide H2O2 species would mainly result in apoptotic cell death with other RONS in plasma bioscience and medicines. The diseased biological protein, cancer, and mutated cells could be treated by using a NBP or plasma activated water (PAW) resulting in their apoptosis for a new paradigm of plasma medicine.
Collapse
Affiliation(s)
- Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Young June Hong
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Jun Sup Lim
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Jin Sung Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Ihn Han
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| |
Collapse
|