1
|
Jayabalan S, Rajakani R, Kumari K, Pulipati S, Hariharan RVG, Venkatesan SD, Jaganathan D, Kancharla PK, Raju K, Venkataraman G. Morpho-physiological, biochemical and molecular characterization of coastal rice landraces to identify novel genetic sources of salinity tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 187:50-66. [PMID: 35952550 DOI: 10.1016/j.plaphy.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/01/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity is a leading cause for yield losses in rice, affecting nearly 6% of global rice cultivable area. India is host to a rich diversity of coastal rice landraces that are naturally tolerant to salinity and an untapped source to identify novel determinants of salinity tolerance. In the present study, we have assessed the relative salinity tolerance of 43 previously genotyped rice landraces at seedling stage, using thirteen morpho-physiological and biochemical parameters using a hydroponics system. Among 43 rice varieties, 25 were tolerant, 15 were moderately tolerant, 1 was moderately susceptible and 2 sensitive checks were found to be highly susceptible based on standard salinity scoring methods. In addition to previously known saline tolerant genotypes (Pokkali, FL478 and Nona Bokra), the present study has novel genotypes such as Katrangi, Orkyma, Aduisen 1, Orumundakan 1, Hoogla, and Talmugur 2 as potential sources of salinity tolerance through measurement of morpho-physiological and biochemical parameters including Na+, K+ estimations and Na+/K+ ratios. Further, Pallipuram Pokkali may be an important source of the tissue tolerance trait under salinity. Four marker trait associations (RM455-root Na+; RM161-shoot and root Na+/K+ ratios; RM237-salinity tolerance index) accounted for phenotypic variations in the range of 20.97-39.82%. A significant increase in root endodermal and exodermal suberization was observed in selected rice landraces under salinity. For the first time, variation in the number of suberized sclerenchymatous layers as well as passage cells is reported, in addition to expression level changes in suberin biosynthetic genes (CYP86A2, CYP81B1, CYP86A8 and PERL).
Collapse
Affiliation(s)
- Shilpha Jayabalan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India; Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Raja Rajakani
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India
| | - Raj V Ganesh Hariharan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, 603203, Tamil Nadu, India
| | - Sowmiya Devi Venkatesan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, 603203, Tamil Nadu, India
| | - Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India; Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Pavan Kumar Kancharla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Kalaimani Raju
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Taramani, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
2
|
Shahzad B, Shabala L, Zhou M, Venkataraman G, Solis CA, Page D, Chen ZH, Shabala S. Comparing Essentiality of SOS1-Mediated Na + Exclusion in Salinity Tolerance between Cultivated and Wild Rice Species. Int J Mol Sci 2022; 23:9900. [PMID: 36077294 PMCID: PMC9456175 DOI: 10.3390/ijms23179900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/22/2023] Open
Abstract
Soil salinity is a major constraint that affects plant growth and development. Rice is a staple food for more than half of the human population but is extremely sensitive to salinity. Among the several known mechanisms, the ability of the plant to exclude cytosolic Na+ is strongly correlated with salinity stress tolerance in different plant species. This exclusion is mediated by the plasma membrane (PM) Na+/H+ antiporter encoded by Salt Overly Sensitive (SOS1) gene and driven by a PM H+-ATPase generated proton gradient. However, it is not clear to what extent this mechanism is operational in wild and cultivated rice species, given the unique rice root anatomy and the existence of the bypass flow for Na+. As wild rice species provide a rich source of genetic diversity for possible introgression of abiotic stress tolerance, we investigated physiological and molecular basis of salinity stress tolerance in Oryza species by using two contrasting pairs of cultivated (Oryza sativa) and wild rice species (Oryza alta and Oryza punctata). Accordingly, dose- and age-dependent Na+ and H+ fluxes were measured using a non-invasive ion selective vibrating microelectrode (the MIFE technique) to measure potential activity of SOS1-encoded Na+/H+ antiporter genes. Consistent with GUS staining data reported in the literature, rice accessions had (~4-6-fold) greater net Na+ efflux in the root elongation zone (EZ) compared to the mature root zone (MZ). Pharmacological experiments showed that Na+ efflux in root EZ is suppressed by more than 90% by amiloride, indicating the possible involvement of Na+/H+ exchanger activity in root EZ. Within each group (cultivated vs. wild) the magnitude of amiloride-sensitive Na+ efflux was higher in tolerant genotypes; however, the activity of Na+/H+ exchanger was 2-3-fold higher in the cultivated rice compared with their wild counterparts. Gene expression levels of SOS1, SOS2 and SOS3 were upregulated under 24 h salinity treatment in all the tested genotypes, with the highest level of SOS1 transcript detected in salt-tolerant wild rice genotype O. alta (~5-6-fold increased transcript level) followed by another wild rice, O. punctata. There was no significant difference in SOS1 expression observed for cultivated rice (IR1-tolerant and IR29-sensitive) under both 0 and 24 h salinity exposure. Our findings suggest that salt-tolerant cultivated rice relies on the cytosolic Na+ exclusion mechanism to deal with salt stress to a greater extent than wild rice, but its operation seems to be regulated at a post-translational rather than transcriptional level.
Collapse
Affiliation(s)
- Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University; Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Celymar Angela Solis
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - David Page
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University; Foshan 528000, China
- School of Biological Science, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|