1
|
Cao Y, Turk K, Bibi N, Ghafoor A, Ahmed N, Azmat M, Ahmed R, Ghani MI, Ahanger MA. Nanoparticles as catalysts of agricultural revolution: enhancing crop tolerance to abiotic stress: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1510482. [PMID: 39898270 PMCID: PMC11782286 DOI: 10.3389/fpls.2024.1510482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025]
Abstract
Ensuring global food security and achieving sustainable agricultural productivity remains one of the foremost challenges of the contemporary era. The increasing impacts of climate change and environmental stressors like drought, salinity, and heavy metal (HM) toxicity threaten crop productivity worldwide. Addressing these challenges demands the development of innovative technologies that can increase food production, reduce environmental impacts, and bolster the resilience of agroecosystems against climate variation. Nanotechnology, particularly the application of nanoparticles (NPs), represents an innovative approach to strengthen crop resilience and enhance the sustainability of agriculture. NPs have special physicochemical properties, including a high surface-area-to-volume ratio and the ability to penetrate plant tissues, which enhances nutrient uptake, stress resistance, and photosynthetic efficiency. This review paper explores how abiotic stressors impact crops and the role of NPs in bolstering crop resistance to these challenges. The main emphasis is on the potential of NPs potential to boost plant stress tolerance by triggering the plant defense mechanisms, improving growth under stress, and increasing agricultural yield. NPs have demonstrated potential in addressing key agricultural challenges, such as nutrient leaching, declining soil fertility, and reduced crop yield due to poor water management. However, applying NPs must consider regulatory and environmental concerns, including soil accumulation, toxicity to non-target organisms, and consumer perceptions of NP-enhanced products. To mitigate land and water impacts, NPs should be integrated with precision agriculture technologies, allowing targeted application of nano-fertilizers and nano-pesticides. Although further research is necessary to assess their advantages and address concerns, NPs present a promising and cost-effective approach for enhancing food security in the future.
Collapse
Affiliation(s)
- Yahan Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Khalid Turk
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nabila Bibi
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Ghafoor
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nazeer Ahmed
- Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Muhammad Azmat
- Department of Biology, College of Science, University of Lahore, Lahore, Pakistan
| | - Roshaan Ahmed
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Imran Ghani
- College of Agriculture, Guizhou University/College of Life Sciences, Guiyang, China
| | - Muhammad Abass Ahanger
- Key Laboratory for Tropical Plant Improvement and Sustainable Use, Xishuangbanna Tropical 20 Botanical Garden, Chinese Academy of Sciences, Menglun, China
| |
Collapse
|
2
|
Yang Y, Yang X, Dai K, He S, Zhao W, Wang S, Zhou Z, Hu W. Nanoceria-induced variations in leaf anatomy and cell wall composition drive the increase in mesophyll conductance of salt-stressed cotton leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109111. [PMID: 39255612 DOI: 10.1016/j.plaphy.2024.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Nanomaterials as an emerging tool are being used to improve plant's net photosynthetic rate (AN) when suffering salt stress, but the underlying mechanisms remain unclear. To clarify this, a hydroponic experiment was conducted to study the effects of polyacrylic acid coated nanoceria (PNC) on the AN of salt-stressed cotton and related intrinsic mechanisms. Results showed that the PNC-induced AN enhancement of salt-stressed leaves was strongly facilitated by the mesophyll conductance to CO2 (gm). Further analysis showed that the PNC-induced improvement of gm was related to the increased chloroplast surface area exposed to intercellular airspaces, which was attribute to the increased mesophyll surface area exposed to intercellular airspaces and chloroplast number due to the increased K+ content and decreased reactive oxygen species level in salt-stressed leaves. Interestingly, our results also showed that PNC-induced variations in cell wall composition of salt-stressed cotton leaves strongly influenced gm, especially, hemicellulose and pectin. Moreover, the proportion of pectin in cell wall composition played a more important role in determining gm. Our study demonstrated for the first time that nanoceria, through alterations to anatomical traits and cell wall composition, drove gm enhancement, which ultimately increased AN of salt-stressed leaves.
Collapse
Affiliation(s)
- Yuanli Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Xinyi Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Kangning Dai
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Shuyu He
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Wenqing Zhao
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Mao T, Bao L, Zhang H, Shi Z, Liu J, Wang D, Liu C, Zhan Y, Zhai Y. Mn 3O 4 Nanoenzyme Seed Soaking Enhanced Salt Tolerance in Soybean Through Modulating Homeostasis of Reactive Oxygen Species and ATPase Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:3011. [PMID: 39519929 PMCID: PMC11548499 DOI: 10.3390/plants13213011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Soybean, an important cash crop, is often affected by soil salinity, which is one of the important types of abiotic stress that affects its growth. Poly (acrylic) acid coated Mn3O4 (PMO) has been reported to play a vital role in defending against a variety of abiotic stresses in plants. To date, the effects of PMOs on soybean have not been reported; this study explored the mechanism of PMO-enhanced soybean germination under salt stress. In this experiment, 100 mg/L PMO was used as an immersion agent with a salt treatment of 150 mM NaCl. The results showed that when compared with the PMO treatment, salt stress significantly decreased the germination rate, fresh weight, carbohydrate content, and antioxidant enzyme activity of soybean and significantly increased the contents of reactive oxygen species, malondialdehyde, and osmoregulatory substances. However, PMO treatment enhanced the antioxidant defense system and significantly reduced the malondialdehyde content of soybean. Moreover, the activities of H+-ATPase and Ca2+-ATPase were significantly higher in treated soybean than in the control, and the content of ATP was also higher in treated soybean than in the control. Generally, PMO regulates the homeostasis of reactive oxygen species and reduces ATP consumption, thereby improving the ability of soybeans to germinate under salt stress. This study provides new insights into how nanomaterials improve plant salt tolerance.
Collapse
Affiliation(s)
- Tingyong Mao
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar 843300, China
| | - Linfeng Bao
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
| | - Hengbin Zhang
- Crops Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Zhilin Shi
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
| | - Jiahao Liu
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar 843300, China
| | - Desheng Wang
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar 843300, China
| | - Chan Liu
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar 843300, China
| | - Yong Zhan
- Crops Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Yunlong Zhai
- College of Agriculture, Tarim University, Alar 843300, China; (T.M.); (L.B.); (Z.S.); (J.L.); (D.W.); (C.L.)
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar 843300, China
| |
Collapse
|
4
|
Qi J, Li Y, Yao X, Li G, Xu W, Chen L, Xie Z, Gu J, Wu H, Li Z. Rational design of ROS scavenging and fluorescent gold nanoparticles to deliver siRNA to improve plant resistance to Pseudomonas syringae. J Nanobiotechnology 2024; 22:446. [PMID: 39075467 PMCID: PMC11285324 DOI: 10.1186/s12951-024-02733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Bacterial diseases are one of the most common issues that result in crop loss worldwide, and the increasing usage of chemical pesticides has caused the occurrence of resistance in pathogenic bacteria and environmental pollution problems. Nanomaterial mediated gene silencing is starting to display powerful efficiency and environmental friendliness for improving plant disease resistance. However, the internalization of nanomaterials and the physiological mechanisms behind nano-improved plant disease resistance are still rarely understood. We engineered the polyethyleneimine (PEI) functionalized gold nanoparticles (PEI-AuNPs) with fluorescent properties and ROS scavenging activity to act as siRNA delivery platforms. Besides the loading, protection, and delivery of nucleic acid molecules in plant mature leaf cells by PEI-AuNPs, its fluorescent property further enables the traceability of the distribution of the loaded nucleic acid molecules in cells. Additionally, the PEI-AuNPs-based RNAi delivery system successfully mediated the silencing of defense-regulated gene AtWRKY1. Compared to control plants, the silenced plants performed better resistance to Pseudomonas syringae, showing a reduced bacterial number, decreased ROS content, increased antioxidant enzyme activities, and improved chlorophyll fluorescence performance. Our results showed the advantages of AuNP-based RNAi technology in improving plant disease resistance, as well as the potential of plant nanobiotechnology to protect agricultural production.
Collapse
Affiliation(s)
- Jie Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yanhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xue Yao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Guangjing Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wenying Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Lingling Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhouli Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiangjiang Gu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 511464, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 511464, China
| | - Honghong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 511464, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 511464, China.
| | - Zhaohu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
5
|
Saravana Kumari P, Ramkumar S, Seethalaxmi M, Rekha T, Abiyoga M, Baskar V, Sureshkumar S. Biofortification of crops with nutrients by the application of nanofertilizers for effective agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108772. [PMID: 38801788 DOI: 10.1016/j.plaphy.2024.108772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
The agricultural industry is rapidly accepting daily changes and updates, and expanding to meet the basic demands of humanity. The main objective of modern agricultural practices is high profits with minimal investment, without upsetting any other form of life or abiotic factors. According to this principle, nanofertilizers are recommended for use in agriculture and are classified in different ways based on their nutritive value, functional role in the environment, chemical composition, and form of application to ensure their persistent availability in the required quantities. These nanofertilizers meet the global crop nutrient requirement of 191.8 million metric tons along with multitudes of added value, and which are highly endorsed in the agricultural field compared to other chemical fertilizers, or their usage can be reduced to less than 50% by the use of nanofertilizers. In this review, we discuss different types of nanofertilizers, their effects on crop yield, stress tolerance, and their impact on the environment. Furthermore, the different types of nanofertilizer delivery, modes of action, and toxic impacts of nanofertilizers have been discussed. Although a large number of commercially successful effects of nanofertilizers have been demonstrated, the effects of biomagnification and cellular transformation are still disputed. The effect of the biomagnification of nanofertilizers remains unclear. A suitable strategy must be developed to easily recycle nanofertilizers. It is the need of the hour to accept the use of nanofertilizers in parallel to addressing this issue.
Collapse
Affiliation(s)
- P Saravana Kumari
- Department of Microbiology, RVS College of Arts and Science, Coimbatore, India
| | - S Ramkumar
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - M Seethalaxmi
- Department of Microbiology, RVS College of Arts and Science, Coimbatore, India; Department of Biotechnology, Surana College, Bangalore, India
| | - T Rekha
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| | - M Abiyoga
- Department of Microbiology, RVS College of Arts and Science, Coimbatore, India
| | - V Baskar
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| | - S Sureshkumar
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| |
Collapse
|
6
|
Soni S, Jha AB, Dubey RS, Sharma P. Nanowonders in agriculture: Unveiling the potential of nanoparticles to boost crop resilience to salinity stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171433. [PMID: 38458469 DOI: 10.1016/j.scitotenv.2024.171433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Soil salinization significantly affects crop production by reducing crop quality and decreasing yields. Climate change can intensify salinity-related challenges, making the task of achieving global food security more complex. To address the problem of elevated salinity stress in crops, nanoparticles (NPs) have emerged as a promising solution. NPs, characterized by their small size and extensive surface area, exhibit remarkable functionality and reactivity. Various types of NPs, including metal and metal oxide NPs, carbon-based NPs, polymer-based NPs, and modified NPs, have displayed potential for mitigating salinity stress in plants. However, the effectiveness of NPs application in alleviating plant stress is dependent upon multiple factors, such as NPs size, exposure duration, plant species, particle composition, and prevailing environmental conditions. Moreover, alterations to NPs surfaces through functionalization and coating also play a role in influencing plant tolerance to salinity stress. NPs can influence cellular processes by impacting signal transduction and gene expression. They counteract reactive oxygen species (ROS), regulate the water balance, enhance photosynthesis and nutrient uptake and promote plant growth and yield. The objective of this review is to discuss the positive impacts of diverse NPs on alleviating salinity stress within plants. The intricate mechanisms through which NPs accomplish this mitigation are also discussed. Furthermore, this review addresses existing research gaps, recent breakthroughs, and prospective avenues for utilizing NPs to combat salinity stress.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
7
|
Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H, Guo Y. Insights into plant salt stress signaling and tolerance. J Genet Genomics 2024; 51:16-34. [PMID: 37647984 DOI: 10.1016/j.jgg.2023.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Soil salinization is an essential environmental stressor, threatening agricultural yield and ecological security worldwide. Saline soils accumulate excessive soluble salts which are detrimental to most plants by limiting plant growth and productivity. It is of great necessity for plants to efficiently deal with the adverse effects caused by salt stress for survival and successful reproduction. Multiple determinants of salt tolerance have been identified in plants, and the cellular and physiological mechanisms of plant salt response and adaption have been intensely characterized. Plants respond to salt stress signals and rapidly initiate signaling pathways to re-establish cellular homeostasis with adjusted growth and cellular metabolism. This review summarizes the advances in salt stress perception, signaling, and response in plants. A better understanding of plant salt resistance will contribute to improving crop performance under saline conditions using multiple engineering approaches. The rhizosphere microbiome-mediated plant salt tolerance as well as chemical priming for enhanced plant salt resistance are also discussed in this review.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China
| | - Xixian Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Xiao F, Zhou H. Plant salt response: Perception, signaling, and tolerance. FRONTIERS IN PLANT SCIENCE 2023; 13:1053699. [PMID: 36684765 PMCID: PMC9854262 DOI: 10.3389/fpls.2022.1053699] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
Salt stress is one of the significant environmental stressors that severely affects plant growth and development. Plant responses to salt stress involve a series of biological mechanisms, including osmoregulation, redox and ionic homeostasis regulation, as well as hormone or light signaling-mediated growth adjustment, which are regulated by different functional components. Unraveling these adaptive mechanisms and identifying the critical genes involved in salt response and adaption are crucial for developing salt-tolerant cultivars. This review summarizes the current research progress in the regulatory networks for plant salt tolerance, highlighting the mechanisms of salt stress perception, signaling, and tolerance response. Finally, we also discuss the possible contribution of microbiota and nanobiotechnology to plant salt tolerance.
Collapse
Affiliation(s)
- Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|