1
|
Zheng X, Wang M, Zhang S, Yangcuo Z, He L, Xie L, Ye Y, Xu G, Chen Z, Cai Q. Development of a new synchronous fluorescence spectrometry combined with Al 3+ sensitized for simultaneous and rapid determination of trace flumequine, ciprofloxacin and doxycycline hydrochloride residues in wastewater. WATER RESEARCH 2024; 260:121941. [PMID: 38908313 DOI: 10.1016/j.watres.2024.121941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/18/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Antibiotics are a new type of environmental pollutants. Due to its wide application in many fields, antibiotic residues are ubiquitous in the wastewater environments. Given their potential threat on water ecosystem functioning and public health, the detection of antibiotic residues in wastewater environments has become very necessary. Based on the complexation of Al3+ with flumequine (FLU), ciprofloxacin (CIP) and doxycycline hydrochloride (DOX), their molecular conjugated area were increased and fluorescence intensity were enhanced, combined with synchronous fluorescence spectrometry (SFS) had good selectivity and high sensitivity, a novel method of Al3+ sensitized synchronous fluorescence spectrometry for the determination of FLU, CIP and DOX residues in wastewater was established. When the wavelength difference (Δλ) was selected 115.0 nm, synchronous fluorescence spectra of the three antibiotics could be well separated and the interference of wastewater matrix were eliminated primely. The new SFS made good use of spectral separation instead of conventional chemical separation, and the actual wastewater sample could be directly determined after simple filtration. The experiment results showed that the concentrations of FLU, CIP and DOX in the range of 0.5000-800.0 ng·mL-1, 0.5000-640.0 ng·mL-1 and 10.00-3500 ng·mL-1 had a good linear relationship with fluorescence intensity. The detection limits of three antibiotics were 0.02054 ng·mL-1, 0.03956 ng·mL-1 and 0.8524 ng·mL-1, respectively. Recovery rates of three antibiotics in wastewater samples were 90.72%-98.23%, 88.68%-95.08% and 85.94%-96.70%. The new SFS established in this experiment had the advantages of simple, rapid, sensitive, accurate and good selectivity. Simultaneous and rapid detection of FLU, CIP and DOX residues in wastewater was successfully realized. It had good application prospects in real-time water quality monitoring.
Collapse
Affiliation(s)
- Xiaodan Zheng
- Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian 351100, China; The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350000, China
| | - Menglin Wang
- Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian 351100, China; The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350000, China
| | - Shiqi Zhang
- Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian 351100, China
| | - Zhima Yangcuo
- Environmental and Biological Engineering College of Putian University, Putian, Fujian 351100, China
| | - Lifang He
- The School of Nursing, Putian University, Putian, Fujian 351100, China
| | - Lingfang Xie
- Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian 351100, China
| | - Yurou Ye
- Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian 351100, China
| | - Guifen Xu
- Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian 351100, China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhonghui Chen
- Central Laboratory, Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Qihong Cai
- Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian 351100, China; The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350000, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, Fujian 351100, China.
| |
Collapse
|
2
|
Wang M, Zheng X, Yangcuo Z, Zhang S, Xie L, Cai Q. A novel synchronous fluorescence spectrometry combined with fluorescence sensitization for the highly sensitive and simultaneous detection of enoxacin, ofloxacin and tetracycline hydrochloride residues in wastewater. Talanta 2024; 271:125707. [PMID: 38280265 DOI: 10.1016/j.talanta.2024.125707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The synergistic effect of sodium dodecyl sulfate (SDS) and Mg2+ could significantly enhance the fluorescence intensity of enoxacin (ENO) at λex/λem = 269.2 nm/385.6 nm, ofloxacin (OFL) at λex/λem = 290.8 nm/466.2 nm and tetracycline hydrochloride (TCH) at λex/λem = 372.6 nm/514.8 nm. Moreover, when the wavelength difference (Δλ) was chosen 135 nm, the synchronous fluorescence spectra of the three antibiotic complexes could be well separated and the interference of the samples matrix were eliminated primely. Therefore, only one synchronous fluorescence scan was needed to simultaneously determine the three antibiotics. Based on these facts, a synchronous fluorescence spectrometry combining fluorescence sensitization for highly sensitive and selective determination of ENO, OFL and TCH residues in wastewater was developed for the first time. The experimental results showed that the concentrations of ENO, OFL and TCH in the range of 0.5-550 ng mL-1, 1-1500 ng mL-1 and 10-5500 ng mL-1 showed a good linear relationship with fluorescence intensity. The limits of detection were 0.0599 ng mL-1, 0.115 ng mL-1 and 0.151 ng mL-1, respectively. The recoveries of the actual sample were 87.50%-99.99 %, 93.00%-98.50 % and 85.70%-98.42 %, respectively. Overall, the novel synchronous fluorescence spectrometry established in the experiment has the advantages of high sensitivity, good selectivity, fast detection speed and high accuracy. It has been successfully applied to the detection of residual amounts of ENO, OFL and TCH in wastewater with satisfactory results.
Collapse
Affiliation(s)
- Menglin Wang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350000, China; Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian, 351100, China
| | - Xiaodan Zheng
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350000, China; Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian, 351100, China
| | - Zhima Yangcuo
- Environmental and Biological Engineering College of Putian University, Putian, Fujian, 351100, China
| | - Shiqi Zhang
- Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian, 351100, China
| | - Lingfang Xie
- Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian, 351100, China
| | - Qihong Cai
- Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian, 351100, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, Fujian, 351100, China.
| |
Collapse
|